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Abstract

The Moore upper bound for the order n(4,2) of graphs with
maximum degree A and diameter two is n(A,2) < A%+ 1. The
only general lower bound for vertex symmetric graphs is n.:(A,2) >
[££2)[4£2]. Recently a construction of vertex transitive graphs of
diameter two, based on voltage graphs, with order §(A + £)? has
been given in [5] for A = (3¢ — 1)/2 and ¢ a prime power congru-
ent with 1 mod 4. We give an alternative geometric construction
which provides vertex transitive graphs with the same parameters
and, when q is a prime power not congruent to 1 modulo 4, it gives
vertex transitive graphs of diameter two and order -;-(A +1)?, where
A = 2q— 1. For g = 4, we obtain a vertex transitive graph of degree
6 and order 32.

1 Introduction

The well-known (A, D)-problem asks for the largest possible number n(A, D)
of vertices in a graph with given maximum degree A and diameter D. The
Moore bound n(A,d) < Q(AT'P:—'z can only be reached when either A = 2
(the cycle Cyp41), or D =1 (the complete graph Ka ;) or when D = 2
and A = 1,2,3,7 and perhaps 57 [4]. A survey of the current best know
constructions of graphs with large order for given maximum degree and
diameter can be found in [6]. For D = 2, incidence graphs of projective
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planes folded by a polarity give n(A,2) > A2 -~ A+ 1 whenever A—1isa
primer power [1, 2] and they can be used to provide families of graphs of
diameter two and order O(A?) for each value of A, see [5].

When the graphs are required to be vertex transitive, the only general
lower bound available seems to be

nu(a,2) 2 | 2321212

attained by the Cayley graphs Cay(Z, x Zy, S), where a = [-%"—"—’J, b=
[442] and S = (Za x {0}) U ({0} x Z5)\ {(0,0)}. Larger vertex symmetric
graphs were obtained by Hafner [3]. McKay, Miller and Sirdi [5] gave
an infinite family of vertex transitive graphs of diameter two and order
%(A + 3)? when g = (2A +1)/3 is a prime power congruent to 1 mod
4. In view of the (unattainable) Moore bound n(A,2) < A% 4+ 1 thisis a
remarkable result. These graphs, which we call MMS in what follows, still
provide some of the best constructions for large vertex transitive graphs of
diameter two. Their construction is based on the covering graph technique
and use lifts of complete bipartite graphs. A simplified description of the
MMS graphs was given by Siagiov4 [7] by using abelian lifts of graphs with
two vertices; she also proved [8] that this kind of technique can not produce
graphs of order larger than about 0.933A2.

Here we present a geometric construction of large graphs of diameter
two. This geometric construction is based on the incidence graphs of finite
affine planes. When the chosen affine plane comes from a Desarguesian
projective plane, the construction allows one to give an alternative way of
obtaining the MMS graphs. For non Desarguesian planes the construction
gives graphs with the same parameters of order, degree and diameter but,
for the known examples of non Desarguesian planes, the corresponding
graphs fail to be vertex transitive. For simplicity we give here the proofs
by using the Desarguesian affine planes.

The proposed technique also provides the following lower bound for
vertex transitive graphs of diameter two:

nu(8,2) 2 5(A2+1),

when ¢ = (A +1)/2 is a prime power.

2 The construction

Let ¢ # 2 be a prime power and denote by F, the Galois field of order
g. Let Lo,L,,..., L, be the parallel classes of lines in the affine plane
A(2,q). We denote by L = LoU - - -U L, the set of lines of A(2, ). Assume
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that the plane is coordinatised in such a way that Ly consists of the lines
with equation z = c for each ¢ € F;. We denote the line with equation
y=mz+bin L\ Lo by [m,b].

Consider the incidence graph B, of the points in A(2,q) and the set
L\ Ly of all lines in A(2,q) except the ones in the parallel class L. The
graph By is bipartite, g-regular, has 22 vertices and is vertex transitive.
Indeed, the group of translations of the affine plane A(2, q) acts regularly on
the set of points and leaves Lg invariant, and the map ¢ which exchanges the
point (a,b) with the line [a, —b] is an automorphism of B, which exchanges
stable sets of the graph. Every two points not in a line of Ly determine a
unique line in L\ Lo and thus they are at distance two in B,. Similarly, two
lines not in the same parallel class of L\ Lg intersect in a unique point and
so they are at distance two in the graph. The construction is completed by
inserting appropriate copies of graphs of diameter two in the set of points of
each line of Ly, and in the set of lines in each parallel class of lines except
L. Since we require our graphs to be vertex transitive, additional care
must be taken about the way these graphs are inserted.

Let Sy, Sz be subsets of F, satisfying the following three conditions:

(i) There is « € [F4 such that aS; = S3 and aS; = S;.

(ii) 81U S covers all non zero elements of F,.

(iii) S;=-S;,i=1,2.

Let G; be the Cayley graph on the additive group of F, with generating
set S;, ¢ = 1,2. Then, by condition (i), the two graphs are isomorphic.
Actually, if we denote still by a the map a(z) = az, then a(G,) = G2 and
aG3y = G1. Moreover, by (ii), we have |S;| = |S3| > (¢ — 1)/2. Then both
G, and G2 have diameter at most 2.

Consider the graph By(G, G2) constructed from B, by adding copies
of G; and G as follows.

1. For each line in Lo, we embed a copy of G| in its set of points. More
precisely, if S is the generating set of the Cayley graph G, for each
line in Lo with equation z = ¢ the neighborhood of vertex (c,y) in
the inserted copy of G| is the set of points (c, y) + ({0} x S1).

2. Similarly, to each parallel class L;, i # 0, we embed a copy of G5 in
such a way that the neighborhood of the line [a, b] is the set of lines
[a,b] + ({0} x S3) in the same parallel class.

An example of the construction for ¢ = 3 and S; = S, = Fj is shown
in Figure 1.

Proposition 1 The graph B,(G\, G2) is vertex transitive and has diame-
ter two.
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Figure 1: The graph B3(Ks, K3).

Proof. Let us first show that By(G1,G?) is vertex transitive. Note that
the translations in the affine plane A(2,q) still act as automorphisms of
B,(G1,G3). Indeed, a translation sends each line [m, b] to a parallel one of
the form [m, b+ zy,] for some z,, € Fy, so that it acts as a translation of
the induced graph G in the parallel class, i.e. as an automorphism of G».
Similarly, a translation sends the set of points of a line in Lo to the points
of another line in Ly and thus an induced copy of G; to another one.

Let us denote by o’ the bijection on the vertex set of Bq(G1, G2) defined
as o/(z, y) = (z, ay) in the set of points and ¢/[z, y] = [az, ay] on the set of
lines, where o € F, satisfies aS; = Sz (and aS; = Sy). Clearly o preserves
the incidence relations in A(2, ¢) and it is therefore an automorphism of the
graph B,. Moreover, o' exchanges the copies of G, with the copies of G.
Hence, o’¢ is an automorphism of B,(G1, G2) which exchanges points with
lines. Therefore, the group of automorphims generated by the translations
and a’¢ acts transitively on the set of vertices of the graph.

Finally, let us show that (0, 0) has eccentricity two. All points not in the
line of Lo incident to (0, 0) are at distance two from (0, 0) in the subgraph
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B,, and the points in this line are also at distance at most 2 in the copy of
G embedded in it. On the other hand, (0, 0) has the lines [m, 0], m € F,
at distance one in B,. The lines [m,u),u € Sy are at distance one in a
copy of G2 from [m,0] and the lines [m,v], v € S at distance one from
(0,v) which in turn is at distance one from (0,0) in a copy of G;. Since
81U Sz = Ty, all lines are at distance at most 2 from (0,0). Therefore,
By(G\, G2) has diameter two. 0

The above construction provides instances of large graphs with diameter
two by appropriate choices of sets S; and S; satisfying conditions (i)-(iii)
above. Part (2) of the following theorem is proved in [5] using a different
construction.

Theorem 1 Let q be a prime power, q # 2. Then
L nyi(A,2) > -;-(A +1)% for A=29-1.
2. nu(A,2) 2 §(A+3)2 for A=(3g-1)/2andg=1 (mod 4).
3. ny(6,2) > 32.

Proof. A trivial choice for the sets S, Sz involved in the construction of
By(G1,G2) is S1 = S2 =T,

Then, both G, and G2 are complete graphs and B,(G), G2) has degree
A =2q -1 and order n = (A + 1)2. This proves (1).

When ¢ is a prime power congruent to 1 mod 4 then a better choice for
Sy and S; with cardinality (¢ —1)/2 (the minimum possible) can be found.
Let o be a primitive root of I,

S1={a®**, k=0,1,...,(¢ - 3)/2}} and S = aS,.

Since —a* = o#*t(3-1)/2 and (g—1)/2 is even, we have S; = —S;. Moreover,
aSz = S) and S; U Sz = Fy. The resulting graph B,(G), G2) has degree
A = (3¢ —1)/2 and order n = §(A + 1)2. This proves (2).

Finally, for ¢ = 4, we may choose S; = {1,a} and S, = {1,a?} = o285,
which results in a graph of degree 6 and order 32. This proves (3). o

When q /A&1 (mod 4) then the only choice for S; and S, satisfying
conditions (i)-(iii) is S; = F;. However, there are other choices for such
sets satisfying only conditions (ii) and (iii). This leads to graphs B,(G1,G3)
which are no longer vertex transitive but still have diameter two and degree
g+ max{|S1|,|S2|}. The following two examples give the families described
in [5, Theorem 1.

For g =0 (mod 4) we may choose S; = {1,¢,...,a%?"'} and S, =
{1,09/2,...,a%97 '}, We have S; = —S;, i = 1,2, and S, US> = Fy. The
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resulting graph B,(G1, G2) has diameter two and order n = -g-Az. When
g= -1 (mod 4), a possible choice is

Sy ==%{l,q,...,a973/%} and S = £{1,a9+V/4 ol9-3/2}

which gives rise to a graph with diameter two and degree n = -g—(A"’ -

1/2).
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