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Abstract

We present an optimal algorithm to label the edges of a complete
graph with integer lengths so that every Hamilton cycle has the same
length. The algorithm is complete in the sense that every edge-
labelling with this property is the output labelling of some run of this
algorithm. Such edge-labellings are induced by half-integer vertex-
labellings by adding the vertex labels on an edge’s ends to determine
its label. The Fibonacci sequence arises in this connection.

1 Introduction

In [4], we introduced the notion of a trivial- TSP edge-labelling of a com-
plete graph K,. This is a function A\: F(K,) — Z for which the sum
2_ace) MA) is the same for each Hamilton cycle H of K. The nomen-
clature derives from the observation that such a labelling corresponds to
a trivial instance of the Travelling Salesman Problem, in the sense that
every TSP-tour has the same length (see (8] for background on the TSP).
The stature of the TSP as a centrally important problem in combinatorial
optimization and theoretical computer science (see, e.g., [1]) suggests that
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new insights even into its special cases become welcome additions to the
mathematical literature.

A key result of [4] illuminates a fundamental connection between trivial-
TSP edge-labellings and certain vertex-labellings:

Theorem 1 For n > 3, an edge-labelling \: E(K,) — Z is trivial-TSP if
and only if there is a vertez-labelling v: V (K,) — -%Z such that

A(ij) = v; + v; for each edge ij of Ky,. (1)
The sequence (vi)iv, is uniquely determined by A.

An essential ingredient in our proof 4] of Theorem 1 is a characterization
of the trivial-TSP edge-labellings in terms of a local condition on the edge-
labels, called the Cy-matching property; see Theorem 2 below. One of our
purposes here is to illustrate further the strength of this characterization
by demonstrating how far we can proceed using the C4-matching property
as our primary tool and staying strictly within the realm of edge-labelling.
In Section 2, we present an optimal algorithm for producing a trivial-TSP
edge-labelling of K, without resorting to Theorem 1. The algorithm is
complete in the sense that every trivial-TSP edge-labelling is a possible
output labelling of some run of this algorithm. We shall see in Section 3
that the Fibonacci sequence arises naturally through the connection (1).
Now we pause to discuss the necessary background material and related
definitions.

Background

Since our graph-theoretic notation is fairly standard, we refer the reader to
any basic text—e.g. [13]—for omitted definitions. We use [n] := {1,...,n}
for the vertex set of K. If an edge A has ends i, j, then we write A = ij
or A= {i,5}. A cycle visiting the vertices v1,vs,...,v, in this order and
then returning to v; is denoted by (vq,v2,...,v,). If two graphs G, H are
isomorphic, then we write G = H.

An edge-labelling (resp. vertez-labelling) of Ky, is a function A: E(K,,) —
S (resp. v: [n] — S) into some set S of labels. For edges, we use the label sets
S =Z and Z* (of integers and positive integers); for vertices, influenced by
Theorem 1, weuse S = %Z and %N (resp. half-integers and half-nonnegative
integers). If X is an edge-labelling and A € E(K,,), then A(A) is called the
label or length of A. We use analogous terminology for vertex-labellings
v, but shall denote the label of a vertex 7 by v;. If A and v satisfy (1),
then we say that A is induced from v (via (1)). When a pair of edge- and
vertex-labellings are linked by a relation such as (1), we enter the domain
of graph labelling, a subject that enjoys an extensive literature; see [3] for
a still-evolving survey.
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An edge-labelling A: E(K,) — Z* is metric if it satisfies the triangle-
inequality: A(ik) < A(ij) + A(jk) for every triple ¢,j,k € [n]. We call A
trivial-M TSP if it is both metric and trivial-TSP. Notice that the sequence
(vi)7=; in Theorem 1 is nonnegative if and only if the induced edge-labelling
A is metric, since, for any three vertices ¢, j, k, we have

A(ik) < A(i5) + A(Gk) & v; > 0.

A labelling A: E(K,) — Z has the Cy-matching property—abbreviated
by C4-MP—if, for each 4-cycle in K,, say with consecutive edges A, B, C,
D, we have A(A)+A(C) = A(B)+A(D). It was surprising—at least to these
authors—that the trivial-TSP edge-labellings of K,, can be recognized by
verifying this local condition only:

Theorem 2 ([4]) An edge-labelling of K, is trivial-T'SP if and only if it
satisfies the Cy-matching property.

In [4], we established a more extensive set of equivalent conditions for an
edge-labelling of K,, to be trivial-TSP, but these are not essential for the
present paper.

Any constant function on E(K,) provides a simple (indeed, trivial!)
example of a trivial-TSP edge-labelling. One way to avoid this triviality
is to consider only those A which are injective, as in Fig. 1. The sequence
()7, of vertex labels inducing such an edge-labelling A has the property
that the sums v; + v;, for i # j, are all different. Following Kotzig [7]
(see also [10]), we call such a sequence well-spread, though the term weakly
Sidon has also been used; see [12] for a related survey. In this language, if
A is induced by v, then (v;)7, is well-spread if and only if A is injective.

Of course, Theorem 1 suggests a simple algorithm to construct a trivial-
TSP edge-labelling of K,: just begin with the vertex labels (1), and
apply (1). If an injective edge-labelling X is desired, then one needs to
ensure that (v;)1, is well-spread. To achieve this property, even a recursive
approach requires ensuring that a newly added vertex label v,4; does not
introduce any violations of the well-spread property. Besides showcasing the
C4-MP, another advantage of our approach in Section 2 is that the condition
to ensure an injective A (see Step 2 in Algorithm 4) is simpler than verifying
well-spreadedness. We revisit well-spread sequences of nonnegative integers
in Section 3, after focusing exclusively on edge-labellings in the following
section.

2 The construction

At the heart of our algorithm is the following lemma, which asserts a prop-
erty of trivial-TSP edge-labellings of interest in its own right.
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Figure 1: An injective trivial-MTSP edge-labelling of K,

Lemma 3 Suppose \: E(K,) — Z satisfies the Cy-matching property. Then
there is a vertez vy such that, for every v € [n], some minimum-length edge
A, incident with v is also incident with vo; that is, if v # vo, then we may
choose A, = {v,v}. If A is injective, then vo and each A, are uniquely
determined.

Proof. As all the conclusions are trivial when 1 < n < 3, we may assume
that n > 4.

First we argue that there are two shortest-length edges that are incident.
Consider two such edges A, B. If they have different lengths, let us suppose
that A(A) < A(B) < A(C) for edges C # A,B. In this case, we may
conclude immediately that A and B are incident (otherwise, let C, D be
edges completing a 4-cycle with A, B; then A(A)+A(B) < A(C)+A(D), but
this violates the C4;-MP). Now suppose that A(4) = A(B) < A(C) for all
edges C # A, B. If A and B fail to be incident, then again let C, D be edges
completing a 4-cycle with A, B. Then A(A) + A(B) < A(C) + A(D), and
the C4-MP forces equality; this implies that A(A) = A(B) = A(C) = A(D).
Now A and C are incident minimum-length edges.

To fix notation, now we write A, B for two incident shortest-length
edges with A(A) < A(B) < A(C) for edges C # A,B. Let v be the
common endpoint of A, B, so that A = {vp,v1} and B = {vp, v2} for some
distinct vertices vq, v # vg. Notice that vg is uniquely determined in case
A(A) < A(B), in particular, in case X is injective. We claim that vp has the
desired property.

Since A,, = A,, = A and A,, = B are suitable choices, and these edges
are both incident with v, it remains to establish that

Ay = {v, v} for all v € [n] \ {vo, v1,v2} (2)

defines a set of legal choices. This we verify by arguing that in each of the
other three possibilities for a legal choice—A, = {v,v1}, Ay, = {v,v2} and
A, = {v,z} for a vertex z # vo, vq,v2, v—the assignment (2) also specifies
an appropriate choice.

86



Case 1: A, = {v,n}.

Consider the 4-cycle (vg, v2,v1,v). Since the C4-MP gives A(4,) + A(B) =
A(vvg) + A(vive), and we have A(A,) < A(vyg) and A(B) < A(vyve), if
either of these inequalities were strict, we would obtain a contradiction.
Thus, A(Ay) = A(vvo), and we see that A, = {v, v} is also a legal choice.

Case 2: A, = {v,v2}.

Now consider the 4-cycle (vo,v1,v,v2). Here, the C4-MP yields A(A) +
A(Ay) = A(B) + A(vvy). Since A(A4) < A(B) and A(A,) < A(vv;), strictness
of either of these inequalities again leads to a contradiction. Now A(A4,) =
A(vvy) means that {v,v;} is a minimum-length edge incident with v, so by
Case 1, another legal choice is A, = {v,vo}.

Case 3: A, = {v,z} for some z € [n] \ {vo,v1,v2,v}.

Finally consider the 4-cycle (vo,v1,z,v). Now the C4-MP implies that
A(A) + AM(Ay) = Mviz) + Mvw), and since A(A) < A(viz) and A(4,) <
A(vvg), in fact we have A(A,) = A(vvg). Thus we could legally redefine
Au = {‘U, ‘Uo}.

In each case, we see that {v,vg} is a minimum-length edge incident with v,
as claimed. Of course, this edge is uniquely determined when all the edge
labels are distinct. ]

Remark As suggested in the introduction, the spirit of the present sec-
tion is to constrain ourselves to edge-labelling without reference to vertex
labels. There is a sense in which this is akin to fighting with one hand (viz.
Theorem 1) tied behind our backs. With this hand available, Lemma 3
becomes almost transparent: the vertex vg is simply one minimizing its
v-label. If A is injective, then so is v, whence vp is unique.
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Algorithm 4 triv_TSP.label(n): to compute an edge-labelling A of Ky,
n > 3, with the Cy-matching property and, if desired, distinct edge labels.

Basis (n = 3)

if n=3 let A: E(K3) — Z be any edge-labelling, an injection
if distinct labels are desired.
[Any such A vacuously satisfies the C4-MP.)

return(})
Recursive step (n > 4)

else
1. set A:= triv.TSP_label(n —1).
[Then A: E(Kn_1) — Z is an (injective if desired)
edge-labelling satisfying the C4-MP; Steps 2,3 extend
A to E(K,) while preserving the C4~-MP and label
distinctness, if desired.]

2. let A € Z; choosing A to exceed max A(A) is
AeE(Kn—l)

sufficient to ensure distinct edge labels.

3. let the new vertex be n and the vertex vg of Lemma 3
be 1. For each new edge {i,n}, 1 <i < n—1, choose
a vertex j # 1,i,n; assign length A(in) := A+(A(35)—
A(15))-
[Now X: E(K,p) — Z is extended.]

return(A)

Fig. 2 depicts two early steps of Algorithm 4; notice that the output
labelling agrees with the one in Fig. 1.

Theorem 5 Algorithm 4 is correct; i.e.,, for n > 3, triv_TSP_label(n)
returns an (injective if desired) edge-labelling A: E(K,) — Z satisfying the
Cy-MP.

Proof. By induction on n. The basis being trivial, let us fix n > 3 and sup-
pose the algorithm produces (in Step 1) an edge-labelling A: E(Kp,-1) —» Z
satisfying the Cy4-MP. Suppose further that when the distinctness instruc-
tions are followed, an injective A results. We need to show that the recursive
step (in Steps 2,3) preserves the C4-MP and, if instructed, maintains dis-
tinct labels.

Claim 1: the C4-MP is preserved.
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Figure 2: The basis and first recursive step of Algorithm 4

Proof of claim. The inductive hypothesis guarantees that no 4-cycle with
vertices in [n—1] can violate the C4-MP. So consider a 4-cycle C = (n, 1, k, 13),
which traverses two edges through vertex n: {iy,n} and {i2,n}. If j;, 72
respectively denote the vertices j chosen in Step 3 for the new length as-
signments A(i;n), A(ian) to these edges, then

71 € {1,i1,n} and ja & {1,43,n}. (3)
To show that C does not violate the Cy-MP, we need to establish that
A(i1n) + A(i2k) = A(ign) + A(4: k),
or, using Step 3, that
A(i1d1) + AM(1g2) + A(izk) = A(i2d2) + A(141) + A(d1k). 4)

That we have (3) and
I{nril’k,i2}l=4 (5)
(C is a 4-cycle) leaves open six cases depending on which, if any, of the
seven vertex labels 1, n, k, 11, i, 71, j2 name the same vertex.
First consider the case when these are distinct vertices, with the possible
exception that k might be 1. The C4-MP applied to the 4-cycles (1, 7y, 41, jo)
and (i1, f2, 42, k)—both in K,,_;—implies in turn that the left side of (4) is

A(ing) + A(152) + A(izk) = A(171) + A(Grge) + A(i2k)
= AM11) + A(1k) + A(G2g2),

the right side of (4). Thus in this case, the C4-MP is not violated by C.
The common pattern in verifying the remaining cases is that there is
always at least one 4-cycle in K,_; that forces (4) for C by the inductive
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truth of the C4-MP. Since these cases all yield to similar reasoning, we omit
the details in favour of Table 1 describing the cases along with the 4-cycles
in K, -, essential for deduction of (4).

Case Subcase 4-cycle(s) in Kn_1 implying (4)
for C (or other justification)

41 = jo (includes when | j; = jo =k | (4) holds trivially
one of ij, i3 is 1; say
i3 = 1 in this event) f1=7j2#k | (i1,71,%2,k)

1 # Jos it # 1 # iy (1, 71,71, J2)

one of ji, jo is k; wlog

j2 = k$ jl # k

Ni#Fdnia#FlFa k=1 (4) holds trivially
a=n#Fk#Fje=u [k#1 (1,41, k,42)

g1 # das i # 1 # g (1, 41,41, 42), (41, 72,92, k)

J1 # k # jo; at least (Note this includes the case cov-
one j is not the other ered in detail.)

i; wlog j2 # 11

Table 1: Exhausting the cases 4 < |{1,n,k,11,%2,71,72}| < 7, subject to

(3), (5)

Since in each case we find that C satisfies (4), the claim is proved. ®

Claim 2: the recursive step maintains distinct labels provided Step 2
chooses A to exceed max A(A).
A€E(Kn_1)

Proof of claim. We need to check that the labels A(in), 1 < i <n—1, are
different from each other and from the edge labels on K, ;.

If A(41n) = A(ign) for some indices 1 < i) # i2 < n —1, pick k €
[n—1]\ {41,142} and consider the 4-cycle (n,i1, k, i2). The C4-MP—already
verified for )\ on all of K,—ensures that

)\(iln) + )\(igk) = /\(izn) + )\(ilk),
so we obtain A(izk) = A(¢1k). But these are edge-labels of K,_; and hence,

by the inductive hypothesis, are distinct. The contradiction shows that the
new labels are distinct from one another.
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It remains to see why no new label A(in) = A+ (A(i5) — A(15)) coincides
with an edge-label of K,,_;. Since vo = 1 (Step 3), Lemma 3 yields A=

{7,1}, whence A(15) < A(ij). By Step 2, now A(in) > A > Aeg(xia‘;x )/\(A),
nel

which shows that A(in) is distinct from any edge-label of K,,_;. |

With Claims 1 and 2 established, the proof is complete. |

It is sometimes desirable—e.g. when we consider metric labellings—to
restrict the set of edge labels to the positive integers. After a simple modifi-
cation, Algorithm 4 produces a trivial-TSP edge-labelling A: E(K,) — Z*:

Theorem 6 If each occurrence of Z in triv_TSP_label(n) is replaced by
Z*, then the modified algorithm produces an (injective if desired) trivial-
TSP edge-labelling with positive labels.

Proof. Since Z* C Z, Theorem 2 and the proof of Theorem 5 show that the
new algorithm returns an (injective if desired) trivial-TSP edge-labelling.
So it remains only to verify the positivity of the labels. Again we use
induction and leave the basis for the reader. For n > 3, let us suppose that
the new algorithm produces (in Step 1) a positive integer edge-labelling of
K,,_1. To see that the recursive step maintains positive labels, recall from
the preceding proof that A(in) > A for each i € [n — 1]. Since the modified
algorithm ensures (in Step 2) that A > 0, we have A(in) > 0. B

A moment’s reflection shows that in proving Theorem 5, we actually
proved a little more, namely that Algorithm 4 is complete. That is, every
trivial-TSP labelling of E(K,) can arise via a call to triv_TSP_label(n).
Theorem 2 asserts that if we want to generate such a labelling, we must
arrange for the C4-MP to hold. This implies that relative to the label
A = X(1n), the labels A(in), for 2 < i < n — 1, must agree with the
assignment in Step 3 of the algorithm. Aside from ensuring this necessary
condition, the algorithm allows total freedom in the choices of A (in Step 2)
and A|gk,) (in the Basis).

We close this section with an assertion on the optimality of the algorithm
triv_TSP_label(n).

Theorem 7 Algorithm 4 is optimal, up to a constant factor; i.e., the run-
ning time of triv_TSP_label(n) is in O(n?).

Proof. We shall analyze the version of Algorithm 4 that does not seek dis-
tinct labels, but with an appropriate implementation, the overhead needed
to ensure an injective A does not change the order of the running time.
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Let T(n) denote the running time of triv_TSP_label(n). From the
statement of Algorithm 4, we see that

ifn=3
T(")={ ;‘(n—l)+(n—1)+d ;f:zaz

for some constants ¢, d. Since the general solution of this recurrence relation
is T(n) = (c—3)+(n—3)d+n(n—1)/2, for n > 3, we see that T'(n) € O(n?).

Clearly this is optimal (up to a constant factor), since any algorithm
to label the edges of K,, (in any manner whatsoever) must at least spend
constant time on each of the (3) € Q(n?) edges. .

3 Reduced Fibonacci numbers

As discussed in the introduction, the relation (1) determines several char-
acteristics of the sequence of vertex labels inducing a trivial-TSP edge-
labelling. For example, an injective, trivial-MTSP edge-labelling corre-
sponds to a well-spread, nonnegative, half-integer sequence of vertex labels.
With its first term deleted, the Fibonacci sequence furnishes one example
of such a sequence. In this section, we examine how this example dovetails
with Algorithm 4.
We define the reduced Fibonacci sequence (fn)n>1 by f1:=0, fo:=1
and
fa=fac1+ fa—2+1forn>3. (6)

It is easy to see that (fn)n>1 is obtained from the Fibonacci sequence
(Fa)n>1 by dropping the first term and decrementing each successive term—
i.e. fn = Fpy1 —1 for n > 1—so our use of “reduced” seems doubly appro-
priate. Though it has received its share of attention—an early reference is
[9], and it is entry A000O071 in [11}—this sequence as yet does not appear
to have been named, so we felt free to assign our own.

In seeking an integral vertex-labelling v inducing an injective trivial-
TSP edge-labelling via (1), it is actually the reduced Fibonacci sequence
that arises naturally. For suppose v; < v < -+ < Up—1 < vy, and the first
(n—1) of these vertex labels induce such a labelling of E(K,,_1). Then the
maximum edge label on K,_; is vn_1 + Vn—2, and the minimum label on
an edge {i,n}, 1 <i<n—1,is vy +v;. One (greedy) way to ensure that
these final labels are different from any of those on E(K,—1) is to require
that v + 11 > Vn_1 + vn_2. If we also begin greedily and set 14 = 0, then
the least integral choice for v, is

Un = VUn-1+Vn-2+1,
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the recurrence (6) defining (fn)n>1. The next result formalizes these ob-
servations and connects them with Algorithm 4.

Theorem 8 If in Algorithm 4 the basis returns labels A(12) = 1, A(13) = 2,
A(23) = 3, and the recursive step always selects A = 4c gz;a{x A(A)+1,

n=1
then the vertex-labelling inducing A via (1) consists of labels v; = f;, for
1<i1<n.

Proof. By induction on n. For the basis, notice that the vertex labels
(v1,v2,v3) = (f1, f2, f3) = (0,1, 2) induce edge labels {1,2,3}, as desired.

Now fix n > 3, and assume the result is true for complete graphs on n—1
vertices. Thus, if G denotes the subgraph of K,, induced on the vertices
[n — 1], then the recursive call triv_TSP_label(n — 1) (Step 1) returns an
edge-labelling A|g(¢) induced by the vertex-labelling v given by v; = f; for
1 £i<n-—1. We may now determine v, by considering (1) for the new
edge {1,n}. Steps 2,3 show that

Un=A1ln)—v1=A-fi =Ar€n&)§;))\(x4)+l=(fn..1+fn-2)+1=fn. |

Figure 3: Reduced Fibonacci vertex labels induce an edge-labelling of K
produced by Algorithm 4.

The n = 5 case of Theorem 8 is illustrated in Fig. 3, where the vertex la-
bels, not their names, appear on the vertices. With A = 7, this labelling also
results from the next recursive call in Algorithm 4 following the labelling
of Ky in Fig. 2.

Remark In the proof of Theorem 8, it may be unsettling that in comput-
ing vy, we only considered (1) for ij = 1n. One might question the veracity
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of the remaining equations in (1) involving v,, namely of
AMin)=vi+vpforl<i<n-1. (7)

To illustrate that our choice v, := A(1n) — v, also satisfies these relations,
we fix i, 1 < i < n, and derive the ith equation in (7). Since n > 3, there is
an index j € [n] \ {1,7,n}, so that (1, j,4,n) is a 4-cycle. Since A satisfies
the C4;-MP, we have

A(17) + A(in) = A(i5) + A(1n),
which, because A(ij) = v; + v; for each edge ij of G = K, yields
(11 + v;) + A(in) = (v +v;) + A(1n),

or
A(in) = v + (A(In) — vy) = v; + vp.
Therefore, our choice of v, indeed satisfies the ith equation in (7).

Optimal edge-label growth rate

It is natural to ask how quickly the labels in a “most efficient” edge-labelling
scheme grow, and to compare the answer with the growth-rate of the labels
induced by the reduced Fibonacci numbers. For the latter, if ¢ is the
golden ratio and ) is induced by (f;)i;, then M(n) := maxacg(k,) AM(4) =
fn + fa—1 € O(p™) (see, e.g., [2]), so these labels grow exponentially. For
the former, we shall measure efficiency by the length of an initial segment
of the nonnegative integers into which we can squeeze all the edge labels.
Thus, we should compare M (n) with
m(n) := min Aerg‘?l)g") A(A),

where the minimum is taken over all injective trivial-MTSP edge-labellings
A. Notice that the labellings over which A ranges in the definition of m(n)
include the labelling in the definition of M(n). In [4], we conjectured, and
in [5] the second author proved, that m(n)/2n2 — 1 as n — oo (see also
[6] for related developments). Thus the edge labels induced by the reduced
Fibonacci numbers are a far cry from those realizing m(n), and, here at
least, greed does not pay.
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