On Q(a)P(b)-Super Edge-graceful Graphs

Dharam Chopra
Department of Mathematics and Statistics
Wichita State University
Wichita, Kansas 67260

Sin-Min Lee Department of Computer Science San Jose State University San Jose, California 95192

Dedicated to Professor R. Stanton

Abstract

Let a, b be two positive integers, for the graph G with vertex set V(G) and edge set E(G) with p = |V(G)| and q = |E(G)|, we define two sets Q(a) and P(b) as follows:

 $Q(a) = \{\pm a, \pm (a+1), ..., \pm (a + \frac{q-2}{2})\}$ if q is even

 $Q(a) = \{0\} \cup \{\pm a, \pm (a+1), ..., \pm (a+(q-3)/2)\}$ if q is odd.

 $P(b) = \{\pm b, \pm (b+1), ..., \pm (b+(p-2)/2)\}$ if p is even

 $P(b) = \{0\} \cup \{\pm b, \pm (b+1), ..., \pm (b + (\frac{p-3}{2})/2\} \text{ if } p \text{ is odd } \}$

For the graph G with p = |V(G)| and q = |E(G)|, G is said to be Q(a)P(b)-super edge-graceful (in short Q(a)P(b)-SEG), if there exists a function pair (f, f^+) which assigns interger labels to the vertices and edges; that is, $f^+: V(G) \to P(b)$, and $f: E(G) \to Q(a)$ such that f^+ is onto P and f is onto Q, and $f^+(u) = \sum \{f(u, v) : (u, v) \in E(G)\}$. We investigate Q(a)P(b) super edge-graceful graphs.

1 Introduction

All graphs in this paper are finite simple graphs with no loops or multiple edges. A graph G with p vertices and q edges is graceful if there is an injective mapping $f: V \to \{0, 1, ..., q\}$ such that $f^*: E(G) \to \{1, 2, ..., q\}$ defined by $f^*(e) = |f(u) - f(v)|$ where e = (u, v), is surjective.

Graceful graph labelings were first introduced by Alex Rosa (around 1967) as means of attacking the problem of cyclically decomposing the

complete graph into other graphs. A well-known conjecture of Ringel and Kotzig is that all trees are graceful. Since Rosa's original article, more than six hundred papers have been written on graph labelings (see [2]).

Another dual concept of graceful labeling on graphs, edge-graceful labeling, was introduced by S.P. Lo [18] in 1985. G is said to be edge-graceful if the edges are labeled by 1, 2, 3...q so that the vertex sums are distinct, mod p.

A necessary condition of edge-gracefulness is (Lo[18])

$$q(q+1) \equiv \frac{p(p-1)}{2} \pmod{p} \tag{1}$$

Lee [8] has proposed the following tantalizing conjecture:

Conjecture 1: The Lo condition (1.1) is sufficient for a connected graph to be edge-graceful.

A sub-conjecture of the above (Lee[7]) has also not yet been proved:

Conjecture 2: All odd-order trees are edge-graceful.

In [1,4,7,11,19] several classes of trees of odd order are proved to be edge-graceful. In [5], the following conjecture is proposed.

Conjecture 3: All odd-order unicyclic graphs are edge-graceful.

In [19] in order to work on Conjecture 2, Mitchem and Simoson introduced the concept of super edge-graceful graphs. Next, we want to generalize this concept in more general context.

Let a, b be two positive integers, for the graph G with vertex set V(G) and edge set E(G) with p = |V(G)| and q = |E(G)|, we define two sets Q(a) and P(b) as follows:

 $Q(a) = \{\pm a, \pm (a+1), ..., \pm (a+(q-2)/2)\}$ if q is even

 $Q(a) = \{0\} \cup \{\pm a, \pm (a+1), ..., \pm (a+(q-3)/2)\}$ if q is odd.

 $P(b) = \{\pm b, \pm (b+1), ..., \pm (b+(p-2)/2)\}$ if p is even

 $P(b) = \{0\} \cup \{\pm b, \pm (b+1), ..., \pm (b+(p-3)/2)\}$ if p is odd

Definition 1 A (p,q)-graph G is said to be a Q(a)P(b) super edge-graceful graph if there exists a function pair (f,f^+) which assigns interger labels to the vertices and edges; that is, $f: E(G) \to Q(a)$ and $f^+: V(G) \to P(b)$, such that f^+ and f are bijective, and $f^+(u) = \sum \{f(u,v) : (u,v) \in E(G)\}$.

When a=b=1, the Q(1)P(1)-super edge graceful graphs are identical to the concept of super edge-graceful graphs which were introduced by J. Mitchem and A. Simoson [19]. We illustrate the above concepts with several examples

Example 1. The path P_4 and the ring worm $U_3(1,0,0)$ are not Q(a)P(b)-super edge-graceful for any intergers $a, b \ge 1$.

Example 2. Figure 1 shows that the path P_5 is Q(1)P(1)-super edge-graceful.

Figure 1:

The double star D(m, n) is a tree of diameter three such that there are m appended edges on one end of P_2 and n appended edges on the other end

Example 3. The double star D(m,1) is not Q(a)P(b)-SEG for any $a,b \ge 1$ if m is odd. For D(m,1) has even number of vertices, its number of edges is odd. Then the edge (v_1,v_2) will have label 0. No matter what label $(v_2,y_{1,1})$ will receive, it will contribute identical labels on v_2 and $y_{1,1}$.

The double star D(2,2) is Q(1)P(1)-super edge-graceful (see [10]) but not Q(a)P(b)-super edge-graceful for any $a,b \ge 2$. See Figure 2.

Figure 2:

The double star D(3,1) is not Q(a)P(b)-super edge-graceful for any $a,b \ge 1$.

The double star D(3,2) is Q(a)P(a)-super edge-graceful for any $a \ge 1$. (For the proof see Theorem 3.7.)

Example 4. The cycle C_3 is Q(a)P(a)-SEG for any $a \ge 1$. However, C_5 is Q(a)P(1)-SEG for a = 1, 2. See Figure 3.

Figure 3:

Example 5. The graph in Figure 4 is Q(1)P(1), Q(1)P(2) and Q(2)P(2)-SEG.

Figure 4:

2 Graphs which are Q(a)-super edge-graceful for all a.

In this section we show that there are infinitely many graphs which are Q(a)P(1)-SEG for all a.

Theorem 1 The Eulerian (5,6)-graph displayed in Figure 5 is Q(a)P(1) for all $a \ge 1$.

Theorem 2 The (5,7)-graph depicted in Figure 6 is Q(a)P(1)-SEG for all $a \ge 2$.

Q(a)P(1)-SEG

Figure 5:

Figure 6:

Proof. If we replace ± 1 by $\pm a, \pm 2$ by $\pm (a+1)$ and ± 3 by $\pm (a+2)$ in the above labeling, we have a Q(a)P(1)-SEG labeling.

Theorem 3 The (7,6)-graph displayed in Figure 7 is Q(a)P(a-1)-SEG for all $a \ge 1$.

3 Strongly Super edge-graceful graphs

We introduce the following concept.

Definition 2 A graph G is called strongly super edge-graceful if it is Q(a)P(a)-SEG for all $a \ge 1$.

In this section, we provide several families of strongly super edge-graceful graphs.

$$x_{1,1}$$
 2 2 3 3 $y_{1,1}$ $x_{1,2}$ 2 y_{1} 3 3 $y_{1,1}$ y_{2} 3 3 $y_{1,2}$ y_{2} 3 3 $y_{1,2}$ y_{2} 3 3 $y_{1,2}$ y_{2} 3 3 $y_{2,2}$ y_{3} 3 3 $y_{2,2}$ y_{3} 3 3 $y_{2,2}$ y_{3} 3 3 $y_{2,2}$ $y_{2,2}$ y_{3} 3 3 $y_{2,2}$ $y_{2,2$

Figure 7:

Theorem 4 A star St(n) is strongly super edge-graceful if and only if n is even.

Proof. If n is even then Q(a) has even number of elements for any $a \ge 1$. Thus any bijection $f: E(St(n)) \to Q(a)$ will induce a bijection $f^+: V(St(n)) \to P(a)$. Thus St(n) is strongly super edge-graceful.

If n is odd, say n=2s+1 then for any $a,b\geq 1$, we see that any bijection $f: E(ST(n)) \to \{0,a,a+1,...,a+s-1,-a,-(a+1),...,-(a+s-1)\}$ is not a Q(a)P(b)-SEG labeling for there are two vertices with labels 0.

For n > 3, the wheel on n vertices, W_n is a graph with n vertices $x_1x_2,...x_n, x_1$ having degree n-1 and all the other vertices having degree 3. The vertex x_1 is adjacent to all the other vertices, and for $i = 2,...,n-1, x_i$ is adjacent to x_{i+1} , and x_{n-1} is adjacent to x_n . The edges of a wheel which include the hub are called spokes. In a wheel graph, the hub has degree n-1, and other nodes have degree 3. The edges in $\{(c_i, c_1) : i = 2, ..., n-1\}$ are spoke edges. The edges in $\{(c_i, c_{i+1}) : i = 2, ..., n-2\} \cup \{(c_{n-1}, c_2)\}$ are rim edges.

Theorem 5 The wheel W_n is strongly super edge-graceful if n is odd.

Proof. Suppose n is odd, we see that W_n has n vertices and 2n-2 edges. We label the spoke edges of the wheel by 1, -1, 2, -2, ..., (n-1)/2, -(n-1)/2 and the rim edges $(c_{n-1}, c_2), (c_2, c_3), (c_3, c_4), ..., (c_{n-2}, c_{n-1}), (c_{n-1}, c_n)$ by (n-1)/2+1, -[(n-1)/2+1], (n-1)/2+2, -[(n-1)/2+2], ..., (n-1), -(n-1). We have a Q(1)P(1)-SEG labeling. See Figure 8 for n=5 and 7.

Now for any $k \ge 1$, we replace any positive label x in the above labeling by k+x and any negative label -x by -(k+x), we obtain a Q(k+1)P(k+1)-SEQ labeling. Hence the wheel W_n is strongly super edge-graceful.

Example 6. Figure 8 shows W_5 is Q(1)P(1) and Q(2)P(2)-SEG, and W_7 is Q(1)P(1) and Q(5)P(5)-SEG.

Figure 8:

Remark. The wheel W_4 is not Q(a)P(b)-SEG for any $a, b \ge 1$.

Theorem 6 The corona $C_n \odot K_1$ of a cycle C_n is stronly super edge-graceful for any $n \geq 3$.

Proof. Let C_n be a cycle with the vertex set $\{x_1, x_2, ..., x_n\}$ and assume $V(C_n \odot K_1) = \{x_1, x_2, ..., x_n\} \cup \{y_1, y_2, ..., y_n\}$.

Suppose the edge set $E(C_n \odot K_1) = \{(x_i, x_{i+1}) : i = 1, 2, ..., n-1\} \cup \{(x_n, x_1)\} \cup \{(x_i, y_i) : I = 1, 2, ..., n\}$ Consider the following labeling $f((x_i, x_{i+1})) = i$, for i = 1, 2, ..., n-1 $f((x_n, x_1)) = n$ and

 $f((x_i, y_i)) = -1$, for i = 1, 2, ..., n...

We can see that the vertices in C_n have labels $\{n, 1, 2, 3, ..., n-1\}$ and the vertices in $\{y_1, y_2, ..., y_n\}$ have labels $\{-1, -2, ..., -n\}$. Figure 9 depicts the super edge-graceful labeling for $C_n \odot K_1$, n=3 and 4.

Figure 9:

Now for any $k \ge 1$, we replace each positive edge label x by x + k and each negative edge label by -(x+k) in the above edge labeling, we observe that the resulting and its induced labeling form a Q(k+1)P(k+1)-SEG labeling.

Theorem 7 Among three trees of order 5, only two of them are strongly SEG.

Proof. The path P_5 is Q(1)P(1)-super edge-graceful but not Q(a)P(a)-SEG for $a \geq 2$. The star St(4) is strongly SEG by Theorem 3. Another tree Y is strongly SEG follows from the labelings depicted in Figure 10.

Theorem 8 Among five unicyclic graphs of order 5, only four of them are strongly SEG.

Figure 10:

Proof. The cycle C_5 is Q(1)P(1)-super edge-graceful with the edge labels 0, -2, 1, -1, 2 along the cycles. However, it is not Q(a)P(a)-SEG for $a \ge 2$. The other four unicyclic graphs are strongly SEG are shown in Figure 11.

Theorem 9 The double star D(m,n) is strongly super edge-graceful for (1) all odd numbers $m \geq 3$ and even number $n \geq 2$ or (2)m, n are odd and $m \geq 3$.

Proof. (1) Suppose m=2t+1 and n=2s. We label the edges of D(1,1) by -1 and 1. Then we amalgamate D(1,1) with (St(2t),c) on v_1 , with the edge labels $\{\pm 2,\pm 3,...,\pm (t+1)\}$. Then we amalgamate the resulting tree with (St(2s),c) on v_2 , with the edge labels $\{\pm (t+2),\pm (t+3),...,\pm (t+s+2)\}$. We observe this is a Q(1)P(1)-SEG labeling for D(m,n). For any $k\geq 2$, we replace the above edge label +x by x+k and negative edge label -x by -(x+k), we obtain a Q(k)P(k)-SEG labeling. Thus D(m,n) is strongly SEG.

(2) If m=2t+1 and n=2s+1, then we see that D(m,n) has even number of vertices. We observe that $Q(1)=\{0,\pm 1,\pm 2,...,\pm (t+s+1)\}$. We label the edge (v_1,v_2) by 0. Then find a subset \Im of $\{\pm 1,\pm 2,...,\pm (t+s+1)\}$ consisting of m numbers with sum t+s+2. Then the complement \Im of \Im in $\{\pm 1,\pm 2,...,\pm (t+s+1)\}$ will have sum -(t+s+2). We label m pendant edges of v_1 by numbers in \Im and label n pendant edges of v_2 by numbers in \Im , it will produce a Q(1)P(1)-SEG labeling. Using the same argument as in (1), we can show that D(m,n) is Q(a)P(a)-SEG for any $a\geq 1$.

Example 7. D(3,5) is Q(k)P(k)-SEG for all $k \ge 1$, see Figure 12.

Remark. Mitchem and Simoson [19] showed that D(n,n) is Q(1)O(1)-SEG. We see that D(2,2) is not Q(2)P(2)-SEG. Furthermore, D(2,4) is Q(1)P(1) and Q(2)P(2)-SEG but not Q(3)P(3)-SEG.

Figure 11:

4 Construction of Q(a)P(b)-Super Edgegraceful Graphs

Staton and Zarnke in [23], used the amalgamation method to construct new graceful tree from two given graceful trees. We will use a similar construction to obtain new Q(a)P(b)-SEG graphs.

We denote the class of all Q(a)P(b)-super edge-graceful graphs by the notation SEG(a,b). Then $\cap \{SEG(k,k): k=1,2,...\}$ is the class of all strongly SEG graphs

Let $\mathfrak R$ be the class of all strongly SEG graphs of odd orders. For each G in $\mathfrak R$ and any k>1, there exists a Q(k)P(k)-SEG labeling ℓ and a unique vertex u with $\ell(u)=0$.

Construction 1. Assume $H \in SEG(a,b)$ and |V(H)| = |E(H)| = 2t. We also assume max $Q(b) = \max P(a) = t$.

Figure 12:

Let $G \in \mathfrak{R}$ which is $(G,\ell) \in Q(t+1)P(t+1)$ is SEG with labeling (ℓ,ℓ^+) such that $\ell(w) = 0$ for some $w \in V(G)$. For any $v \in V(H)$, we form the union of H and G, add a new edge (v,w) and label the new edge 0. We denote the final graph by $\sum (H,G,T(v,w))$.

Now take the one point union of H and $\{G_v : v \in S\}$ and then identify v with w_v . We denote the final graph by $Amal(H, S, \phi)$.

Theorem 10 The graph $Amal(H, S, \phi)$ is Q(a)P(b)-SEG.

Example 8. Figure 13 illustrates two such constructions.

Construction 2. p = 2t, q = 2t + 1.

Assume $H \in SEG(a,b)$ and p = |V(H)| = 2t, q = |E(H)| = 2t+1. We also assume max $Q(b) = \max P(a) = t$. For any $v \in V(H)$, and any $G \in \mathfrak{R}$, we will construct a Q(a)P(b)-super edge-graceful graphs from H and ϕ as follows:

We have $G \in \mathfrak{R}$, w is the unique vertex in G with $\ell(w) = 0$. Now take the one point union of (H, v) and (G, w) by moving the graph G to H by submerging vertex w into v. We denote the final graph by Amal((H, v), (G, w)).

Theorem 11 The graph $Amal((H, v), (G, w_v))$ is Q(a)P(b)-SEG.

Example 9. The graph G in Figure 14 has 6 vertices and 7 edges, which is Q(1)P(1)-SEG. The wheel H is strongly SEG with 5 vertices, with $\ell(c_1) = 0$. We form the one-point union and obtain another Q(1)P(1)-SEG graph.

Figure 13:

Construction 3. p = 2t + 1, q = 2t.

Assume $H \in SEG(a,b)$ with p=2t+1 and q=2t. We also assume $\max Q(t) = \max P(t) = t$. Let (ℓ,ℓ^+) be a Q(a)P(b)-SEG mapping with $\ell(v) = 0$ for some v in V(H). Let $G \in \mathfrak{R}$ which is Q(t+1)P(t+1)-SEG with (ℓ,ℓ^+) labeling. Assume $u \in V(G)$ and $\ell(u) = 0$. Then Amal(H,G,(v,u)) is Q(a)P(b)-SEG.

Example 10. See Figure 15 for examples of such a construction.

Construction 4. p = 2t + 1, q = 2t + 1.

Assume $H \in SEG(a,b)$ and p = |V(H)| = 2t + 1, q = |E(H)| = 2t + 1. We also assume max $Q(b) = \max P(a) = t$. For any $S \subseteq V(H)$, a mapping $\phi: S \to \mathfrak{R}$, we will construct a Q(a)P(b)-SEG graph from H and ϕ as follows: For each v in S, let $G_v = \phi(v)$ where $(\phi(v), \ell_v) \in \mathfrak{R}$ and w_v is the distinct vertex with $\ell_v(w_v) = 0$. Assume $S = \{v_1, v_2, \ldots, v_k\}$. We form successively

Figure 14:

 $Amal((G,v_6),(H,c_1))$

 H_1, H_2, \ldots, H_k as follows:

$$\begin{array}{rcl} H_1 & = & Amal((H,v_1),(\phi(v_1),w_{v_1})), \\ H_2 & = & Amal((H_1,v_2),(\phi(v_2),w_{v_2})), \\ & \vdots \\ \\ H_{k-1} & = & Amal((H_{k-2},v_{k-1}),(\phi(v_{k-1}),w_{v_{k-1}})), \\ \\ H_k & = & Amal((H_{k-1},v_k),(\phi(v_k),w_{v_k})). \end{array}$$

We denote the final graph by $Amal(H, S, \phi)$.

Theorem 12 The graph $Amal(H, S, \phi)$ is Q(a)P(b)-SEG.

Figure 15:

We will illustrate this construction by the following example.

Example 11. The unicyclic graph in Figure 16 has $\max Q(1) = \max P(1) = 2$.

Example 12. The Q(1)P(1)-SEG graph $U_4(3,2,0,4)$ can be obtained from $U_4(1,0,0,0)$ by construction 4. See Figure 17.

Remark. The requirement that \Re be the class of all strongly SEG graphs of odd orders is essential. The star St(3) is not strongly SEG. Let c be the center of St(3), we observe that $Amal(C_3, (St(3), c))$ is not Q(1)P(1)-SEG. However, the other amalgamation $Amal(C_3, (St(3), x_1))$ is Q(1)P(1)-SEG. See Figure 18.

In particular, we have

Corollary 1 For any strongly SEG graph H with $S \subseteq V(H)$, and a mapping $\phi: S \to \Re$, the graph $Amal(H, S, \phi)$ is strongly SEG.

Figure 16:

References

- [1] S. Cabannis, J. Mitchem and R. Low, On edge-graceful regular graphs and trees, *Ars Combin.* 34 (1992), 129–142.
- [2] J.A. Gallian, A dynamic survery of graph labeling, Electronic J. of Combin. (2001), #DS6, 1-144.
- [3] Peng Jin and Li W., Edge-gracefulness of $C_m \times C_n$, in Proceedings of the Sixth Conference of Operations Research Society of China (Hong Kong: Global-Link Publishing Company), Changsha, October 10-15 (2000), pp. 942-948.
- [4] Jonathan Keene and Andrew Simoson, Balanced strands for asymmetric, edge-graceful spiders, Ars Combinatoria 42 (1996), 49-64.
- [5] Q. Kuan, Sin-Min Lee, J. Mitchem, and A.K. Wang, On edge-graceful unicyclic graphs, *Congressus Numerantium* 61 (1988), 65-74.

Figure 17:

- [6] Li Min Lee, Sin Min Lee, and G. Murty, On edge-graceful labelings of complete graphs — solutions of Lo's conjecture, Congressus Numerantium 62 (1988), 225-233.
- [7] Sin-Min Lee, A conjecture on edge-graceful trees, Scientia, Ser. A, Vol. 3 (1989), 45–57.
- [8] Sin-Min Lee, New Directions in the Theory of Edge-Graceful Graphs, Proceedings of the 6th Caribbean Conference on Combinatorics & Computing (1991), 216-231.
- [9] Sin-Min Lee, On strongly indexable graphs and super Vertex-graceful Graphs, manuscript.
- [10] Sin-Min Lee and Elo Leung, On super vertex-graceful trees, to appear in Congressus Numerantium, 2004.
- [11] Sin-Min Lee, Peining Ma, Linda Valdes, and Siu-Ming Tong, On the edge-graceful grids, Congressus Numerantium 154(2002), 61-77.
- [12] Sin-Min Lee and Eric Seah, Edge-graceful labelings of regular complete k-partite graphs, Congressus Numerantium 75 (1990), 41-50.
- [13] Sin-Min Lee and Eric Seah, On edge-gracefulness of the composition of step graphs with null graphs, Combinatorics, Algorithms, and Applications in Society for Industrial and Applied Mathematics, (1991), 326-330.

Figure 18:

- [14] Sin-Min Lee and Eric Seah, On the edge-graceful (n, kn)-multigraphs conjecture, Journal of Combinatorial Mathematics and Combinatorial Computing 9 (1991), 141-147.
- [15] Sin-Min Lee, E. Seah and S.P. Lo, On edge-graceful 2-regular graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 12 (1992), 109-117.
- [16] Sin-Min Lee, E. Seah, Siu-Ming Tong, On the edge-magic and edge-graceful total graphs conjecture, Congressus Numerantium 141 (1999), 37-48.
- [17] Sin-Min Lee, E. Seah and P.C. Wang, On edge-gracefulness of the kth power graphs, Bulletin of the Institute of Math, Academia Sinica, 18 (1990), 1-11.
- [18] S.P. Lo, On edge-graceful labelings of graphs, Congressus Numerantium, 50 (1985), 231-241.
- [19] J. Mitchem and A. Simoson, On edge-graceful and super edge-graceful graphs, Ars Combin., 37 (1994), 97-111.
- [20] A. Riskin and S. Wilson, Edge graceful labelings of disjoint unions of cycles, Bulletin of the Institute of Combinatorics and its Applications, 22 (1998), 53-58.

- [21] Karl Schaffer and Sin-Min Lee, Edge-graceful and edge-magic labelings of Cartesian products of graphs, Congressus Numerantium, 141 (1999), 119–134.
- [22] W.C. Shiu, Sin-Min Lee and K. Schaffer, Some k-fold edge-gracful labelings of (p, p-1)-graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 38 (2001), 81-95.
- [23] R. Stanton and C. Zarnke, Labeling of balanced trees, 4th Southeast. Conf. Combin., Graph Theory and Computing (1973), 479-495.
- [24] S. Wilson and A. Riskin, Edge-graceful labellings of odd cycles and their products, *Bulletin of the ICA*, 24 (1998), 57-64.