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Abstract

We define & new type of resolvability called a-pair-resolvability in
which each point appears in each resolution class as a member of a-
pairs. The concept is intended for path designs (or other designs) in
which the role of points in blocks is not uniform or for designs which are
not balanced. We determine the necessary conditions and show they are
sufficient for k = 3 and a = 2,3 (o > 2 is necessary in every case). We
also consider near o-pair-resolvability and show the necessary conditions
arc suficient for o = 2,4. We consider under what conditions is it possi-
ble for the ordered blocks of a path design to be considered as unordered
blocks and thereby create a triple system (a tight embedding) and there
also we show the necesary conditions are sufficient. We show it is always
possible to embed maximally unbalanced path designs PATH(v, 3,1) into
PATH(v + s,3,1) for admissible s, and to embed any PATH(v, 3, 2)) into
a PATH(v + 8,3,2)) for any s > 1.

1 Introduction

A decomposition of a graph 1’ into isomorphic copies of a graph G is a classical
problem in graph theory and combinatorics. The G-decomposition of T is bal-
anced if every vertex (point) of T is in the same number of copies of G. These
problems overlap into combinatorial designs when the pairs of points (edges)
meet certain requirements. In this case, the copies of G are called blocks of the
design. We use the notation AK, to denote A copies of the complete graph K,
on v vertices, and in this paper we decompose T' = AK, into simple paths of
length k — 1 in such a way that the paths correspond to a system of blocks of a
design. Such a path is a junction of k£ — 1 unordered pairs.

For k = 3, each block (a, b, ¢) of the design will correspond to two unordered
pairs or edges {a,b} and {b,c}. In the notation, then, the role of point b is
different in that it appears in two pairs, but points a and ¢ appear in only
one pair. More generally, a path design PATH(v,k,)) consists of a set V of
size v and a collection B of k-element (linearly ordered) subsets called blocks.
Each block (a;,@3,...,ax} will correspond to the unordered pairs {a;,a;4,} for
i = 1,...,k — 1. Each pair of points must appear (consecutively) in exactly A
blocks. In this way, each block corresponds directly to a length k£ — 1 path of
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AK,, and the block {a;,as,...,ax) is identified with the block which has the
same points but with the reverse order.

A partition of the complete graph K, (or of AK,) into classes of unordered
pairs (paths of length one) in which each point appears exactly once in the class
is a one-factorization of K, and the classes are called one-factors. One-factors
have proved very useful in constructions of designs and we use them in Section
4 for this purpose. However, we concentrate in this note on paths of length two
and three and always assume k>2 in any case.

In the k = 3 case there are two other types of ordered-block systems. For
example, in a directed triple system (DTS) each ordered block (a, b, ¢) is a tran-
sitive triple corresponding to the ordered pairs (a,b), (b,¢) and (a,c). Another
type of triple system is that in which each ordered block is regarded as a cyclic
triple (a, b, ¢) and which corresponds to the ordered pairs (a,b), (b, c) and (c, a).
‘T'hese are called Mendelson triple systems (MTS). See Chapters 24 and 25 of
[6], and also [4] for another variation.

A PATH design is balanced if every point appears in the same number of
blocks. Balanced path designs are called handcuffed designs since only adjacent
points are viewed as pairs (as if they were handcuffed like prisoners linked by a
chain) [9]. A BIBD(v,k,}), a balanced incomplete block design, is a balanced
G-decomposition of AK, into copies of G = K. When k = 3, we call the BIBD
a triple system and use the notation TS(v, A) [6].

We may decompose two copies of K3 to form PATH(3,3,2) - the blocks are
(a,c,b), {a,b,c), and {(b,a,c). Put another way, we may form PATH(3,3,2) by
discarding one copy of K3 from a set of three copies of K3 which have been
formed into triangles, by removing one edge from each triangle. PATH(4,3,1),
which decomposes K4 also has three blocks, namely, {(a,d,b), (a,b,c), and
{a,c,d). PATH(4,3,1) is not an H(4,3,1), i.e. a handcuffed design, since the
design is not balanced. Indeed, there is no H(4, 3, 1).

In Section 2 we bricfly highlight selected literature, give a few new embed-
ding results, and seek to quantify just how unbalanced a path design can be.
In Section 3 we consider the following main embedding problem. For what pa-
rameters is it possible to use the blocks of a PATH(v,k,*) so that the same
block system regarded as unordered gives a BIBD(v,k,X)? We call this a tight
embedding and solve this question completely for £ = 3 by showing the nec-
essary conditions are sufficient. We define in Section 4 a completely new type
of resolvability, a-pair-resolvablility, and we show the necessary conditions are
sufficient for k = 3 and a = 2,3. We show the necessary conditions are sufficient
for near o-pair-resolvability for £k =3 and a = 2,4.

2 Embedding Maximally Unbalanced Designs

Since the number of blocks b in a PATH(v, 3, A) is half the number of unordered
pairs of points, we have

|B| =b=A(%)/2 = M(v-1)/4.

114



If A is even, then this is not a restriction, but if the index X is odd, then
v = 0, 1(mod 4) is necessary.

We define two numbers r, and ry, where ry is the number of times a point
is an end-point of a path (block) and r; is the number of times a point is an
interior point of a path. Equivalently, r; (for ¢ = 1, 2) is the number of blocks in
which a point is paired ¢ times. 1t follows that for any point r = r; +,. When
the design is balanced, r; and r are constants for the design and we have (9]

ra=AMv—1)—rand r; =2r — Av —1).
From this we can obtain
ri=2rfkandry =7 —2r/k.

In a series of papers culminating in [13], Lawless [14],{15] and Hung and
Mendelsohn [12],[13] have shown the following:

Theorem 1 A balanced PATH(v,2h + 1,1) exists if and only if v = 1{mod 4h),
and a balanced PATH(v,2h,1) exists if and only if v = 1(mod 2k — 1). More
generally, there exists a balanced PATH(v,k, \) if and only if (i) w(v—1) =
O(mod 2(k ~ 1)); (i) Mk — 2)(v — 1) = O(mod 2(k ~ 1)); and (i) A(v—1) =
O(mod &k — 1).

In order to exploit a construction, we reprove the fact for k = 3 due to Tarsi
(19] that there are (unbalanced) path designs whenever Av(v—1) = 0(mod 2(k—
1)) and v > k. See also [7] [8].

Lemma 2 Ifv=0,1(mod4), then there is an unbalanced PATH(v,3,1).

Proof. We first prove by induction on » that an unbalanced PATH(4n, 3, 1)
always exists. When n = 1, the example with blocks (1,2,3), (1,3,4), and
(1,4,2) is unbalanced as 1 appears in every block but 2 does not. Suppose an
unbalanced X = PATH(4n,3,1) exists. Then we create an unbalanced Y =
PATH(4n + 4,3,1) by adding to the blocks of X the following blocks: (2i —
1,4n 4 5,2i) for i = 1,2,...,2n and § = 1,...,4. Finally add the blocks of a
PATH(4, 3,1) on points {4n+1,...,4n+4}. The design Y is unbalanced since the
blocks inherited from X were unbalanced. Now suppose X = PATH(4n,3,1).
We create Y = PATH(4n + 1,3,1) by adding blocks (2i — 1,4n + 1,2i) for
i=1,2,.,2n. =

Theorem 3 There is an embedding of any X = PATH(v,3,1) info some Y =
PATH(v + s,3,1) for all admissible s.

Proof. It follows from the proof of the previous Lemma that s may be any

number (0 or 1 mod 4) when v is a multiple of 4 and s may be any multiple of
4whenvislmod4 =
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Lemma 4 For every v > 3, there exists e PATH(v,3,2).

Proof. For v = 3, use blocks (1,2,3), (2,3,1), and (3,1,2). Suppose X
= PATH(v, 3, 2) exists for some v > 3. Then we create a PATH(v + 1, 3,2) by
adding the following blocks to those of X: ({,v+ 1,i+1), fori = 1,2,...,v — 1,
and the block {v,v + 1,1). The result follows by induction on v. =

Theorem 5 There is an embedding of any PATH(v,3,2)) into ¢ PATH(v +
8,3,2)) fors > 1.

We would like to quantify how unbalanced a path design can get. To that
end let X = PATH(v,k,)). We define, for every z in X, 7, is the number of
blocks in which z appears. We say p(X) = min{r; : z € X} and p(v,k, ) =
min{u(X) : X=PATH(v, k, A)}. Similarly, we define M(X) = max{r; : x € X}
and M(v, k, A) = max{M(X) : X=PATH(v, k, \)}.

Theorem 6 p(v,3,1) = |v/2} end M(v,3,1) =v—1.

Proof. By induction. For v = 4, the result is obvious. Suppose the re-
sult is true for any v = 4n. Then the construction above shows that in some
"PATH(4n + 4,3,1) there is a vertex, say 4n + 1, such that 4n + 1 appears in
2n + 2 blocks, and another vertex (e.g., vertex 1) which appears in v — 1 blocks,
always as an endpoint. So the theorem holds for all v = 0(mod 4). But now the
construction applied again to get a PATH(4n + 1,3, 1) shows 4n + 1 appears in
2n blocks and 1 appears in 4n blocks. It is clear that  cannot be greater than
v—1orlessthanv/2. m

In the next sections we consider what we call tight embeddings and pair-
resolvability. We mention here that standard embeddings for balanced path de-
signs (handcuffed designs) require greater increase in the number of new points,
as is true for other design embeddings. For k = 3, Yan has shown {20] that a
balanced pure H(v, 3, A) can be embedded into a balanced pure H(x, 3, A) if and
only if AM(v—1)= w(w—1)=Au—1)= M(u—1)=0(mod4) and u > 2v+1,
with A < 2(v —1)/3.

Embeddings of balanced path designs into other graphs have been studied,
for instance into the triangle with attached edge and the 4-cycle systems among
others; see [16], [17] and [18]. Other results on path designs and related matters
can be found in, for example, in [8] and [11].

3 Tight Embeddings

In this section we begin by considering the problem of embedding a path design
X* into a triple system X on the same point set by considering the ordered
triple {a,b,c) as an unordered triple {a,b,c}. We call this the “natural corre-
spondence.” The embedding is tight if the correspondence is a surjection. For
example, there is no tight embedding of PATH(4,3, 1) into any triple system.
The natural embedding of PATH(4, 3, 1) into TS(4, 2) is loose since, in addition
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to blocks {a,d, b}, {a,b,c} and {e,c,d} we must add block {b,c,d}. It is equiv-
alent to consider the tight embedding problem as one of locating an ordering of
the blocks of a given triple system so that they can be regarded as the ordered
blocks of an appropriate path design.

In this section we prove the following main theorem:

Theorem 7 The necessary conditions are sufficient for the existence of X* =
PATH(v,3,)*) which, under the natural correspondence {a,b,c) — {a,b,c},
can be tightly embedded into X = TS(v, ).

Theorem 8 Suppose the blocks of a PATH(v,k,\*) correspond to the blocks
of a BIBD(v,k, \) under the natural map (a1,a2,...ar) — {a1,a2,...ax}. Then
A* = 20/k. In particuler, for k = 3, A = 0(mod 3) is a necessary condition.

Proof. For any BIBD(v,k, ) we have vr = bk and A(v — 1) = r(k — 1).
Now, since there are A*v(v — 1)/2 pairs of points in the PATH design, k£ — 1 of
them per block, we have A*v(v — 1)/2 = b(k — 1). Now substituting for b and
then for r we get A\* = 2«5’((:—_1')) =&r. vé‘;_‘l) = 3(‘;‘}1’—1‘)—%:_—'1‘51 = 2)/k. Hence, for
k=3, A* =2)/3 and A = 0(mod 3) is a necessary condition. m

We give two examples of this natural correspondence in Tables 1 and 2 below.

1 2 3 4 5 1 2 3 4 5
2 3 4 5 1 3 4 5 1 2
3 4 5 1 2 5 1 2 3 4
Table 1: A PATH(5,3,2) and a TS(5,3)
223 11311 2112
1 11 2 2 2 3 3 3 4 4 4
3 4 4 3 4 4 2 4 4 2 3 3
Table 2: A PATH(4,3,4) and a TS(4, 6)

Lemma 9 From three copies of any triple system which gives X = TS(v, 3x) we
can construct the blocks of X* = PATH(v,3,2z) so that X* is tightly embedded
into X. If two copies of a BIBD formY = BIBD(v,4,2z), then there is an
Y* = PATH(v,4,z) withY* tightly embedded into Y. If five copies of a BIBD
form Z = BIBD(v,5,5z), then there is a Z* = PATH(v,5,2z) with Z* tightly
embedded into Z.

Proof. Order the three copies of a block of X so that each of the three
points is in the center once. This forms X*. Form Y* by ordering each pair
of blocks of Y once as (a, b, ¢,d) and once as (b,d,a,c). Form Z* by ordering
the five copies of a block {a,b,c,d, e} as (a,b,c,d,e), (a,c,d,e,b), {c,a,d,b,e),
{c,e,a,b,d), {b,c,e,a,d). m

For v = 0,4(mod 6) there exist triple systems TS(v, 2), but none for index
A = 3. Therefore, the following theorem is the best possible in the sense that
there is no tight embedding for smaller index than 6.
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Theorem 10 If v = 0,4(mod 6), there exists X* = Path(v,3,4) which can be
tightly embedded into a triple system X = TS(v,6) under the natural correspon-
dence.

Proof. Use three copies of a TS with index 2 and apply Lemma 9. m

Theorem 11 For all v = 1,3(mod 6) there exist TS(v,3) whose blocks form a
PATH(v,3,2).

Proof. The triple systems exist in this case with index 1 so Lemma 9 can
be applied. m

Let us consider a triple system whose points we take to be Z, and whose
blocks are generated by a difference family. Then the starter block {a,b,c}
generates a set of blocks {a + 4,b + i,c + i}7-; whose first two elements will
have a difference +(a — b) modv and whose second and third elements will
have a difference £(b— c¢) mod v. If we consider as PATH blocks all those blocks
cyclically generated originally for the triple system, then they will form a PATH
design only when all these particular differences are all there are. The difference
set {a,b, c,d} corresponds to the (PATH) differences %(a — b),%(b — ¢), and
+(d—¢).
Lemma 12 A difference family {{ai1,a:, ais}}i=t generates blocks for a PATH
(v,3,2*) if the differences {£(a: —aiz), £(aiz—ai3) }i=t cover all non-zero (mod
v) points exactly A* times. A difference family {{a:1, ai2,a:i3 ,0i4}}i=} generates
blocks for a PATH (v, 4, A*) if the differences x(a;; — as2), £(ais — ai3), £(aizs —
aiy) cover all non-zero (mmod v) points exactly \* times.

There is a cyclic solution for the case for v = 5(mod 6), and indeed for any
odd v, given by the following theorem.

Theorem 13 Suppose v = 5(mod 6). Then there exists a TS(v,3) whose blocks
under the natural correspondence form a PATH(v,3,2).

Proof. A suitable difference family which applies the previous Lemma is
{{0,%,2i} :i=1,...,(v — 1)/2}. It is well-known that this generates a TS(v, 3).
]

When v = 2(mod 6), a TS(v, 6) exists, but none with smaller index. More-
over, when v = 2(mod 4) there is another difficulty.

Lemma 14 (6] When v = 2(mod4) and A = 2(mod4) there is no cyclic
TS(v,)). Ifv > 14 and v = 2(mod 12) there is a cyclic TS(v,12). Ifv =
8(mod 12) there is a cyclic TS(v, 6).

The previous lemma and the standard necessary conditions tell us that for
any TS(6t + 2,x), the index must be a multiple of 6, and cyclic designs exist
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only for half the cases (¢t odd). We provide a non-cyclic construction which
completes the case and introduce a new type of resolvability.

A BIBD or other design is a-resolvable if its blocks can be put into resolution
classes or parallel classes in which each point occurs o times. A design is near
a-resolvable if its blocks can be put into classes so that each class fails to contain
exactly one point but contains each other point exactly o times; see for example,
(1], (2], (3], [10], and [21]. When a = 1, the design is just resolvable or near
resolvable.

Resolvability for PATH designs is more subtle since the role of a point in a
block is not uniform. We define a PATH(v, k, A) to be o -pair-resolvable if its
blocks can be put into classes such that, in every class, each point occurs in
a pairs. A PATH(v, k, \) is near a-pair-resolvable if each class fails to contain
exactly one point and contains each other point in « pairs. Of course o will not
necessarily be even although always a > 2.

Example 15 Two copies of the design Path(4,3,1) give the two resolution
classes of a 3-pair-resolvable PATII(4,3,2) which is not resolvable and not bal-
anced.

We consider resolvability more fully in the next section. For our purposes
with respect to tight embeddings, the next example using Table 3 below is
helpful.

Example 16 Three copies of blocks for A in Table 3 easily yield Z = TS(6,6).
Let us define classes of blocks X1, Xa,...,Xs as follows. Put one copy of the
five blocks of A which do not contain 1 in Xi, and in general, put a copy of
block {a,b,c} in each of the three classes X, such that t # a,b,or c. It is easy
to see that X; is a near resolution class missing i and containing each other
point exactly 3 times. So Z is near S-resolvable. But within each X;, it is easy
to arrange that the 5 blocks contain the 5 points in the class once each as a
cerder point. Now, under the natural correspondence, we see there exists Z* =
Path(6,3,4) which is tightly embedded into Z. Moreover, Z* is near 4—pair-
resoluvable.

1111122233

2 2 3 45 345 44

3 456 6 65 6 5 6
Table 3: The blocks for A = TS(6, 2).

Example 17 A 2-pair-resolvable PATH(6,3,4). The ordered blocks for the
ten 2-pair-parallel classes are given by columns below. The parameters are the
same as for the previous example.

218 124 135 236 364 416 345 256 214 146

345 634 425 156 425 236 321 346 263 135

562 156 164 142 3815 254 561 218 453 625
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A latin square is an n-by-n array of n elements arranged so that every
element appears once in each row and once in each column. A latin square is
equivalent to the multiplication table of a quasigroup, and we will refer to the
(4,7)* entry as i oj . Two latin squares of the same order on sets S and T are
orthogonal if every element in S x T occurs exactly once among the n? pairs
(si5,ti5),1 <4, < n. A latin square is self-orthogonal if it is orthogonal to its
transpose.

Theorem 18 For everyv > 4, there is a near four-pair-resolvable PATH(v, 3, 4)
which can be tightly embedded into a near three-resolvable TS(v,6).

Proof. If n = 6, the result is in the previous example. For all other n we
construct X = TS(n,6) on the points N = {1,2,...,n} as follows. First, we use
L, an n-by-n idempotent (i 0 = 1) self-orthogonal latin square (SOLS). Such
an L exists for all n # 2,3,6. [22]. The blocks of X are the sets {{a, b, aob}: a
# b}. It is easy to see X has index 6 (and is a triple system). Since equations
are uniquely solvable in quasigroups, and by idempotence, e 0 b # a,b. Thus,
for any points a and b, (a,b) occurs once as the first two points of a path block,
and once as the second two points of a path block. This is true for (b,a) as well.
Hence, the pair {a,b} occurs four times in four path blocks. The near resolution
classes are {R,: z in N}, and are given by putting block {a,b,a 0 b} in R, if
neither @ nor b is z and if z = boa. Consider the set of blocks {a,b,a o b}
in R,. Since = occurs once in every row and column of the latin square, the
first two points {a,b} in those blocks (with a # b) cover the points in V\{z}
exactly twice. We claim the corresponding set of points a o b covers this set
exactly once more. To see this, first note that a o b is never z. If aob =z and
boa = z then, when L and its transpose are superimposed, the (e, b)* position
will have (z,z). But the ordered pair (z,z) should occur only on the diagonal
since L is idempotent. Suppose {i1,31,i1 © j1} and {is,j2,%2 0 j2} are blocks
in R,. Now superimpose L and its transpose. At the (ji,%;) location we have
the pair (z,i; o j1) and at the j2,i2 location we have the pair (z,iz © j2), but
by orthogonality, these are different pairs. Hence, i; 0 §; 3 42 © j» and thus the
points V\{z} appear exactly once in the third position in each block and three
times each in R, and X is near 3-resolvable. But the previous argument also
shows that the path blocks in R, contain every a # z as a pair element exactly
four times. m

The previous theorem also completes the proof of Theorem 7, the main
theorem in this section. In the examples and in the proofs, we constructed tight
embeddings only for balanced path designs. This is no accident.

Theorem 19 If X* = PATH(v,k,\*) s tightly embedded in X = BIBD(v, k, )),
then X* is balanced.

Proof. Since the embedding is tight, each point appears in the same number
r of blocks since X is a BIBD. (This is enough.) Moreover, for any point z we

120



have r1 + 7o = r. But also z is paired in blocks with r; + 275 points, and this
quantity is equal to A*(v — 1). It follows that ro = A*(v — 1) — 7. Thus r;, and
hence ry, are independent of the choice of z and are constants for the design
X*m
We now briefly consider tightly embedding a PATH(v, 4, A*) into BIBD(v, 4, A).

If the BIBD is cyclic, we want to array the difference sets so as to satisfy Lemma
12. For example, {0,1,2,4} is a difference set which generates blocks for a
BIBD(7,4,2), but the resulting blocks, as ordered sets, do not give a PATH
design. However, the “same” difference set {0, 1,4, 2} generates a BIBD(7,4,2),
but now the blocks, under the natural correspondence, give a PATH(7,4,1). A
cyclic balanced PATH(10, 4, 1) which is not a BIBD(10, 4, 2): develop (1,10, 2,9)
fully, and develop (1,5,10,6) as a short block. In the same vein, the set
{0,1,3,9} generates a BIBD(13,4,1). The two sets {0,1,3,9} and {3,0,9,1}
gencrate a BIBD(13, 4, 2) whose blocks under the natural correspondence give
a PATH(13,4,1). We can give a cyclic variation of Lemma 9.

Lemma 20 If the difference family {{a:1,ai2,0i3,ai1} }i=% generates blocks for
e BIBD(v,4,)), then there exists a cyclic PATH(v,4,)) which can be tightly
embedded into a cyclic BIBD(v, 4,2)).

Proof. Develop each difference set once as presented and once as {ai2, a4, a1, 043}
n

Theorem 21 Ifv = 1,4(mod 12), then there is ¢ PATH(v,4,1) which can be
tightly embedded into @ BIBD(v,4,2).

Proof. This follows immediately from Lemma 9 since BIBD(v,4,1) are
known to exist for v=1,4(mod 12). m

Conjecture 22 If a BIBD(v,4,2) exists, then the points within the blocks can
be ordered so as to create a PATH(v,4, 1), i.e., a tight embedding. The necessary
condition would be that v = 1(mod 3).

We have already shown that the conjecture is true for v = 7.

Example 23 The following blocks are those of a PATH(10,4,1) which can be
tightly embedded into ¢ BIBD(10,4,2):

(0,1,2,3), {0,7,9,5), {0,9,8,6) , (4,0,5,1), (6,0,2,4),

(8,0,3,7), (1,8,7,2), (1,6,5,8), (3,1,9,6), (9,1,4,7),

{2,6,7,5), (9,2,8,4), (9,3,5,2), (3,6,4,7), (5,4,3,8).

Example 24 The starter blocks (1,13,3,7) and (1,3,10,2) generate a cyclic
PATH(13,4,1) but do not generate a BIBD.

We conclude this section with a natural generalization of Lemmas 9 and 20.
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Theorem 25 (a) Suppose k is odd and there exists ¢ BIBD(v,k,)). Then
there exists Y* = PATH(v,k,2)\) which can be lightly embedded into Y =
BIBD(v,k,kX). (b) Suppose k is even and there exists a BIBD(v,k,)). Then
there exizts X* = PATH(v, k, \) which can be tightly embedded into X = BIBD(v, k,kA\/2

Proof. Suppose that k is odd and that G = {a,,4as,...,ax} is a block of
a Z = BIBD(v, k,A). Identify the elements of the block G with the set H =
{1,k,2,k —1,...,(k + 1)/2)}. Cyclically develop the set H as a starter block
(mod k) and create a set of k& blocks. Under the identification, this corresponds
to a set of k blocks of elements all from G. Use these in the order as developed
to create Y*, and do this for each block of Z. If k is even, use a short block for
the development corresponding to the block {1,%,2,k —1,...,k/2,k/2+1}. =

4 o-Resolvability and a-Pair-Resolvability

It is pointed out in [9} that a balanced path design (a handcuffed design) is
strictly resolvable only when each class contains v/k blocks. Thus, v = 0(mod k)
is a necessary condition for strict resolvability. Combined with earlier results,
resolvable path designs for k = 3 require v = 9(mod 12).

An example of a balanced (cyclic of order 3) resolvable Path(9, 3,1) is given
in {9}, but the cyclic PATH(9,3,1) generated by (0,1,3) and {0,6,1) is not
resolvable and is not a TS but it is 4-pair-resolvable.

In fact, any cyclic PATH(v,3,)) is automatically 4-pair-resolvable. The
resolution classes are the sets generated by each starter block. More generally,
if a resolution exists, then the number of pairs in a resolution class must divide
the total number of pairs. From this Hell and Rosa [9] derived a key necessary
condition and Horton [10] proved the sufficiency for £ = 3 (and asymptotically
for any k) and Bermond, Heinrich and Yu [2] completed the result:

Lemma 26 There exists a strictly resolvable balanced PATH(v, k, \) if and only
if v =0(mod k) and v = k*(mod(2k — 2)/ ged(2k — 2, Ak)).

Example 27 We give X = PATH(4, 3,2) which is unbalanced, 2-pair-resolvable,
and has u(X) = 3. The columns are the parallel classes.

142 248 3841

132 213 321

Example 28 An unbalanced 2-pair-resolvable PATH(6,3,2). Note that no H(6,3,2)
exists.

123 124 152 615 614

145 185 134 623 635

365 465 264 345 524

Example 29 We give an example of an unbalanced X = PATH(8,3,2) with
u(X) =7 which is 2-pair-resolvable. The blocks are:
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073 174 275 376 470 571 672
013 124 285 3846 450 561 602
526 630 140 251 362 403 514
546 650 160 201 312 423 584

Theorem 30 If X = PATH(v,3, )) is 2-pair-resolvable, thenw and ) are even.

Proof. Suppose X = PATH(v, 3, \) is 2-pair-resolvable. Then in each class,
a point is an end-point of a block twice or a mid-point once. In particular, there
are v/2 blocks per class. Thus v must be even. Now, there are Jw(v — 1)/4
blocks and v/2 blocks per class. Hence there are A(v — 1)/2 classes forcing the
index to be even also. m

The theorem implies, interestingly, that no 2-pair-resolvable PATH(v, 3, 2)
is tightly embeddable into any TS(», 3) since necessarily the TS requires v to
be odd.

‘We make very full use in the proofs that follow of a certain one-factorization
of the complete graph K5, and so put into Table 4 below three “consecutive”
one-factors. The one-factorization is given by {F; : ¢ = 1,...,2n — 1}, where F;

= {{2n,i}} U{{i - 4,5 + 53T

1 2 3 4
Firo {2n,i} {i-Li+1}  {i-2,i+2} {i-3,i+3}
e {2n, 41} (i, i4+2}  {i-1,i43} {i-2,i+4}
Fiyo {2n,+2}  {i+1,i+3} {ii+4}  {i-1,i+5}
5 6 7 8
Fipo {i-4,i+4} {i-5,i+5} {i-6,i+6} {i-7,i+7}
Fisr  {i-3,i+5} {i-4, i+6} {i-5,i+7} {i-6,i+8}
Fiyo  {i-2,i+6} {i-3,i+7}  {i-4,i+8} {i-5,i+9}

n-1 n
Fiyo ... {i-n+2,i4n-2} {i-n+1, i+n-1}
Fiy1 ... {i-n+3,i+n-1} {i-n+2, i+n}
Fiy2 ... {i-n+4,i+n} {i-n+3, i+n+1}
Table 4

Theorem 31 The necessary conditions are sufficient for the existence of a 2-
pair-resolvable PATH(v, 8, A).

Proof. The necessary conditions are that v and A are even. Suppose v = 2n
and A = 2. We decompose two copies of Ksn into two copies of the edges
{Fi:i=1,..,2n -1}, where F; = {{2n,3},{i — 1,i+ 1},{i - 2,i + 2},..., {i —
(r—1),i+ (n—1)}. Fori=1,..,2n — 1, we create a closed path listing the
edges used alternately from F; and F;;,. It is necessary that one point be the
same in adjacent edges. The edges are referred to as (x,y) where 2 =0 or 1 to
indicate the row in Table 4 and y = 1,...,n is the column number. The desired
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path for even n is: (0, 1),(1,2),(0,3),(1,4),...,(0,n — 1),(1,n),(0,n),(1,n —
1),..,(0,2),(1,1). (The method for odd = is similar.) Indices in blocks are
positive and evaluated mod 2n — 1. When subscript i =2n—1, take 2n—-1+41
to mean 1. We may “cut” these closed paths into subpaths of length two and
the collection of paths from each forms a resolution class in which each point
appears corresponding to two pairs. m

Theorem 32 u(v,3,2) = v — 1 and M(v,3,2) = 2(v — 1), with or without
2-pair-resolvability.

Proof. The numbers are clearly optimal for (unbalanced) path designs, and
it can easily be arranged in the cutting of subpaths in the construction for 2-
pair-resolvable designs that the same vertex is always an endpoint or always a
midpoint of some block. ®

Theorem 33 For any 2n > 4, there exists a PATH(2n, 3, 4) which is 3-resolvable
and 4-pair-resolvable for the same resolution classes.

Proof. Use two copies of a PATH(2n, 3, 2) each of which is 2-pair-resolvable
formed as above. (This is also 2-pair-resolvable with twice as many classes.) In
the second copy of each class, by shifting the cut in forming each resolution class
by one segment, arrange that the complimentary vertices are midpoints. Then,
forming one class from the two copies, the resulting classes are 3-resolvable
and 4-pair resolvable at the same time since each point will appear once as a
midpoint and twice as an endpoint. Notice the design is balanced. =

Suppose X = PATH(v, 3, ) is 3-pair resolvable. Then in each class, a point
appears 3 times as an end-point of a block or appears once as an end-point
and once as a midpoint. PATH(4, 3, 1) is 3-pair-resolvable (with one class). In
general, there are 3v/2 pairs per class, and thus there are 3v/4 blocks per class.
Since the number of blocks is Av(v — 1)/4, there are A(v — 1)/3 classes. This is
quite general, and we can say:

Theorem 34 If X = Path(v,3,)) is a-pair-resolvable, then it is necessary that
AMv — 1) = O(moda) and av = M(v — 1) = 0(mod 4). In particular, if A =
1,2(mod 3), and if X = PATH(v,3, ) is 3-pair-resolvable, then v = 4(mod 12).
If A = 0(mod3), and if X = PATH(v,3,3) is 3-pair-resolvable, then v =
0(mod 4).

Theorem 35 The necessary conditions are sufficient for the existence of 3-pair
resolvable PATH(v, 3, A).

Proof. For the first case A = 1,2(mod 3), and it will suffice to consider
index 1. Suppose v = 12n + 4, and X is a resolvable BIBD(12n + 4,4,1) [1].
Let C be a resolution class for X. There are 3n+ 1 blocks in C. For each block
{a,b,c,d} in C, form a copy of the PATH(4,3,1) in Section 1. This forms a
resolution class C* for a path design X*. Do this for each class of X, and
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X* is 3-pair-resolvable. The construction can be doubled for index two. Now,
for case 2, we have A = 3 and assume v = 2n for n even. We decompose
the edges of three copies of K3, into the same one-factors as previously (see
Table 4). For i =1,...,n we make a resolution class from F}, Fi;,, and F;,,.
(The subscripts on the F’s are to be taken mod n.) Instead of having one long
cycle, however, we make path blocks from the edges in four columns at a time.
The first four columns of edges in Table 4 will make the edges: ((0,1),(1,2)),
((2,3),(1,4)), ((0,3),(2,1)), ((1,1),(2,2)), {(1,3),(0,4)), ((0,2),(2,4)). The
next four columns will also make six path blocks using exactly the same sequence
of edges (adding 4 to each column index). If the even n is a multiple of 4, then
there are 4c columns for some ¢ and we obtain 6¢ blocks in the class by repeating
the pattern of new blocks. When n is 2 mod 4, the last two columns must be
used to make 3 blocks, and this can be done as follows: {(0,n — 1),(1,n)),
{(1,n — 1),(2,n)), {(2,n ~ 1), (0, n)). bor this last block (see Table 4), recall
i+n=i—n+1l(mod2n—-1). m

Theorem 36 [f X = PATH(v,3,)\) is near a— pair-resolvable then it is nec-
essary that o = A and Mv(v — 1) = a(v — 1) = 0(mod 4).

Proof. There are o pairs per point in a near resolution class which has v-1
points. Consequently there are a(v — 1)/2 pairs per class and a(v —1)/4 blocks
per class. This shows a(v — 1) = 0(mod 4). But there are v classes and hence
av(v —1)/4 blocks in all. Since we know there are Av(v—1)/4 blocks, A\=a. ®

In particular, if X = PATH(v, 3, A) is near 2-pair-resolvable, then A = 2 and
v is odd.

Example 37 A near 2-pair-resolvable PATH(5, 3,2) such that class X; misses
point i.

X1 X2 X3 X4 Xs

426 184 125 123 132

584 451 541 3951 241

Example 38 A near 2-pair-resolvable PATH(7,3,2) such that class X; misses

1.
Xi X2 X5 Xy X5 Xe X
526 435 457 132 113 135 215
637 164 214 156 16§ 147 248
547 175 267 276 324 527 365

We define a near-hamilton cycle in a graph to be a cycle which misses exactly
one vertex.

Theorem 39 Suppose v is odd. The necessary conditions are sufficient for the
existence of near 2-pair-resolvable PATH(v, 3, ).
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Proof. Let v = 2m + 1. Decompose 2K, into near-hamilton cycles. This is
always possible [5]. Appropriate cycles are given by Cym = (0, 1,2,...,2m — 1},
and Ciym = (5,1 +4,2m — 144,24 4,2m —2+4,3 +4,..,m —2+i,m + 2+
i,m+1+1,2m), for i = 0,1,2,...,2m — 1. The subscripts and indices with i are
calculated mod 2m. The near resolution classes are the sets of blocks made by
cutting the cycles into paths. Class C; misses point j for j =0,1,2,...,2m. =

Theorem 40 The necessary conditions are sufficient for the existence of a near
4-pair-resolvable PATH(v,3, A).

Proof. This follows from the necessary conditions (any v and A = 4) and
the proof of Theorem 18. m
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