Slice Algorithms for Counting in
U-Dimensional Space

Jaiwant Mulik
Computer and Information Sciences
Delaware State University, DE
jmulik@desu.edu

Jawahar Pathak
Mathematics and Computer Science
Lincoln University, PA
jpathakelu.lincoln.edu

Abstract

This paper presents a computationally efficient algorithm for solving the
following well known die problem: Consider a “crazy die” to be a die with
n faces where each face has some “cost”. Costs need not be sequential. The
problem is to determine the exact probability that the sum of costs from U
throws of this die is > T, T € R. Our approach uses “slice” volame compu-
tation in U-dimensional space. Detailed algorithms, complexity analysis and
comparison with traditional generating functions approach are presented.

1 Introduction

We present a computationally efficient solution to a straightforward, but in-
tractable combinatorial problem. Consider a “crazy die” to be a die with n
faces with each face “cost” as ¢; € R, 1 < ¢ < n. The problem is to deter-
mine the exact probability that the sum of costs from U throws of this die is
2 T,T € R.If N is the number of ways that the sum of cost from U throws
> T, then N/nV is the required probability.

In this paper we model the sum of costs of each possible sequence of
U throws as a point in a U-dimensional virtual space V and then count the
number of points in V' with value > T'. This count is the required N. Com-
pared to the usual techniques of using generating functions and brute force
techniques, our solution is computationally more efficient.

In Section 2 we formally define the problem, notations and virtual space
and prove some interesting properties of V. Section 3 presents the slice al-

JCMCC 58 (2006), pp. 169-188

gorithms that determine N from V. Section 4 compares the computational
complexity of cur approach to generating functions and brute force.

2 Preliminaries
Let

V={(z1,z2....,2v) |1 <z <n,i=1...U}
Define cost of a point as

C:V—-Ry

u
C((z1,T2....,30)) = 3 =
i=1
where, ¢; < ¢; ifi < j. Hence, V is a “virtual space” in RY onn compo-
nents arranged such that component costs are monotonically increasing along
the axes of V.

Definition 2.1. A point J = (j1,J2,...,ju) is a neighbor of point I =
(31,82, .- ,50),if T # J and |ix — ji| < 1, forallk, 1 <k < U.
Definition 2.2. A point J = (j1,ja2,- - -, jv) is a smaller neighbor of point
I = (41,12,...,4v) if j» = ix — 1 for exactly one value of k. Note that
(1,1,...) does not have a smaller neighbor.

Let T > 0 be any fixed real number.
Definition 2.3. A point P is called an anchor point (a.p.) if cost C(P) > T
and if P has smaller neighbors then the cost of at least one of those smaller
neighbors is < T'.

Figure 1 illustrates anchor points in a 2-dimensional space.

Let o be a permutation on {1,2, ..., U} objects. We define action of o
onapoint (z1,...,zy)in V asfollows: o((z1,...,2v)) = (ZToq)s - - - » To(v))
Lemma 2.1. If A is a set of anchor points, then A is permutation stable.

Proof. If I is an anchor point and J is a small neighbor of I with cost less
than T, then o(J) is a small neighbor of o(I). Since cost is invariant under
this action, o([) is indeed an anchor point.]

Theorem 2.2. If P = (a1,42,...,av) is an anchor point such that P ¢
{(1,1...),(n,n,...)}. Then if there are other anchor points, at least one
neighbor of p must also be an anchor point.

Proof. By the definition and hypothesis, there exists a smaller neighbor S of
P such that C(S) < 7. Since anchor points are stable under permutations
of coordinates, we can assume that S = (a1 ~ 1,@3,...,av). LetQ =
(a1,82,a3 + 1,...,ay). Since C(P) 2 T, C(Q) > T. Consider Q' =

170

1 2 4 10
1121315]|11
2|3]|4}]16]|12
4|15]6]|8]|14
10|11]12]|14}20

Figure 1: Anchor points: Here¢c; = 1,c2 =2,¢3=4,¢4 =10, U =2, T = 5.
Anchor points are highlighted.

(a1—-1,a2,a3+1,...,ay). Qisaneighborof P and S is a smaller neighbor
P C(N)<T
Then Q is an anchor point since,
LC@z=z2T
2. Q' is a smaller neighbor of Band C(N) < T
So Q is a neighbor of P and Q is an anchor point.

CasEl: C(Q)>T
Then Q' is an anchor point since,

1. C(Q)=2T.

2. S is a smaller neighbor of Q’ and C(S) < T.
So Q' is a neighbor of P and Q' is an anchor point. O
Lemma 23. Suppose I = (t1,12,...,iv) and J = (j1,J2,-..,ju) aretwo

points in V, I # J and A is the set of anchor points. If i, > jx, Yk < U,
then either I ¢ Aor J & A (both I and J cannot be anchor points).

Proof Suppose [is an anchor point. By definition there is & such that the
cost of (41,...,% — 1,...,iy) is less than T Since ix > ji, Vk < U, cost
of J is also less than T]

Lemma 2.4. Suppose (41,42, ...,%v) and (41,..., 4+ 1,...,iu) are anchor
points, then (31, ..., %1 +8,...,iv) is an anchor point Vs, 1 < s < r.

Proof. From definition of anchor points and construction of virtual space de-
scribed above, itisclear that Vs, 1 < s < v, C(i1,..., 1 + 8,...,4u) > T.
Now, (i1,...,% +r,...,iv) has a smaller neighbor say N = (41,...,4; —

171

1,...,4t +7...,%y) (j > 1, is also possible, and does not affect this
proof), where C(N) < T (required by definition of an anchor point). Now,
N = (31,...,4; — 1,...,4 + 7 — 1,...,4y) is a smaller neighbor of
(#1,...,8t +7—1,...,3y). Alsosince C(N) < T, C(N;) < T. Hence
(31,...,%+7—1,...,4v) is an anchor point. Inductively we can now prove
that all points (41,...,41 + 8,...,iv) 1 £ 8 < r are anchor points.)

Definition 2.4. We say that a subset X of V is connected if for any I, I’ €
X, there exist I, Iz, ..., I, € X such that I, and I, I’ are neighbors,
and for1 < j < r — 1, I, Ij41 are neighbors. {1, I1,..., I, I'} is called
the connected path.

Lemma 2.5. Suppose X is any connected set that contains points I, J such
that C(I) < T and C(J) 2 T, then X contains an anchor point or X
contains a neighbor of an anchor point.

Proof. LetI = I1,I,...,I, = J be a connected path from I to J. Since
C(h) <Tand C(I;) > T,33,1 < s < r — 1 such that C(I;) < T and
C(Ia+1) 2 T.

There can be more than one such 3. We can also have C(I,+1) < T and
C(I,) > T but for simplicity we assume that C(I,) < T and C(Is41) 2> T.
The method of this proof holds in both cases.

Suppose I, = (a,...,av) and Is41 = (b,...,by). Since C(I;) <
C(Is41) and 1,41 is a neighbor of I, there exists an such that a; +1 = b;.
Let P, = (0.1,. ..,a;_l,ba,ag_u . .,au). IfC(P]) > T then P, is in
A. If not, we construct P, which is obtained in same way by replacing one
coordinate a; of Py by b; where © # j. Notice that P is a neighbor of both
I, and Io41. If C(P2) > T, then P2 € A and we are done. If not construct
P3 in same way. Inductively we can complete the proof. a

Theorem 2.6. The set A of anchor points is connected.

Proof. ForI = (i1,...,%v), J = (j1,...,ju), define the distance,

U
d(1,7) =Y li— il
=1

LetI,J € A I # J,d(I,J) = d. We prove that 3I; € A such that
d(I1,J) < d. Since I € A, we assume without loss of generality that there
exists a small neighbor fp = (i1 — 1,...,iy) with C(I) < T.
CASEI:4; < j1

By Lemma 2.3 3k such that éx > jx. Set I' = (i1,...,% — 1,...,4v).
Clearly d(I', J) < d.
Casela: C(I') > T

Take I = I'. Note that C(ia — 1,...,4 — 1,...iu) < C(lo) =
C((f1 —1,...,iv)) < T. Thus I is an anchor point with smaller neighbor
(41— 1,...,4x — 1,...iy) and we are done.
Caselb:C(I')<T

172

Consider I = (f1+1,...,ik~—1,...,4v), then I is a smaller neighbor
of I IfC(I'"") > T, then I = I" is an anchor point with smaller neighbor
I'IfC(I") < T,then) = (i1 +1,...,ix,...,iv) € Aandd(I,J) < d.
CASEIl: 4 > 5y

By Lemma 2.3 3k such that ¢ < jk. Set I’ = (i1,...,% + 1,...,iy).
Clearly C(I') > Tandd(I',J) < d.LetI" = (i1 ~1,...,ix+1,...,iv),
then d(I”,J) < d.

KC(I") < T,theny =I'and) € A. XC(I") > T, then I = I"
and I € A.

Caselll: i3 = 5y
Find smallest k s.t. 4 7 jx. We can now use Case I or Case II.
By induction, we can find a connected path from 7 to J.

3 Slice Algorithms
Set
Vi={PeV|zi(P) L zisa(P)i=1,...,u—1}

where,
z:(P) = i*"coordinate of P.

Definition 3.1. Let < X > be an operator that generates all permutations of
X.

Example 3.1.
<(1,2,3) >={(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}

<{(1,2),(2,3)} >={(1,2),(2,1),(2,3),(3,2)}
Hence, < V; >=V.
Definition 3.2. We define a ‘bar’ map

- V- V+
P P
with P is obtained by rearranging coordinates of P in an ascending order.
Lemma 3.1. For any P € V, the cardinality of the set {Q € V | Q = P}

. u
is where,
T1y..44Ts

r1 = repetition of z1(P)
r2 = nrepelition of T14r, (P)
r3 = repetition of Ti4ri4rg (ﬁ)
Proof. See second paragraph on page 16 in (4]. o

173

Example 3.2. Let V = {(i1,42,%,44) | 1 < 4; <4}, and P = (1,2,1,3).
Then P =(1,1,2,3)and r = 2,72 = 1,73 =1,and

= = 4 4
{QeV|@=P}= (2,1,1)=M=12'

Definition 3.3. Slice anchor points are elements of A} = AV, where
A is the set of anchor points.

Itis clear that < A4 >= A.

Definition 3.4. Multinomial , v) for Q = (r1,...,7s) is called

1gecey 1',
the permutation degree (p-degree) of Q.

Lemma 3.2. Suppose Q1,Q2 € V. are such that z:(Q1) < z:i(Q2), 1 <
i SUandC(Q1) < T, C(Q2) 2 T. Then there exists P € Ay, such that
z(Q1) < zi(P) < 2:(Q2).

U
Proof. 'We use induction on m = Z [z:(Q2) — z:(@1)]. If m = 1, then
i=1

Q2 € A, and we are done. Suppose j is a maximum index such that

zj(Q1) # x5(Q2). Set @ = (z1(Q1),.--,2;(Q1) + 1,...,20(Q1)).

Now,
z;(Q1) < 2;(Q2) £ zj+1(Q2) = zj+1(Q1)
z;(Q1) + 1 < 2;41(Q1)
Tj (Q) L Zjin (Q)s hence, Q € Vi
If C(Q) > T, then Q € A4. If C(Q) < T, then since

3 (@) — (@] £ Y [7:(Q2) — z(Q)] +1
i=1 =1
by induction there exists a P € A, with required property. a

Lemma 3.3. Suppose (a1,...,8r,...,0u) € Ay has the following prop-
erty:

ar = maz{z,(P) | z:s(P) =ay,i=1,...,7r~1,P€ Ay}
Then for any Q € V., such that,

zi(Q) = ai, 1<i<r and
z.(Q) > ar,

c@)>T.

174

Proof. Suppose (ai,...,ar,...,au) € Ay had the property given in the
hypothesis and (b, ...,by) € V; witha; = b; for1 < i < r and b, > a.
We claim that C(bs,...,bu) > T.

We prove this by contradiction. Suppose C(by,...,by) < T. Set @ =
(a1,..., @r—1,br, Cr41,---,cu) With ¢ = max(ay, b)), r+1<i < U.
Note that b, = max(ar, b,) < max(@rs1,br41) since ar < @r41 and by <
br41. Thus Q € V... Further, 2;(Q) 2 b Viand C(Q) = C(aa,...,av) =
T. Hence by Lemma 3.2, there exist P € A4 with 2:(Q) 2 z:i(P) > b;.
Butforl < i < r, 2:(Q) = b = ai and z-(Q) = b.. Thus we have an
anchor point P with z;(P) = ai, 1 < i < r and z.(P) > a,. Thisis a
contradiction. Thus we must have C(by, ..., b.) > T. m|

Conversely,

Lemma 34. For any Q € {Vy \ Ay} with C(Q) > T, there exists
(@1,-..+8ry...,ay) € Ay, such that,

zi(Q) = ai, 1£i<r~1 and

xr(Q) > Gar.
Proof. Suppose (b1,...,bu) € {Vi \ A4} with C(by,...,by) > T.
Choose a point (a1, ..., G, ..., ar) € A4 such that r is a maximum index

such thata; = b;, 1 < i < r and a, # b,.This condition is vacuous if r = 1.
We claim @, < by..

We prove by contradiction. Suppose a» > b.. Set @ = (ai,...,
Gr—1,bryCr41 5...,cu) with ¢; = min(a:, bi). It is easy to show that
Q € V. Since C(Q) < C(ay,...,av), forany j,

C(=:(@Q)s--.»25(Q) — L,...,20(Q)) £ C(a1,...,05 — 1,...,a0)

If(a1,...,av) € A4, then there exists j such that C(ay, .. .,a;—1,...,ay) <
T by definition of anchor point. Hence, C(z:i(Q), ..., z;(@)-1,...,zv(Q)) <
T. Thus if C(Q) = T, then Q is an anchor point, which contradicts the min-
imality of r. Thus C(Q) < T. Also z;(Q) < b;. Now we use Lemma 3.2
to find P € A, such that z;(Q) < zs(P) < bi. Since z:(Q) = bi = a4,
1 < i < rand 2.(Q) = b, we found P € A, such that z;(P) = b; for
1 < i < r. This violates the maximality of (ai,...,ay). Thus we must
bave a, < b,. u]

Definition 3.5. Let (ay,...,ar,...,av) € A4 beananchor point of Lemma 3.3.
Consider,

7(a1,...,a:) ={P €V | z:i(P) = as,1 < i <r, and z-(P) > ar}
Lemma 3.5. Suppose P, P, € A, are such that,
z,(P) = max {z+(Q) | z:(Q) = z:i(P1),1 i< ,Q € A;}

zs(P2) = max {z(Q) | 2:(Q) = zi(P2),1 <i < 5,Q € A4}
Thent(z:(P1),...,2-(P1)) andT(21(P2), . .., xs(P2)) aredisjoint or iden-
tical.

175

Proof. We will show that if (c3,...,cy) isin,

T((Bl(Pl), cee ’xT(Pl)) nT(wl(Pz)) cue f$3(P2))

then z;(P;) = zi(P2) forr =sand1 < i < 7.

We can assume that 7 < s. If r < s, then we have z(P1) 2 z-(P2)
since z;(P;) = z:i(P2) = ¢i for 1 < i < r. However by Lemma 3.4 we
know that z.(P1) < ¢ = z(P2). This is a contradiction. Hence we must
have r = g and z,(P1) = z.(P2). a

To find suitable (a3, .. .,a,) of lemma 3.5, we make use of lemmas 3.3
and 3.4. We make groups in A, of all the anchor points with first 7 — 1

coordinates equal to @i, - ..,ar—1 and choose (a1,...,a,) with maximum
rt® coordinate a,. Suppose X denotes the set of all such (ay,...,ar). Al-
gorithm 1 is design to find X.

Now it is clear from lemma 3.5 that
{Qevi|c@) 2T= A Jr(a,-.,06r)
X

where the union is disjoint. If we write < Y >= {Jpey < P > for any set
Y, then this implies that

QeVIC@ 2T =< 4y >|J<(a....ar) >
X

Therefore

HQeVICQ) 2T} =< A+ >+ Y [< T(a1,...,ar) >|.
X

Once A+ is found We apply lemma 3.1 to find | < A4+ > |. It remains to

find the cardinality | < 7(a1,...,ar) > |. Before computing that, we define
some terms:

Recall that a partition E of a positive integer u is a sequence s1,...5m

of posiﬁve integers such that Z,. s; = u [4]. We will denote a partition of u

= af!,af?...af", if a; is repeated p; times, 1 < i < 7. Forexample

(1 1, 1 ,2), a partition of 5 is denoted as 1321, The set of pamnons of uis

denote by X,,. In next lemma we assume (o,m i) = (my,.. .mk.o)

m;,.{‘.,mk)

Lemma 3.6. Cardinality of < 7(a1,...,0s) > is

E=p" . PreXy, En<k ala'-'yahﬂlvﬁl "-sﬁhﬂt En Pr...,P>e

P b3

176

whereu=U—r—1,E, =Y p; forany E = of*,...afr,

a1 = repetition of a1

@z = repelition of G14.a,

ag = repelition of Q14ay+ag
a, = repetitionof ar-1.

and whenr = 1 we assumea = 0

Proof. Let E = B7*,..., B be any partition of u. Then for any choice of

E, values b; <... < bg, from{a-+1,...,n}let

P=(a1,...,ar-1,b1,b1-..... be,,bE, ...) Where each of by, . .. bp, are
N et e

B1 Be
repeated 3; times, each of bp, 41, . . . bp, are repeated 32 times and so on. By
lemma 3.3 and 34, P € 7(ay,...,ar). Now by lemma 3.1

— U

I < P > I - (al""laﬂlﬁli ﬂl'"tﬁ‘)ﬂt).

1 Pt

Since the cardinality of {a- + 1,...,n} is k, there are (5.) choices for
bi,

If we write partition E = 8P, ..., 0P as g7, 8, BP2,..., BP* and
follow the same procedure, we get points of 7(ay,...,a,) Now there are
(p lf?f:m) ways we can rearrange a partition E. Puiting all these together we
get our formula.

O

Example 3.3. Consider costs [2,3,4,9,12] withn =5,U =3and T = 10.

Ap = {(1,1,4),(1,2,4),(1,3,3)(2,2,3)}. To construct X we start
with (1,1) and record it. Since with 4 is the maximum third coordinate,
(1.1,4) € X. This way we get X = {(1,1,4), (1,2,4),(1,3,3),(2,2,3),(1,3),(2,2),(2)}.

We first calculate | < 7(1.14) > .U =3, n=5k=5-4=1,
u=3-3+1=1and X, = {1'}. Therefore,

| <r(1,,4>]=()(Q) () =3

Similar calculations show that

[<7(1,2,4)>|= (1?1)(1)(1) =6

| <7(1,3,3) > | = (,3,) Q)) = 12

| <7(2.2,8)>|=(;3)(}))(2) =6

In the following calculations u = 2 and X3 = {1%,2!}.

| <7(1,3)>|= (111)(2)(2) + (12)(:)(:) =12

|<7(2,2)> = (,;,)E G+ (DPE = 18+9 27
In the following calculation u = 3 and X5 = {13,1% 2, 3'}.

gy | <T@ > 1= EOO+EOE+OB () =6+18+3=
.Funher,
| <A+ > | =< (LLY>|+[<L2,4>]+|< (1,33 >

177

Therefore [{P € V|C(P) 2 10} = 3+6+12+6+124+-274+27+15 =
108.

The computation of the above example as done by the algorithms is illus-
trated step-by-step in Section 3.3.1.

3.1 Finding slice anchor points

By Theorem 2.6 we know that the set of anchor points is connected and
from Theorem 2.2 we know that they can be found by searching neighbors.
Hence, a simple algorithm can be designed to find all anchor points. Cur
algorithm begins by searching diagonal points (all coordinates are equal) and
their neighbors for a “seed” anchor point, once that seed is found we simply
start looking at the seed’s neighbors for new anchor points. The neighbors
of the new anchor points are then searched in turn. This process continues
until all anchors are found. While searching for neighbors, if we restrict
the search to neighbors with monotonically increasing coordinate values, we
are left with A4, a set of slice anchor points (another set of slice anchor
points can be found by restricting the search to neighbors with monotonically
decreasing coordinate values). For sake of brevity we omit the details of our
algorithm to find slice anchor points

3.2 Counting Points in Slice

Anchors2PointsSlice (Algorithm 2) illustrates the algorithm used to compute
the points with cost > T in V using only A . The counting process begins

with the initial call to Anchors2PointsSlice(A+, n, [Ilc é,]), where k is

the cardinality of A... Anchors2PointsSlice is a wrapper around the main Al-
gorithm Anchors2PointsSliceRecur (Algorithm 3). Anchors2PointsSliceRecur
uses MakeGroups (Algorithm 1). The
Make groups algorithm generates recursive “groups” within the list of anchor
points such that the first column in every generated group is identical. The ef-
fect of such grouping is that with each level of recursive grouping we reduce
a dimension of our virtual space. This process is illustrated in Figure 2 where
groups are generated in the sequence rs,7s,...,71. Each recursive call to
MakeGroups returns smaller groups. Eventually, when the groups reach a
single column, Anchors2PointsSliceRecur begins to return and all counting
is done when Anchors2PointsSliceRecur is unrolling back.
Below are some definitions and formulae used in the algorithms.

Definition 3.6. Suppose party is a set of all the partitions of U. For any
E € party with E = s{* 52 . .. s2~ we define the following constants:

E.=Y pr m

i=1

multg =(En) (¥)
D1,y Pr

178

u
erm, =‘ 3
P £ 81,81...---8,-,3,-...) ()
N

rn Pr

Let,

Fy = Z multg xpermgx D Dp ={ ‘]i

Ee€party

@

Ry = Z multg X perme X Dg DR={1 E"=.2’3

Ee€party

0 E,<3
1
—_— En = 3
QJ’:Bn = (Enl_ 3)l En—4 ©
T (—Ba+3+m) otherwise

Algorithm 1 MakeGroups(A4, r)

1: {A, isthe k x U matrix of k lexicographically sorted anchor points.}

2: {r is a 2 X 2 matrix where [rs cs;re ce] define the upper left hand comner
(rs,cs) and (re, ce) define the lower right hand comer of the space in A,
within which groups are to be made}

3 [rses;rece) <=1

<i&ET8

5: whileri < redo

6: Record [ri cs + 1] as beginning of group
7.
8
9.

fe< Ap(ri,es+1)
while ri < re do
if fe = A (ri,cs 4 1) then

10: rf&ri
11: ri<rl+1
12: end if

13: end while

14: Record [rf ce] as end of group
15: end while

16: return all groups

3.3 Examples

In this section we illustrate the technique of counting points using two exam-
ples.

179

Algorithm 2 Anchors2PointsSlice(A,., n,)

1
2:
3

- ST I

{A, is the k x U matrix of k slice anchor points}

{n is the max value of any element in an anchor point}

{r is 2 2 x 2 matrix where [rs cs;re ce] define the upper left hand corner
(rs,cs) and (re, ce) define the lower right hand comer of the space in A4
that is currently being processed}

: result = Anchor2PointsSliceRecur(A+, n, 7)
: for all p, slice anchor pointin A do

result = result + permutation degree of p

: end for
: return result

3.3.1 Examplel

Consider costs [2, 3,4,9,12] with U = 3 and T = 10. A is obtained using
the procedure described in Section 3.1. The process begins with a call to

Anchor2PointsSlice (A+, 4, [‘]i ;]), wherers = 1,es = 1, re = 4,

ce = 3 and,

11 4
1 2 4
Av=11 3 3
2 2 3

In this initial call 7e = 4 is the number of slice anchor points and ce = 3 is
U. Each row of A, is the vector for a slice anchor point. Figure 2 shows the
counting of points using the slice anchor points in A+. The makegroups
algorithm generates recursive groups within the list of slice anchor points
such that the first column in every generated group is identical. The effect
of such grouping is that with each level of recursive grouping we reduce a
dimension of the virtual space.

For each group returned by MakeGroups, Anchors2PointsSliceRecur com-
putes 7p in line 21. We now show the computation of rp1, ..., rp7.

Computing rp,
Here, fernaz = 4,4 = 1,k = 0, part,, = {1'}. Now for each E € part.

we evaluate mult g(Equation (2)) and permg (Equation (3)). For E = 1%,
E, = 1 (Equation (1)) and,

ot = (})
e ()

180

Algorithm 3 Anchors2PointsSliceRecur(A, n, T)

1:
2:
3

20:

21:
22;

{A; is the k x U matrix of k slice anchor points}

{n is the max value of any element in an anchor point}

{r is a 2 x 2 matrix where [rs cs;re ce] define the upper left hand corner
(rs,cs) and (re,ce) define the lower right hand comer of the space in A,
that is currently being processed}

: {If the final value of a summation variable is smaller than its initial value, let

that summation be zero.}

: if S is empty then

return 0
end if
[rscs;rece]l < r

. if ce > cs then

rl = makegroups(S,r)

for all ri such that 74 is a 2 x 2 group specification in 71 do
result = result + Anchors2PointsSliceRecur(A4,n,7i)

end for

: end if

: femaz =max(cs*? column from rows rs to re in A;)

ru=ce—cs+1

:k=n— femaz -1

: {Fu, Ry and Q; g, below are from Equation (4), (5) and (6) respectively.}

fsum = 1+kFu+-(-’£-—?-1Xc-Ru+

k-1 . .
5 [mqu cperme 5% (£ 129 QLE")}

Eeparty J=2

d = denominator of multinomial coefficient of
Ai(re,1),Ay(re,2),..., A (re,cs — 1)
o

=Xl x feum
return result + rp

181

Hence using Equation (4),

F1=(1X1X1)=1 a
Similarly using Equation (5),
Ri=(1x1x0)=0 ®

Hence from 4nchors2PointsSliceRecur line 19
fsum=140+0+0 ¢)]

The last term in Equation (9) is 0 since in that term the final condition of
the summation (—1) is less that the initial value (2). In line 20, d is the
denominator of the multinomial coefficient of 1,1, which is the denominator

of (;) . Hence d = 2! From Anchors2PointsSliceRecur line 21

3!
™D = 5 fsum =3
Computing rp»

Similar to rp1, here femaz = 4,u = 1,k = 0,part. = {1'}. However,
d = 1!1!. Hence,

31
P2 = gy fowm = 6

Computing rp3

Here, femaz = 3,u = 1,k = 1,part, = {1'}. multe and permg
identical rp;.
fsum=14140+0 (10)

Hence,
3!

T/ fum =12

TP3 =

Computing rp,

This computation is similar to rps except that d = 2!. Hence,
3!
TPy = mfsum =6
Computing 7p5

In this case, femaz = 3,u = 2,k = 1,party = {1%,2'} and d = 11
Since there are two paritions of u,

BEOE -

182

~[OEN O -

foum=1+1-3+0-2+0=4

Hence,
3!
r™ps = ﬁfsum =12
Computing rpg

Here, femaz = 2,u = 2,k = 2,party = {1%,2'} and d = 1!. Using
Equations (11) and (12),

foum=1+4+2-34+1-240=9 (13)
Hence,
3!
TPs = 1Tz!—f.*mm =27
Computing rp;

Finally, here femaz = 2,u = 3,k = 2, part, = 13,1'2!,3 and d = 1.
So,

e[EHOG e
[[E 06

foum=14+2-T+1-124+0=27

Hence, 31
rpr = T'-ﬁi fsum =27

Line 4 in Algorithm 2 retumns the sum of all rp;, 1 < i < 7 and in
line 6, the p-degree of each slice anchor point is added. The overall number
of points > T', 108, is returned in line 8. The p-degree of each point in A
is shown in the rightmost column in Figure 2.

We can see that Equations (4) and (5) are independent of k and can be
reused in computing 7p of a column from Figure 2

33.2 Example2

Now, we present another example similar to that in Section 3.3.1, but with
T = 8. This example has fewer slice anchor points and exercises computa-
tion of Qj;,e,, (Equation (6)). Figure 3 illustrates this computation.

183

mﬂxis perms ofs”ce ars.

+ axis ne axis
11114 ™ 3
11214 rp2 T™Ds 6
D7
11313 TP3 3
21213 P4 TDs 3
Totals: 27 + 39 + 27 + 15 = 108

Figure 2: Illustrating Algorithm 2, for Example 1

Consider costs [2, 3, 4,9, 12] with U = 3 and T’ = 8. The process begins

with a call to Anchor2PoinisSlice(A+, 2, ; ;),where
113

A= [1 2 2]

Computing rp,

Here, femaz = 3, u = 1, k = 1, part, = {1'}. fsum in this case is
identical to Equation (9). Hence, '

3! 6
TP = -2!—1-!fsum =

Computing rp,

Here, femaz = 2, u = 1, k = 2, party = {1'} and fsum is again
identical to Equation (9). Hence,

3
P2 = mfs‘um =18
Computing rp;3
Here, femaz = 2,u = 2, k = 2, part. = {1%,2'} and fsum is identical

to Equation (13). Hence,

3!
rps = -iTé-!fsum—27

184

m axis 1% axis perms of slice a.ps.

113 ™/ 3
TP3 TP4
2 P2 3
Totals: 24 + 27 =+ 64 + 6 =121

Figure 3: Illustrating Algorithm 2, for Example 2

Computing rp,

Here, femaz = 1, u = 3, k = 3, part. = {13,112, 3'}. Using F; and
Rs from Equations (14) and (15) respectively,

foum = 1+3.7+3-12+{(§)(1,i1) [(3—-2)(32-"1—2)(3-{3)!]}
2 3)[B=23+1-2)
() () (=252 0]}
1\(3\[(3-2)(3+1-2)
() () (=252}
14+214+36+6+0+0
64
Hence,

rp4=g—:fsum=64

The rightmost column of Figure 3 shows the p-degree of each point in
Ay. Adding up all rp;, 1 < i < 4 and the p-degrees, give us 121, the total
number of points with cost > 8.

4 Complexity

The computational complexity of Anchors2PointsSliceRecur is dominated by
line 19. Both Fy and Ry requires the computation of all unrestricted pari-
tions of U. The number of unrestricted paritions of U, P(U) is given by [2]
as

ez«,/w/a

PO~ =07

185

Assuming that each paritions can be generated in constant time, since Ul =
O(UY) the complexity of line 19 in Anchors2PointsSliceRecur is

o(7). () o)

(]

4Uv3
= O(nUUeZ'rr\/ﬂJ/a) (16)

A, has fewer points than A by a factor of U! hence in the worst case the

number of anchor points is @ = ﬂ%.
The overall complexity with constant U and worst case a,

—)2U-1)
= 0 (nlogn+ E(—E—Fl,)u— +n)
= O(n%) an
Hence the asymptotic complexity does not change. This is to be expected

since the reduction is based on U and we let U be the constant.
However, with constant n, the overall worst case complexity is,

U+ U(n—1)@-0 VU2 4+ U?(n—1)*v-0 N

0 i UzU N
_1\(U=-1) —1){v-1)
Uln Ulu) Ulog (U (n (]}2, U)) 4 nUY 2V
,n2U
- o(3w) 18

4.1 Comparison with Brute Force Method

The brute force method is one in which we test each pointin V for > T. The .
complexity of this approach is always O(UnY). We can conclude that while
in the worst case (Equations (18) and (17)) our algorithms exhibit worse scal-
ability than brute force whereas in the best case we do significantly better.
Our future work will include an average case complexity analysis in which
we hope to show that cur approach works much better than brute force in the
average case. This is primarily because the worst case, as outlined above,
occars only for a very narrow range of T'.

4.2 Comparison with Generating Functions

A classic method of counting points in the U-dimensional space is using
generating functions. Though our problem requires counting points > T,
when using generating functions it is easier to calculate points < T', so that
is what we will do in this section. We begin with explaining this method and
then compare it with our algorithms.

186

Let the costs be [1,2, 5], U = 2 and T = 3. This first step is to create a
generating function for each axis from the costs. Such a generating function
is,

g(x) =z +z°+2° (19)

Since there are two such axes we multiply the generating function twice
and divide the result by (1 — «) [1] in order to accumulate coefficients. We
then differentiate the result T" times, evaluate at z = 0 and divide by T'! to
get the number we want. Multiplying generating functions had the effect of
creating a multinomial expansion of the generating function. Such an expan-
sion has the property that for each term in the expansion, the coefficient of a
given term in z happens to be the number of ways to get the exponent of that
z. Multiplying the generating function by Ti; has the effect of accumulat-
ing coefficients [1]. Now, in order to get the coefficient of the term with an
exponent of T' we differentiate T times. We then evaluate the resultat z = 0
to cancel all terms with exponents greater than T'. Finally to negate the effect
of repeated derivative on the coefficient of z we divide the end result by T'.
Hence we evaluate,

dT (z +a? + 2°)2 1
N =& 15 Lﬁ @0
&£ @+a+2)] 1
dx3 1-z 2=0 3
= 3

We can now say that there are 3 ways that T < 3, they are (1, 1), (1,2),
(2, 1). Equivalently there are 6 = 3% — 3 ways such that the sum is > 4. So,
the required probability of T' > 4 is § = 0.66. There are two computation-
ally expensive steps in the evaluation of Equation (20): Evaluating the T**
derivative and computing T'!. We will now look at how we can eliminate or
reduce one or both of these steps.

If we try to prevent explicit computation of T"! we must compute {;Tp in
T steps, &, &y, ..., S and at each step divide the result by n,n— 1,n—
2,...,1. Division of z“;p by T'! or division of each successive derivative by
n,n — 1,n — 2,... is required to cancel the effect of multiplication of the
coefficient of x by it’s exponent in each successive derivative.

If we try to prevent successive computation of derivatives then we must
compute T!. While the gamma function I'(T') = [;° 2Te~*dz can be used
to exactly calculate T'!, T! = I'(T + 1), it involves at least T integration
steps. An approximation to T'! can be obtained using T or fewer steps by
using Sterling’s approximation as T! ~ 27T (Z)”. In cither case, the
factorial value is large for even modest values of T', for example, 160! con-
tains 158 digits. Given that T" represents the sam of costs, finding the factorial
is constrained to costs that can be handled by the precision of the system on
which the computation is being carried out. Itis unlikely that most commonly
used general-purpose systems will be able to compute the factorial of large
cost values (in the order to several hundreds or thousands) without overflow.

187

Hence we cannot eliminate both these computationally intensive steps
simultaneously. So the choice is between finding the T* derivative, one at
a time or calculating T'!. Both of these are choices severely constrain using
this generating functions technique for large values of T" (several hundreds or
thousands).

Though the computational requirement of this method is sensitive to T,
it is fairly immune to U, the number of users. This is the case since in Equa-
tion (20), U is the exponent of the generating function and does not affect
the computational effort to find a derivative. Here we can see a substantial
reduction in complexity due to the slice algorithms. Shen and Marston [3]
consider a restricted case of our problem with usual die consisting of sequen-
tially numbered face values (costs). Their techniques are based multinomial
expansions and they claim a running time of O(U2, n?). The paper does not
give any details of the dynamic programming used.

Al algorithms described in our paper are available as MATLAB™code,

References
[1] R. L. Graham, D. E. Knuth, and Q. Patashnik. Concrete Mathematics.
Addison Wesley, Reading, Massachusetts, 1988.

[2] G. H. Hardy and S. Ramanujan. Asymptotic Formulae in Combinatory
Analysis. Proc. London Math. Soc., 17:75-115, 1918.

[3] Zhizhang Shen and Christian M. Marston. A Study of a Dice Problem.
Appl. Math. Comput., T3(2-3):231-247, 1995.

{4] Richard P. Stanley. Enumerative Combinatorics, volume 1 of Cambridge
Studies in Advanced Mathematics 49. Cambridge University Press, 1997.

188

