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Abstract

In a loop transversal code, the set of errors is given the structure
of a loop transversal to the linear code as a subgroup of the channel.
A greedy algorithm for specifying the loop structure, and thus for the
construction of loop transversal codes, was discussed by Hummer et
al. Apart from some theoretical considerations, the focus was mainly
on error correction, in the white noise case constructing codes with
odd minimum distance. In this paper an algorithm to compute loop
transversal codes with even minimum distance is given. Some record
breaking codes over a 7-ary alphabet are presented.

Introduction

In 1992 the second author introduced the idea of constructing codes by
giving an algebraic structure to the set of errors [10]. Then the algebra
of errors, called a loop transversal, is isomorphic to the dual of the code
that will correct this set of errors. Consider a set E C V of errors, where
(V,+,0) is a (not necessarily abelian) group, the so-called channel. A linear
map € : V — V is defined such that £|g is injective. The map ¢ is called
the syndrome function. The kernel C of ¢ is realized as the code correcting
E. Then V may be represented as the disjoint union of cosets of C,

v=|JC+?)
teT

where T is the set of coset representatives, called a transversal to C. Thus
each element v € V' can be expressed uniquely as

v =4(v) +£(v) (1)

JCMCC 58 (2006), pp. 153-159



where 6(v) € C and £(v) € T. (In the coding context, a received word v
has been exposed to error £(v), and hence has to be decoded as §(v)).

A binary operation * is defined on T by
1 *tp = e(t1 + t2) : 2

For any t1,t2 € T, the equation z * t; = ¢ has a unique solution z. If the

equation ¢, * y = ¢z also has a unique solution, then T is said to be a loop

transversal. The algebra (T, *,£(0)) is a loop [10]. In traditional coding

theory the channel V is an abelian group, and thus each transversal is a

loop transversal, and the loop (T, *,£(0)) is an abelian group. For t; in T’
r

the product H t; is defined inductively by
i=1

0

[It: =<0

i=1

and

]:[t.-= [rﬁt,-] b,

=1 =1

Now, if V is a finite dimensional vector space over a field [, define
Axt=¢e(Mt) for Ain F and ¢ in T. Then the algebra (T, *,F) becomes a
vector space over F. Induction on r extends (2) to

e(i&-tf) - iIlII(Ai X 1) ®)

i=1

for ¢; in T. It is reasonable to require T = E to contain a basis {e;,... ,en}
for V = F"*, where e; has 1 in the i-th position’ and 0’s everywhere else
(the set of single errors). Then knowledge of a portion of the vector space
(T, *,FF) is sufficient to determine the corresponding portion of the code C.
Indeed, for k£ < n, '

1The i-th position is counted from the right, i.e. e =0...001, ez =0...010, e3 =
0...100, etc.
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C={(w)|veV}={v-e(v)|veV}
k k
= {Zkiei —e(EAeee)
i=1 i=1
k k
= {Z/\,-e.- - H(/\i X eg)l A€ ]F}

i=1 i=1

the so-called principal of local duality [10].

)\,-elF}

Greedy algorithm

The syndrome function € is constructed so that it is linear and ¢|g is in-
jective. First, the algorithm sorts the set E of errors into a lexicographic
order [6])-[8]. Then for each error e € E a syndrome value

0 ife=0
min{v € V|v #¢(¢), € <eip1} ife=e;
t

t
Z ase(e;) ife= Z aie;
i=1

i=1

e(e) = 4

is assigned successively. The latter guarantees the linearity condition, and
the former is the greedy choice. Then the kernel of ¢ defined in (4) is a
linear loop transversal code correcting E.

The error set F may match any kind of channel statistics, for example
burst errors [4]. In the classical “white noise” case, where E is the set of
all vectors e € F™ of weight up to ¢, the LT code produced will have a
minimum distance d =2t + 1.

Error Detection

From now on, we will restrict our attention to the case of “white noise”
statistics. Let E = {e € F"*| wt(e) < t} be the set of errors to be corrected,
and let D = {v € F*| wit(v) = t + 1} be the set of errors to be detected.
Here wt(v) is the (Hamming or Lee) weight of vector v. We will say that ¢
avoids the set S if e(v) #0forallve S.

Theorem 1 Let € be a syndrome function of a greedy loop transversal code
correcting E. If € avoids the set

S={(v—-e)lveD,ecE, wt(v—e)=2t+1},
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then the code defined by € has a minimum distance 2(t + 1).

Proof. If we wish to detect v € D, we want v # ¢+ e for any ¢ € C and
e € E, i.e. v—e must not be a codeword. Furthermore, an E-correcting LT
code is guaranteed to have a minimal distance, and hence minimal weight
d = 2t + 1. Therefore, no difference vector v — e with wi(v—e) < 2¢+1 can
be a codeword. So, if in the construction of the greedy LT code we require
€ to avoid the set S, then no vector of weight 2t 4+ 1 will be in the kernel of
€. Hence the resulting code will detect (¢ + 1)-errors and have a minimum
distance 2(¢ + 1). O

Theorem 1 shows that adding an extra check to the greedy loop transver-
sal algorithm given in [7] will enable one to construct LT codes with even
minimal distances and error detection. Note that extending the LT codes
this way is independent of whether we choose the Hamming metric or the
Lee metric on V. The algorithm simplifies a great deal when we restrict our
attention to the Hamming metric: Corollary 1 below. The chain of ideas
leading through Theorem 2 to the corollaries are well-known (compare [12]
for example), but it is useful to work out their implications in the context
of LT codes for the Hamming metric.

Definition 1 A set S of vectors is called m-independent if each set of m
vectors from S 13 linearly independent.

Definition 2 An m-independent set S C V is called maximal if for any
other m-independent set D C V, |D| < |S|.

Our next theorem states that (d — 1)-independent sets are exactly the
ones that are the images of the set {e;,es,... ,eq} under the syndrome
map.

Theorem 2 A linear map € : Fy — Ty is a syndrome function defined
by a linear [n, k,d] code if and only if the set S = {e(e1),e(ez),... ,&(en)}
i (d — 1)-independent.

Proof. If € is the syndrome function of an [n, k, d] linear code, then each
codeword has a Hamming weight at least d, and thus there is no vector
v € Fy of Hamming weight less than d such that £(v) = 0, i.e., the equation

0 # ae(es, ) + aneles,) + ... + aq—1€(ei,_,)

holds for all a; € F,. Hence every subset {e(e;,),e(es,),... ,€(€iy_,)} of S
is linearly independent, and therefore S is a (d — 1)-independent set.
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Conversely, if § = {v1,...,vn} is a (d — 1)-independent set, define a
linear function £ : F§ — Fp; e; — v;. Then if e(u1) = &(uz) for some
u1 # ug € Fy, then by linearity of & the vector u; — us is in the kernel of e.
Using the standard representation we can write:

Uy =oe1 + ...+ oney ;

uz = fre1 + ... + Bnén.
Then
0 =¢(u1 — uz) = (on ~ Pr)e(er) + (a2 — Bo)e(ez) + ... + (an — Bn)e(en)
and
O=mu1+7v2+...4+vn, (5)

where 4; = o; — ;. Since u; # ug, not all of the ; are zero. Then the
(d—1)-independence of S guarantees that there must be at least d nonzero
summands on the right hand side of equation (5). Thus o; # S; for at least
d values of ¢ € {1,2,...,n}, i.e. wty(u; — u2) > d. Hence the kernel C of
€ defines a linear code with minimum distance d. g

Thus the knowledge of a (d—1)-independent set S completely determines
a corresponding (n, k, d] linear code, where n = |S| and k = n — dim(S).

Corollary 1 The (d — 1)-independent set of vectors chosen greedily (with
lexicographic order) defines the syndrome function for an LT code of min-
tmum distance d.

Corollary 2 A loop transversal [n,k,d] code is optimal if and only if the
corresponding (d — 1)-independent set is mazimal.

Results

The implementation of the greedy loop transversal algorithm has produced
many astonishing results in both the binary and nonbinary cases. A vast
number of optimal and best-known codes are produced using the algo-
rithm. Along with these codes the extended Hamming codes, the binary
Golay (24,12, 8], Reed-Muller [16, 5, 8], the quadratic residue [18,9, 6], and
the ternary Golay [12, 6, 6] codes are obtained. Qur previous theorem and
the corollaries give a new way of computing the syndrome function. It
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makes it easier and faster to compute a (d — 1)-independent set. Among
the quaternary codes a code equivalent to the octacode described in [5)
is obtained, and consequently the Nordstrom-Robinson code as ifs binary
image under the Gray map [3], [5], [9], [11]. Record breaking codes of
minimum distance six with parameters [32,24,6], [33,25,6], [34,26,6],
[35,27,6], [36,28,6], [37,29,6], and [38,30,6] over Z; are obtained. The
procedure for computing a generating matrix for greedy LT codes was given
in [1].

The records were compared with codes in A. Brouwer’s online catalog

[2).
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