A Note On the Ramsey Numbers $R(C_4, B_n)$

Kung-Kuen Tse
Department of Mathematics and Computer Science
Kean University, Union, NJ 07083 USA
ktse@kean.edu

Abstract

The Ramsey number $R(C_4, B_n)$ is the smallest positive integer m such that for every graph F of order m, either F contains C_4 (a quadrilateral) or \overline{F} contains B_n (a book graph $K_2 + \overline{K_n}$ of order n+2). Previously, we computed $R(C_4, B_n) = n+9$ for $8 \le n \le 12$. In this continuing work, we find that $R(C_4, B_{13}) = 22$ and surprisingly $R(C_4, B_{14}) = 24$, showing that their values are not incremented by one, as one might have suspected. The results are based on computer algorithms.

1 Introduction

For graphs G and H, a (G, H)-graph is a graph F that does not contain G, and is such that the complement \overline{F} does not contain H. A (G, H; n)-graph is a (G, H)-graph of order n. The Ramsey number R(G, H) is defined to be the least integer n > 0 such that there is no (G, H; n)-graph.

A regularly updated survey by Radziszowski [4] includes the most recent results on Ramsey numbers R(G, H), for different graphs G and H. In this paper we consider the case where G is a quadrilateral C_4 (cycle of order 4) and H is a book graph B_n .

In Section 2, we present known results for Ramsey numbers $R(C_4, B_n)$. Section 3 presents the statistics of $R(C_4, B_n)$ for n = 13 and 14.

A general utility program for graph isomorph rejection, nauty [3], written by Brendan McKay, was used extensively. The graphs themselves are available from the author.

2 Results

In [2], Faudree, Rousseau and Sheehan gave the bounds for $R(C_4, B_n)$:

Theorem (Faudree, Rousseau and Sheehan [2]).

- (i). If q is a prime power, then $q^2+q+2 \le R(C_4, B_{q^2-q+1}) \le q^2+q+4$. In particular, $22 \le R(C_4, B_{13}) \le 24$.
- (ii). Let g be the real valued function defined by $g(x) = x + \sqrt{x-1} + 2$ and f(x) = g(g(x)), then $R(C_4, B_n) \le f(n)$.
 - (iii). $R(C_4, B_n) = 7, 9, 11, 12, 13$ and 16, for $2 \le n \le 7$ respectively.

Theorem (Tse [6]). $R(C_4, B_n) = 17, 18, 19, 20$ and 21, for $8 \le n \le 12$ respectively.

Note that $R(C_4, B_8) = 17$ not 16 as claimed in [2] and $R(C_4, B_n)$ is not incremented by 1.

In Table I below, we give a list of known $R(C_4, B_n)$ and the upper bound f(n).

n	$R(C_4,B_n)$	f(n)
2 3	7	9
	9	10
4	11	11
5	12	13
6	13	15
7	16	16
8	17	17
9	18	18
10	19	20
11	20	21
12	21	23
13	22	24
14	24	25

Table I. Known $R(C_4, B_n)$ and upper bound f(n).

3 Enumerations of $R(C_4, B_n)$

The algorithm we employed is the same as in [6] and similar to the one in computing $R(B_3, K_5)$ [1], and $R(C_4, K_7)$, $R(C_4, K_8)$ [5], thus we omit the details. We will use the same definitions and notations as in [6]. It is computationally infeasible to generate all (C_4, B_n) -graphs, for n=13 and 14. We only enumerate (C_4, B_n) -graphs on $R(C_4, B_n) - 1$ vertices, and their statistics are presented in Table II. Finally, We give the adjacency matrix of the only $(C_4, B_{14}; 23)$ -graph in Figure III.

n	m	$(C_4, B_n; m)$ -graphs
13	21	11357443
14	23	1

Table II. Number of $(C_4, B_n; R(C_4, B_n) - 1)$ -graphs, for n = 13 and 14.

```
1 00000010010010000001010
2 00000001000100100000011
3 00000000100001001001001
4 00000000011100001100000
5 00000000001010010000101
6 00000000000011100110000
7 10000000000000011010010
8 01000000000000010101000
9 00100000000000101000100
10 10010000000100000001100
11 00011000000001000000010
12 01010000010000000010001
13 10001100000000000100001
14 00100100001000000011000
15 01000100100000000000110
16 00001011000000000010100
17 00110010100000000100000
18 00010101000010001000000
19 00000110000101010000000
20 10100001010001000000000
21 00001000110000110000000
22 11000010001000100000000
23 01101000000110000000000
```

Figure III. Adjacency matrix of the only $(C_4, B_{14}; 23)$ -graph.

References

- [1] A. Babak, S. P. Radziszowski and Kung-Kuen Tse, Computation of the Ramsey Number $R(B_3, K_5)$, Bull. Inst. Combin. Appl. 41 (2004), 71-76.
- [2] R. J. Faudree, C. C. Rousseau and J. Sheehan, More from the Good Book, Proc. Ninth Southeastern Conf. Combinatorics, Graph Theory, and Computing, (Utilitas Mathematica Publ., 1978), 289-299.
- [3] B. D. McKay, nauty users' guide (version 1.5), Technical Report TR-CS-90-02, Computer Science Department, Australian National University, 1990, http://cs.anu.edu.au/people/bdm/nauty.
- [4] S. P. Radziszowski, Small Ramsey numbers, *Elec. J. Combin. Dynamic Survey 1, revision #10,* (2004) http://www.combinatorics.org.
- [5] S. P. Radziszowski and K. K. Tse, A Computational Approach for the Ramsey Numbers $R(C_4, K_n)$, J. CombinMathCombin. Comput. (2002) 195–207.
- [6] K. K. Tse, On the Ramsey Number of the quadrilateral versus the book and the wheel, Australas J Combin. 27(2002) 163-167.