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Abstract

In the Euclidean plane, let 4, B, C be noncollinear points and T be
the union of the lines AB, BC, CA. It is shown that there is a point
P such that if T is the image of T by any nonrotating uniform
expansion about P, then TAT is generally a six-point set that
lies on a circle.

1. INTRODUCTION. The medians of a triangle 4BC in the Euclidean plane
divide it into six smaller triangles. In [1] it was shown that the circumcentres of
these triangles all lie on a conic. A problem published in the American
Mathematical Monthly [2] invited readers to show that the conic is in fact always
a circle. The problem editors of the AMM received a number of solutions to this
problem all of which “involved lengthy calculations (some done with Maple or
Mathematica)”. Apparently disenchanted with all such solutions, the editors
published their own purely geometrical solution [3] which they say “may help to
shed some light on why the result is true”.

Greater understanding is usually achieved by a broader view and the
introduction of key concepts. In the present paper we establish a theorem, a
trivial application of which provides a solution to the AMM problem. As
indicated in the above abstract, the theorem involves a certain point P that is
uniquely associated with a nondegenerate triangle ABC. We have called this the
“orthocentroid” of the triangle. Our definition of an orthocentroid has
generalizations to nondegenerate simplexes in finite dimensional Euclidean
space. However it seems that our theorem is essentially two dimensional, so in
§2 we just give a simple account of the planar case.

The detailed statement and proof of our theorem are facilitated by using
the field C of complex numbers. A purely geometrical statement and proof
would be more cumbersome and involve tedious considerations of several cases.
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2. ORTHOCENTROID. This unfamiliar notion is essential for our purpose.
Let 4, B, C be noncollinear points in the Euclidean plane E?> and T be the
union of the lines BC, CA, AB.

Say that a point P in [E2 is an orthocentroid of T if it is the centroid
of the three points obtained by the orthogonal projections of P onto the lines
BC, CA, AB.

We first show that an orthocentroid exists. Let n4, ng, nc denote the
unit outward normals to the edges BC, CA, AB respectively of the triangle ABC.
Notice that —n is in the non-reflex angle subtended by n, and ng, so zero is a
linear combination with positive coefficients of n Ny, ng, nc. Consequently
there are points P, A', B', C' in E2 such that P4, PB', PC' are positive
multiples of n,, ng, nc respectively and PA'+PB +PC'=0. Let T; be the
union of the lines through 4’, B’, C' that are perpendicular to PA’, PB', PC’'
respectively. Then 7] is similar to 7 and has orthocentroid P. By change of scale
and translation if necessary, we may suppose that 7} =7 so existence is proved.

Now suppose that P is any orthocentroid of 7. We show that P is
inside the triangle ABC. Let 4’, B, C' be the orthogonal projections of P onto
the lines BC, CA, AB respectively. Each of the n,, ng, nc is a unique linear
combination with negative coefficients of the other two, so any linear
combination of them that represents 0 has coefficients either all positive, all
negative or all zero. Now PA'+PB' +PC' is such a linear combination:
PA'= xny, PB' =yng, PC'= znc, say. Notice that x>0 if and only if P is
on the triangle ABC side of the line BC and similarly for y, z. Since P must be on
the triangle side of at least one of the lines BC, C4, AB it follows that x, y, z are
all positive and therefore P is inside the triangle.

The uniqueness of the orthocentroid is now established by showing that

|PA'| = x| BC|, |PB'| = x|CA|, |PC'| = k|A4B|

where x=2|ABC| / (l BC |2 +|CA |2 +| AB |2) and the modulus notation is
used for segment length or triangle area.

Since P is inside the triangle, resolving PA'+PB +PC' =0 in the BC
direction gives | PB'|sin é- | PC'|sin B=0,s0

{PB'| _ |PC'|
sin B sinC
Similarly ‘—-Izg,—' = I{’A.l .
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Hence, by the sine rule, for some x;
|PA'| = K| BC|, |PB'| = 5q|CA|, |PC’'| = x| AB| .
Also
| PA'|| BC|+| PB'||CA|+| PC'|| AB| = 2| ABC|

$0 k] =k asrequired.

3. THE SIX-POINT CIRCLES Henceforth the field C of complex numbers
is used as a model for E2 and zero will be our orthocentroid. For any complex
number a # 0, define

L, = {(+ix)a: xeR} .
This plays the role of our line BC and a corresponds to A'.

Lemma. Suppose that a, b are non-zero complex numbers and L,, L, are not
parallel. Then

Pas = —2ab(@-b)/(ab -ab)
is the pointin L, N\ L.
Proof. For some real x, y
Pap = (I+ix)a = (1+i)b,
50 (-x)a = (1-p)b .
These equations yield 1+ix=2b(5 -a )/ (ab -ab) and the result is immediate.

Theorem. Suppose that a, b, ¢ are non-zero complex numbers witha + b+ ¢ =0
and no two of the lines L,, L,, L, are parallel. Then T=L, WL, UL, has
orthocentroid zero and circumcentre z = —2abc& A% where

o = a*+b%+c?
and A=|a b|l=|b ¢c|l=]c a
a b b ¢ T a
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Also, for any real A#0,1 the set AT N\T lies on the circle with centre
zZ; = -;-(l +1)z which is the point midway between the circumcentres of AT and
T. Finally the radius of this circle is

r1=2%(/16+3)'

A

where d=|la b|l=\|b ¢c|l=|c a]l.
T a a b b ¢

Proof. Of course, the circumcircle of T is the circle that contains p, 5, pp .
and p, ,.Also AT={At:teT}.

By the definitions, 0 is the orthocentroid of T and the determinant
equations are simple consequences of a+b+¢=0,
By the Lemma, for any real 4 =0,

—Zapb(E -ub )/ (a,ug - a‘,ub)
~2ab(a-pb)/A.

Pa, ub

Since A is unchanged by cyclic permutation of a, b, ¢, we deduce
Pb,pc = ~2bc(b - /JE)/A s Pe,ya =—2ca(c-pa)/a .
Similarly,
Puap = —2ab(pa@-b)/A, puy . =-2bc(ub-T)/A ,
Puca = —2ca(uc-a)/A .

Recall the definitions: o =a® +52 +c?

, z=-2abcGA2, z, =L(u+1)z.
Using a+b+c =0 we obtain

o =a+b*+ab = b2+t +be = Z+a?+ca.

N

Now calculate

2y~ Pa,ub

~L(u+1)2abc &A™ +2ab(@ - pb )a~!

—abA2[ p(c5+2bA)+c5-2aA
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—2abA™2 [[I{C(EZ +¢? +EE)+5(bE—I;c)}

+c(e? +a? +EE)—a_(c5—Ea)]

-2abc A2 [ u{ce + cb +bb} + ¢ +ca+ad |

~2abc A2 [ u(bb - ca@)+ T - ab

-2abc A2 (u6+8) .

Since z,,, A and Sare unchanged by a cyclic permutation of a, b, ¢, we deduce
2y = Poyc = —2bcaA (u5+5), 2z, = Peya = -2cabA™* (us +5) .

Similarly 2y~ Puap = —2abC A2 (5 +6) ,
2y~ Pube = —2bcAA(p5 +6), z, ~Puca = —2cab A2 (ud +5) .
Hence all points of the set

1;4 = {pa,yb’ Pb,yuc> Pc,pas Pua,bs Pub,c» P;:c,a}

are distance r,, = 2labcA’2 ( us+8 )l from z,, . The set of vertices of Tis 1},
s0 z; =z is the circumcentre of T and therefore also Az is the circumcentre of
AT . All the statements of the theorem are now clear.

Remarks 1. Let L;q, Ly, Lo be the lines through the orthocentroid 0 that
are parallel to L,, L, L, respectively and define Tp=1L, oL, UL, g.
View Tj as a “limit” of uT as utends to 0. Then Ty T is a six-point circle,
i.e. a six-point set that lies on a circle. This is easily deduced from the theorem
since z,, r, and the elements of I, , regarded as functions of u, all have
continuous extensions at #=0. The circle that contains 7y T has centre

—abcFA™? andradius 2| abcS A2 |.

2. If y=1, then uTNT =T is an infinite set. There are at most six
other non-zero values of x such that 4T AT is not a six-point circle. They occur
when any one of the sets

LyanT, LT, LT, pTnL,, uTL,, uTNL,
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contains only one point and this can happen only if x#<0.

3. A simple calculation shows that the segments p, ;P15 4»
Pib,c Pac,hs Pic,a Paa,c @ll have length |()~—l)abcA'l |. When 1>0 and
A =1, these segments are all edges of the convex cyclic hexagon with vertices
ATNT.

We conclude with the application mentioned in the Introduction:
barycentric subdivision of a triangle yields six triangles with concyclic
circumcentres.

Proof. Work in C and suppose that zero is the centroid of the triangle and its
vertices are 2a, 2b, 2c. Thena+ & + ¢ = 0. Define T =L, UL, UL, as in the

Theorem and observe that (—%T)h T is the set of circumcentres.
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