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Abstract
Difference systems of sets DSS, introduced by Levenshtein, are used to
design code synchronization in the presence of errors. The paper gives a new
lower bound of DSS’s size.

1 Introduction

Comma-free codes were introduced by Crick, Griffith, and Orgel in a biology
paper [2]. One year later, the paper “Comma-free codes” [4] by Golomb, Gor-
don, and Welch gave some essential mathematical results for these codes. To
construct comma-free codes as cosets of linear codes, Levenshtein gave the defi-
nition of DSS in [6] as follows. A difference system of sets (DSS) with parameters
(n, 70, ...,7q — 1, p) is a collection of ¢ disjoint subsets Q; C {1,2,...,n},|Q:| =
73,0 < i < q — 1, such that the multi-set

M={a-b (modn)|acQibeQ;i#j} )

contains every number i, 1 < ¢ < n — 1, at least p times. A DSS is perfect if
every number 2,1 < ¢ < n — 1, is contained exactly p times in the multi-set of
differences (1). A DSS is regular if all subsets Q; are of the same size. We use
the notation (n,m, g, p) for a regular DSS on # points with ¢ subsets of size m.
Actually, Clague first studied DSS for the case ¢ = 2 in [1] where he used the
word “synchronous” rather than “comma-free”.

Let F* be the set of vectors of length n over Fy = {0,1,...,q — 1} for some
positive integer g. Suppose & = ...z, and ¥ = ...y, are two vectors. The ith
overlap of z and y is defined as

Ti(z,y) = Tiz1.-Znln %, 1<i<n—-1L
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Some scholars use splice or joint in lieu of the name “joint”. Obviously, T;(z, z)
is a cyclic shift of z. A code C C F' is called comma-free if any joint of two
codewords is not & codeword in C. The comma-free index p(C) of acode C C FZ'
is defined as

p(C) = min(z, Ti(z,)),

where the minimum is taken over all z,y,z € C and all¢ = 1,...,n — 1, and
d is the Hamming distance between vectors in Fy'. The comma-free index p(C)
allows one to distinguish a code word from an overlap of two code words provided
that at most | o(C)/2] errors have occurred in the given code word [4].

It is known that he comma-free index of any linear code is zero since any linear
code contains the zero vector. Levenshtein {6] gave the following construction of
comma-free codes of index p > 0 obtained as cosets of linear codes. Given a
DSS {Qo, ..., @¢-1} with parameters (n, 79, ..., Tg—1, p}, we define a linear code
C C F7 of dimension n — r, where

q—-1
r= ZIQil'

i=0

For any vector € C, information positions are indexed by the numbers not
contained in any of the sets Qp, ..., @,~1 meanwhile we assign symbol ¢ (0 <
i < ¢ — 1) to any position indexed by Q;. This yields a coset C’ of C that has
a comma-free index at least p. From this construction method, it is desirable that
the redundancy r is as small as possible.

Let 74(n, p) denote the minimum redundancy of a DSS with parameters n, g,
and p. Levenshtein proved the following lower bound on 74(n, p) in [6].

Theorem 1.1
ro(m0) 2 4/ %"_‘1—9 @

with equality if and only if the DSS is perfect and regular.

In [6], Levenshtein also gave optimal DSS for p = 1 or 2 and ¢ = 2, and proved
that that foralln > 2

ro(n,1) = [,/2(n - 1)] , 72(n,2) = [2vA=1].

A positive integer is called square-free if its prime decomposition contains no
repeated factors. For example, 30 is square-free since its prime decomposition
contains no repeated factors. The Mdbius u function u(n) is defined as follows.
Forn € Z*, p(1) = 0, u(n) = 0 if n is not square-free, and u(mp2---p1) =
(—1)!, where the p; are distinct positive primes. In this paper, we prove the fol-
lowing lower bound on ry(n, p).
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Theorem If \/ 22=Y) js g square-free integer; then
q-1

rq(n,p) 2 w%l—l) 1.

Otherwise, Tq(n, p) > g_ﬂqf:_;l_l_

Recently, Levenshtein wrote a survey [7] on comma-free codes, which gives
well-known results and methods, presents some new results and formulates open
problems. Tonchev [8], [9] described some direct constructions of perfect and reg-
ular DSS as partitions of cyclic difference sets. Mutoh and Tonchev [5] gave sev-
eral constructions of optimal DSS using cyclotomy. Cummings {3] gave another
construction method for DSS and two easily expressed conditions for a systematic
code to be comma-free.

2 A New Lower Bound on r4(n, p)

Lemma 2.1 If{Qo,Q1, ..., Qq-1} is a DSS with parameters n and p, then
> mri 2 p(n—1). 3)
i#j
Proof: Because Qy, ..., Q41 are disjoint subsets, the size of M is Z  TiTj
which has to be greater than or equal to p(n — 1) since each integer 1, . ,n -1
must appear at least p times by definition.
Lemma 2.2 Ifa DSS is perfect then p(n — 1) is even.
Proof: Since DSS is perfect, p(n — 1) = ¥, 7w = 23 TiT5- |

A list of positive integers [0, T1, ..., Tq—1] is called a g-partition of r if r =
i_O 7;. A partition is called a fair partition if |; — ;| < 1 wheneveri # j.

Lemma 2.3 Suppose {Qo, Q1, ..., Qq_l} is a DSS with parameters n, p. Let r be
the sum of sizes of Q; , i.e. 7 = Z,..o |73l- &[0, 71, -.r Ty—1] is a fair partition of
T, then 3o, Ti] > p(n —1).

Proof: Without loss of generality, suppose 7o > 71 > ... > 7,—;. Because {Q;}
isaDSS, 3., 7i7; > p(n~1). If there are s and ¢ (s > t) such that 7, > 7 +2,
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then let 7/ = 7; exceptfor 7, = 7, — 1 and 7{ = 7, + 1. Then because 7, > 7 +2,

!0
E 'ri'rj—z TiTj

i#j i)
= Y nm-1D+ ) nm+1)+(m-1)(r+1)
k#s,t k#s,t
=Y T = D ™R —TeTe
k#s,t k#s,t

= Ta—Tt—].Zl.

So we have

ZT,-’T} > ngrj > p(n—-1).
i

i#j
Hence if there is a DSS with parameter r, then the inequality (3) must hold for
any fair partition of r. |

Lemma 2.4 The following inequality must be satisfied for any DSS:
r r
rr—1)+(q— 2r)L5J + ‘I|.a.|2 Zp(n-1),

where |z is the greatest integer less than or equal to z. The equality holds if and
only if the following two conditions are true.

(1) The DSS is perfect.

(2) The sizes of {Qo, Q1, -.., @q—1} form a fair partition of .

Proof: From lemma 2.3, we only need to calculate the size of multi-set M when
[70,71, ..., Tq—1] is a fair partition of 7. |z| and [z] are used to denote the greatest
integer less than or equal to = and the smallest integer greater than or equal to z,
respectively. Letr = q|_§] + a, where 0 < a < ¢. Without any loss of generality,

suppose 7o > 71 = ... = Tq—1. Thensince r = Z;’__’_& Tiy

r
T0=T1=..-=Ta_1=r-q-])

T
Ta =Ta4l = " =Tg-1= l—J.
q
Thus [79, 71, ..., Tq—1] is a fair partition of 7 since

=+ D+ L)

q-—-a

164



From (3) we have the following inequality
a r qg—a T T T
2(( 5 ) 1o+ (5% )P +ata-alliE) 2 o1 @

Notice that if @ = 0 meaning that ¢ divides r, then inequality (4) coincides with
the inequality given by Levenshtein in [6]:

/qp(n —-1)

Otherwise if a > 0, replacing a and [7] with r — g|Z] and [Z] + 1 in (4),
respectively, then

r(r—1)+(g— 2r)L§J +qL§JZ > p(n —1). ©)

Furthermore, suppose that ¢ divides  then inequality (5) can be obtained from
inequality (6) by replacing [ | with r/q. Thus, inequality (6) holds for both
situations. The sufficient and necessary conditions of equality follow directly from
the proof. 1

Theorem 2.5 If —ﬂ(—)- is a square-free integer, then

ro(n,p) 2 \/gfg‘:—lllﬂ.

Otherwise, rq(n, p) > g%?.—;ll-

Proof: First, we will show that if parameters n, ¢, and p satisfy the following
conditions, then rq(n, p) > ‘/ lﬂq':—';ll +1.

/ n—1).
%—)manmteger,

p(n—1)
q(g—-1)

Second we will prove that if 4 / u—l)- is a square-free integer, then ﬁ;{—;} can
not be integral.

and is not an integer.
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As we mentioned in the argument of lemma 2.4, if ¢ divides + then our in-
equality (6) coincides with Levenshtein’s (5). Thus let’s take a look at the case

when,/q—"‘(l'f—;l)-isanintegerbut,/%%;‘—:_'%}isnot.'l’hen
pln—-1) = feegll(feld 1)+ (-2 ) 5,
n—1

a1 q—1
+q(—3
> \/%;—:l&—%—l — 1)+ (g - 2/
=
This implies that \/@ does not satisfy inequality (6). Hence r > gﬂq(':;ll)-+

1.
Suppose that \/ ‘—’ﬂq(’_‘_;ll)- is a square-free integer. Then its square is an integer
and there is some integer b such that

gp(n —1) = (g—1)b. @)

Since ¢ > 1 by hypothesis, ged(g, ¢ — 1) = 1. Hence (7) implies g|b. Let b = gc
for some integer ¢ > 0. Then from (7), p(n — 1) = (¢ — 1)e.

Now either %&%}% is an integer or it is not. We show a contradiction by

assuming it is an integer. If ":1 is an integer, then its square is in | as
g g q(q 1 sq

p(n—1)=q(g—1)d ®

for some integer d > 0. Therefore, (¢ — 1)c = p(n — 1) = g(¢ — 1)d or ¢ = qd.
Hence there exists an integer d > 0 with b = gc = ¢2d. It would imply that

v gfé? has a repeated factor. |
When \/ ‘—’%D- is an integer, let

n—-1
20D _ g

where p;’s are distinct primes and k;’s are positive integers. Since g and g —1
are relative prime, ¢ can not have any other prime factor except for p;’s. Suppose
q=p%...pl> where 0 < t; < 2k;, then

pr—1) 4 kot
_— = co.preTte,
ag—1) M °
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When %&%} is not an integer, there exists some ¢ such that ¢; > k;, i.e. ¢
has repeated prime factors and u(gq) = 0. Hence the minimal value of ¢ is 4
when equality in our inequality holds but Levenshtein’s inequality does not give
the actual lower bound. One can verify the following two infinity sequences reach
our lower bound in stead of Levenshtein’s: ¢ =4, p = 3,andn = (2k +1)2 + 1;
g=4,p=1landn =3(2k+ 1) + 1 wherek € Z*.
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