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Abstract

The basis number of a graph G is defined to be the least integer
d such that there is a basis B of the cycle space of G such that each
edge of G is contained in at most d members of B. MacLane [16]
proved that a graph, G, is planar if and only if the basis number of
G is less than or equal to 2. Ali and Marougi [3] proved that the
basis number of the strong product of two cycles and a path with a
star is less than or equal to 4. In this work, (1) we prove that the
basis number of the strong product of two cycles is 3. (2) We give
the exact basis number of a path with a tree containing no subgraph
isomorphic to a 3-special star of order 7. (3) We investigate the basis
number of a cycle with a tree containing no subgraph isomorphic to
a 3-special star of order 7. The results in (1) and (2) improve the
upper bound of the basis number of the strong product of two cycles
and a star with a path which were obtained by Ali and Marougi.

Keywords: Cycle space; Strong product; Fold; Basis number.
AMS 2000 Mathematics Subject Classification: Primary 05C38; Sec-
ondary 15A03.

1 Introduction.

The basis number of graphs has been studied by many authors, dating to
the investigations of planarity of graphs by MacLane [16] who proved that
a graph is planar if and only if its basis number is less than or equal to 2.
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Formally, the basis number was introduced by Schmeichel [17] who proved
that the basis number of a complete graph is less than or equal to 3.

Unless otherwise specified, all graphs considered here are connected,
finite, undirected and simple. Most of the notations that follow can be found
in [7). Given a graph G, let e, ey,...,€g(c) be an ordering of its edges.
Then a subset S of E(G) corresponds to a (0, 1)-vector (b1, bo, ..., bgc))
in the usual way with b; = 1 ife; € S, and & = 0 if e; ¢ S. These
vectors form an |E(G)|-dimensional vector space, denoted by (Z,)/Z(G),
over the field of integer numbers modulo 2. The vectors in (Z2)/E(®) which
corresponds to the cycles in G generate a subspace called the cycle space
of G and denoted by C(G). We shall say that the cycles themselves, rather
than the vectors corresponding to them, generate C(G). It is known that if
G is a connected graph, then dim C(G) = |E(G)| - |V(G)| + 1.

Definition 1.1. A basis B for C(G) is called a d—fold if each edge of G
occurs in at most d of the cycles in the basis B. The basis number, b(G),
of G is the least non-negative integer d such that C(G) has a d-fold basis.
The required basis for C(G) is a basis that is b(G)-fold.

Studying the basis number of graph products has been done by many au-
thors. Schmeichel [17] and Ali [2] gave an upper bound for the semi-strong
product, e, of some special graphs. They proved the following results:

Theorem 1.1. (Schmeichel) For each n > 7,b(K, ¢ P2) = 4.
Theorem 1.2. (Ali) For each integers n,m,b(Km ¢ K,) < 9.

Schmeichel proved a more general case, in fact, he proved that b(Kp m) =
4 for each n,m > 5 except possibly for Kg 10, K5, and Kgn(n =5,6,7,8).
The basis number of the cartesian product, x, of two cycles was obtained
by Ali and Marougi [4] who proved the following:

Theorem1.3. (Al and Marougi) For any two cycles C, and Cyp, with
n,m > 3, we have b(C, x Cp,) = 3.

Alsardary and Wojciechowski [5) gave the following result:

Theorem 1.4. (Alsardary and Wojciechowski) For everyd > 1 and n 2> 2,
we have b(K2%) <9 where K2 is a d times cartesian product of K.

The direct product, A, was studied by. Ali [1] and Jaradat [11]. They
gave the following results.

Theorem 1.5. (Ak) For any two cycles Cn and C, with n,m > 3,
b(Crn ACp) =3.

Theorem 1.6. (Jaradat) For each bipartite graphs G and H, b(GA H) <
5+ b(G) + b(H).
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Theorem 1.7. (Jaradat) For each bipartite graph G and cycle C, b(G A
C) <3+ b(G).

Jaradat [11] classified trees with respect to the basis number of their
direct product with paths of order greater than or equal to 5. Many other
papers appeared to investigate the basis number of graph products, see (6],
[o], (12], [13] and [14].

Our aim, as suggested in the title, is to investigate the basis number of
the strong product, ®, of some classes of graphs. Ali and Marougi [3] gave
the following results of the basis number of strong product.

Theorem 1.8. (Ali and Marougi) For each two paths P, P, and for each
cycle C with n,m,k > 4, b(P, ® Pp) =P, ® Ci) = 3.

Theorem 1.9. (Ali and Marougi) For each two cycles Cr,, Cp and for
each star Sy with n,k > 4andm > 3,3 < (C, ®C),) <4 and 3 <
b(P, ® Sx) < 4.

In view of results of Ali and Marougi, one is naturally led to the following
question:

Problem: Can we give ezact values for the basis number of the strong
product of two cycles and a path with a star?

The main focus of this paper is to obtain a solution to the above prob-
lem. In fact, we give the exact basis number of the strong product of more
general classes of graphs. We prove that, under some restrictions on the
order of graphs, the basis number of the strong product of two cycles and
a path (cycle) with a tree contains no 3-special star of order 7 is equal to

For completeness, let us recall the definition of the following two prod-
ucts. Let G and H be two graphs The cartesian product G* = G x H has
vertex-set V(G*) = V(G)x V(H) and edge-set E(G*) = {(u1, u2)(v1,v2)|u;
= v and ugvy € E(H) or up = v, and uyv, € E(G)}. The strong product
G* = G ® H has vertex-set V(G*) = V(G) x V(H) and edge set E(G) =
{(u1,u2)(v1, v2)|uy = vy and upvs € E(H) or ug = vy and uyv; € E(G)

or ujv; € E(G) and ugve € E(H)}. It is clear to see that the above oper-
ations are commutative and G; x G2 C G; ® Go.

In the rest of this work fg(e) stands for the number of cycles in B C
C(G) containing e and E(B) = U, g E(b).
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2 The basis number of the strong product of
trees with paths and cycles.

The main idea in this section is to divide the strong product of a tree with a
path (cycle) into familiar subgraphs (not necessary pairwise edge disjoint)
that can be done by using a certain decomposition which decomposes trees
into paths of order 2 and stars. Then we use linearly independent sets of the
cycle spaces of those subgraphs to construct a basis for the strong product
of a tree with a path (cycle).

Let S, be a star of order n such that V(S,) = {v1,v2,...,v,} and
d(v;) = n — 1. Set the following set of cycles of C(ab® S, ):

Ja {7 = (a,v1)(d, w)(a, 1) (a, v1)ll = 2,3, ...,n}

o = {I® = )b, u)a,u)b,v)ll=2,3,--+,n}

Jop = {é&’=(b,vl)(a.vzxa,vl)(b,vl)}u
{79 = (a,v)@w)(b,v1)(@v-1)bv-1)(a,v)ll=3,4,--,n}

Let .
JED = J.0 55U Ta

Lemma 2.1. Jé“b) is a linearly independent set of cycles.

Proof. Foreachl=2,3,...,n,set D, = {Ja"’, ® (') (')} Since Ja " con-
tains (a, v;)(a,v;) which is not an edge of J, (') v {Ta (') ) Jb(')} is linearly inde-
pendent. Since J&? + T = (a,41)(b, v,)(b, v1)(a,w)(a, v;) (mod 2) which
is not 7, (2) , as a result D is linearly independent for each [ = 2,3,...7n.
Note that Jg (°b) = UL, D;. Thus, to show that Jg {ab) ig linearly independent

we proceed by using induction on n. If n = 2, then Jg (@) — D, which is
linearly independent, by the above argument. Assume n > 2 and the result
holds for less than n. By the above argument and inductive step both of
D,, and UP!D; are linearly independent. Clearly, E(D,) N B(UFLID)) =
{(a,v1)(b,vi-1), (@, v1—1) (b, v1—1), (a,v1-1)(b,v1)} which is an edge set of a
path. Thus any linear combination of D,, must contain at least one edge
of (a,v1)(a, vn), (b,v1)(b,vn), (a,vl)(b vp), (b,v1)(e,v,) and (a,v,)(b,v,)
which is not in any cycle of Uj5, 'D,. Therefore, UL *oD; is linearly inde-
pendent. The proof is completed

Remark 2.1. (1) If e = (a,v1)(a,v1), then fdéab)(e) <2 (2 Ife=
(bsvl)(by 'U;), then fjéﬂb)(e) = 1. (3) Ife= (0-, ‘U[)(b,‘l)[) where | # 1,n,
then fjéab)(e) < 3. (4) If e = (a,v1)(b,v1), then fjéab)(e) =1. (5)If
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e = (a,vn)(b,v,), then fyéos) (e) = 2. (6) If e = (a,v1)(b,v;) such that
1 > 2, then fJéas) (e) < 2. (7) If e = (bv1)(a,w) such that I > 2, then
fjéob) (e) <3.

The following fact will be used frequently in the sequel.

Fact 2.1. Any non-trivial linear combination of cycles of linearly indepen-
dent set of cycles is a cycle or an edge disjoint union of cycles.

It should be mentioning that finding the basis number of the strong
product of a cycle (path) with a tree can not be found using the direct
method as in [3] because trees have no uniform forms. Therefore, we shall
recall a certain decomposition which decomposes a tree into stars and paths
of order 2.

Proposition 2.2 (Jaradat [15]) Let T be a tree of order > 2. Then T can
be decomposed into pairwise edge disjoint of subgraphs S;,Ss,...,Sy, for
some integer r such that the following holds:

(i) For each i > 1,S; is either a star or a path of order 2 and S, is a
path incident with an end verter.

(ii) For each v € V(T), if dr(v) =2, then |{i:v € V(S:)}| =2, and if
dr(v) =1, then |{i:v € V(5)} =1. v

(i5) V(8;) N (U2 V(S;)) = v{? where ds, (v{7) = max,ev (s, ds, (v),
du;';is,- (vg')) =1 for eachi=2,3,...,r, and vg‘) # vg") for each i # j.

Let T be a tree and T = U}_,S; as in Proposition 2.2. Let V(S;) =
gvg),v.‘(,j), ...,vg.)} be the vertex set of S; with ds,.(vgj)) =n; —1. We
efine
B(a,b® T) = U;=IJ§:¢G€+I),

where Jé:‘“‘*‘) is the linearly independent subset of C(ab®3S;) as in Lemma
2.1..

Lemma 2.3. B(ab®T) is a linearly independent subset of C(ab® T).

Proof. We now prove that B(ab® T') = U§=1J§;‘"“"+’) is linearly indepen-
dent by using induction on r. If » = 1, then the result is true, by Lemma 2.1.
Assume r > 2 and the result holds for less than r. Note that B(ab® T) =

U;;}J é;’b) UJS(‘:") - By the inductive step and Lemma 2.1, both of U;;} Js(.:b)
and Jéfb) are linearly independent. Since V(S,) N V(U}Z 18;) = v§’> , wWe
have

BUZ167) 0 E(I5) = {(aof)3,0{7)}
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which is an edge. Let C be a non-trivial linear combination of cycles of
Jé:b). Assume that

!
C =) d; (mod 2)

i=1
where d; € UjZ1J$*"). Then
E(C)=E(d,®-- - @ dy).
where @ is the ring sum. Thus, |
E(C) C E(UjZ1TEM) 0 B(IEY) = {(a,9)(6,{)}.

This contradicts Fact 2.1. Thus, B(ab ® T) is linearly independent. The
proof is completed.

A tree T consisting of n equal order paths {P(}), P(®), ... P(")} is called
an n-special star if there is a vertex, say v;, such that v; is an end vertex
for each path in {P(), P?) ... P} and V(P®) NV (PW) = {v;} for
each i # j (see [11]).

In the following work we assume P, = a103...am, Pp = 1172...0,,Chp
=a1a3...ama1 and C, = v1vy...v,7;.

Theorem 2.4. Let T be a tree of order n containing no subgraph isomor-
phic to a 3-special star of order 7 and Py, be a path. Then b(P,®T) < 3.
Moreover, the equality holds for n,m > 4.

Proof. By Theorems 1.8 and 1.9, it suffices to show that b(P,, ® T) < 3.
Let T = U5_,S; as in Proposition 2.2. Let V(S;) = {v{,v§", ..., v} be
the vertex set of S; with ds;, (vgj)) = n; — 1. Since T is a tree containing no
subgraph isomorphic to a 3-special star of order 7, we can choose S s and
label their vertices in such away that vff - vgj) foreach j =2,3,...,r.
Define B(Prn ®T) = U™, B(aiai+1 ®T) where B(a;a;+1®T) is the linearly
independent subset of C(a;a;+; ® T') as defined in Lemma 2.3. To show
that B(P,, ® T) is linearly independent, we use induction on m and argue
more or less as in the proof of Lemma 2.3 by taking in account that

E(UR7?B(a:0i41 8 T)) N E(B(am—1am ® T)) = Blam x T)

which is an edge set of a tree. Since

r
Zn,- =n+r-1,
i=1
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as a result

m-1 r

BPn®T) = 3. 3 |J5Hes)]

i=1 j=1
m—-1 r

= > ) 3n;-1)
i=1 j=1
m-—1 r r

= .30 n->1)
i=1  j=1 j=1
m~1

= Z3(n+r—1-—r)
i=1
3(n - 1)(m — 1)
dim C(P, ® T),

Thus, B(Pm ® T') is a basis for C(Pm ® T'). We now show that B(Pn®T)
is a 3- fold basis. Let e € E(Pm ®T). Then (1) if e = (ai, v )(as41,9%)
for some 1 <7 <rand k #1, then

fB(Pm®T) (e) = fB(asdi-i-x@T)(e) = fJ;°i°i+1) <3
3

(2) If e = (a:,9{")(ai+1,2{"), then
f8(p.@T) (e) = fB(Gsﬂiﬂ@T)(e) = fJ;°i°i+l)(e) =1
1
3)Ife= (a,-,vgj))(a;_l_l,vg")) where j > 2, then

fB(P,,.@T)(e) = fB(a;aH.;@T) (e) = fJ(°i°i+l) (5) + fJ(°¢a¢+1)(e) =241=3.
Sj-1 S5

4)Ife= (ai,vgj))(a”l,vl(j)) or (a,-,vl(j))(a.,-“,vgj)), then

IB(PneT) (e) = fB(aiai+l®T)(e) = fJ;°.'°-'+1) <3
3

(5)Ife= (ag,vgj))(a.i,vl(j)), then
fapnem)(€) = fBlai-ra:0T)(€) + fB(aiais@T)(€) = f J;.,._,,‘)(e)

+fJ;:i°i+)) (e)
2+1=3.

IA
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The proof is completed.

By specializing T in Theorem 2.4 into a star, we have the following
result which improve Ali and Marougi’s result.

Corollary 2.5. Let S,, be a star of order n and P, is a path of order m.
Then b(Py ® Sp) < 3. Moreover, the equality holds for n,m > 4.

The following result of Ali and Marougi is an immediate consequence of
Theorem 2.4.

Corollary 2.6. (Ali and Marougi) Let Py, and P, be two paths with m,n >
4- Then b(Pm® Pn) = 3-

Theorem 2.7. Let T be a tree of order n > 3 containing no subgraph
isomorphic to 3-special star of order 7 and Cy, be a cycle of order m > 3.
Then b(Cp, ® T) = 3.

Proof. Define B(Cr, ® T) = B(Pn®T)UB(ama1 ®T)U {Cp, X vgl)} where
B(Pn,®T) and B(ama; ®T) are as in Theorem 2.4 and Lemma 2.3. Thus,
both of B(P,, ® T') and B(ama; ® T') are linearly independent. Since

E(B(Pn ®T)) N E(B(ama1 ® T)) = E(ay x T)U E(am x T)

which is an edge set of a forest, any linear combination of B(a,a; ® T)
can not be written as a linear combination of B(P, ® T). Thus B(P, ®

T)U B(ama; ® T) is linearly independent. We now show that C,, x vgl) is
linearly independent of cycles of B(Pp, ® T) U B(ama1 ® T'). Assume that
C is a linear combination of cycles of B(P, ® T) U B(ama; ® T'). Since

B(Cm x o{") N B(B(aiai1 ®T)) = {(as x v{")(ass1 x2{")}, and
B(Cm x W) N EBoma1 8T)) = {(am x o{")(a1 x o{")},

we have that

Cm X vgl) = Z R; (mod 2),

i=1

where R; is a non-trivial linear combination of cycles of B(a;a;+; ® T) for
eachi=1,2,...,m—1 and R,, is a non-trivial linear combination of cycles
of B(amai ® T'). Thus,

Rmn=(Cnxv{")® Ri®@R:® - ® Ry
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where @ is the ring sum. Hence
E(Rm) = E(Cnxv’0Ri0R® 0 R,,._l) C (E(B(Pm ® T)U
E(Crm x v§1>)) N E(B(ama1 ®T)).

But,

(EB(Pn ® T)U E(Cn x4{")) N E (Blamer ® T))
= E(a1 x T)U E(am x T) U {(a1,0{")(am, v{")}

which is an edge set of a path. This contradicts Fact 1.1. Thus, B(C,,®T)
is linearly independent. Since

IBChn®T)| = |B(Pn®T)|+|Blamae, @T)|+1
(n—1)(m-1)+3(n-1)+1
3m(n—-1)+1

= dimC(Cn®T),

B(Cn ®T) is a basis. It is easy to show that B(C,,®T) is a 3-fold basis. On
the other hand, Assume that » > 3 and B is a 2-fold basis for C(C,, ® T).
Since the girth of C,,, ® T is 3, we have that

38|
9mn - 9m + 3
mn—-—3m+3
m(n—3)+3

IN

2|E(Cr, ® T)|
8mn — 6m
0

. 0,

IA A A

which implies that n < 2. This is a contradiction. The proof is completed.
The following results are immediate corollaries of the above result, that
is by specializing the tree T into path and star.

Corollary 2.8. (Al and Marougi) Let P, be a path of order n > 3 and
Cm be a cycle of order m > 3. Then b(Cp, ® P,) = 3.

Corollary 2.9. Let S, be a star of order n > 3 and C,, be a cycle of order
m > 3. Then b(Crpr, ® Sp) = 3.
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3 The basis number of strong product of two

cycles.

We now turn our attention to deal with the basis number of the strong
product of two cycles. As we mentioned above Ali and Marougi [3] proved
that 3 < b(Cr, ® Cp) < 4 for each m > 3 and n > 4. We shall prove that
b(Cm®C,) = 3 for each m,n > 3. We set the following three sets of cycles:

Lap = '{EU) = (a,2;)(b, v541)(a, v541)(a, v5)li = 1,2,3,- - ,n - 1}

U {C(") = (a,vn)(b, v1)(a,v1)(a, ”n)}

{AD = (@,95)(a, 0341, )@, 1)li =1,2,3,+-,n =1}

U { A™ = (a,v,)(a,v1)(b, vn)(a, vn)}

S = {59 = (@u1)0,0)bogr) @)l = 1,23, -sm 1)
U {80 = (a,01)(b, va) b, v0)(a,01) }

Aab

Let
Bab = Lab ) Aab U Sob

Lemma 3.1. B, is a linearly independent set of cycles. Moreover, any
linear combination of cycles of B,y is either (a x Cp)U(bx Cy) or contains
at least two edges of {(a,v;)(b,u)|l <jl<n}

Proof. Let Bf;},) = {£D A0) 8D} for each j = 1,2,...,n. Then by
using the same arguments as in Lemma 2.1 we prove that B, = U}‘= 183,)
is linearly independent for each j = 1,2,...n. We now show the second
part of the lemma. Assume that O is a linear combination of cycles of
Bay, say T = {T1,T5,...,Tx}. To this end, either O contains no edges of
{(a,v;)(b,w)|1 < 4,1 < n} or contains only one edge of {(a,v;)(b,u)|1 <
4,1 £ n} or contains at least two edges of {(a,v;)(b,u)|]1 < 4,I < n}.

Case 1. O contains no edges of {(a,v;)(b,v)|1 < j,! < n}. Since £U)
is the only cycle of B,; containing (a,v;)(b,v;+1) and since L, is an edge
pairwise disjoint set of cycles, £U) ¢ T for each 5 = 1,2,...n. Thus,
T consists only of cycles of Az U Spp. Since any linear combination of
Agp (or Sgp) must contain at least one edge of the form (a,v;+1)(b,v;)
for some j, as a result T must consist of cycles of both of A,, and S,,.
Thus, we may assume that T} € Ag, say Ty = AY) for some j. Since
(a,vj+1)(B,v;) € E(AY)) and (a,vj+1)(b,v;) ¢ E(O) and since the only
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cycles of Agp U S, which contain such an edge are AW, 8, as a result
8W e T. Thus, (a,v;)(,v;),(a,v5+1)(b,vi41) € E(AD) & SY)) where @
is the ring sum. Since (a,v4+1)(b,v;+1) ¢ E(O) and AU+ is the only
cycle of A, USgp which contains (@, vj4+1)(b, vj41), it implies that AU+ ¢
T. Thus, (G, ’Uj)(b, 'Uj), (a, ‘Uj+1)(b, 'Uj+2) € E(A(j) @ SU & A(j+1)). Since
(@,vj41)(b, vj+2) ¢ E(O) and the only cycles of Azp U S,p which contain
such an edge are AU+ SG+1 as a result SU+1) € T. By continuing
in this process, we have that AW, SU), AG+D) G+ A() s ¢ T
and (a,v;)(b,v;), (a,21)(b,v1) € B(AD) @ SV) @ AUV @ SUtV ... ®
A @ S, Since (a,v;)(b,v1) ¢ E(O) and the only cycle of Azp U Sap
which contains such an edge is A, it implies that A € T. Hence,
(a,v5)(b, v;), (a,v2) (b, v2) € E(AN ® AN @ W) @ AUt g SUD g ... 0
A @ SM). Since (a,v2)(b,v2) ¢ E(O) and the only cycles of A U
Sa» which contain such an edge are A1), 8 g5 a result S € T. By
continuing in this process we have that A1), sM AM s ¢ T and
so {AM), s A §M)} = T. But it is easy to see that AV ¢ SV @
@AM @ SM = (ax Cp)U (b x Cy).

Case 2. O contains only one edge of {(a,v;)(b,uw)|l < j,I < n}, say
(a,vj,)(b,v1,) for some jo,lp. Then O is subgraph of (a,v;,)(b,v,) U (a x
Cp)U (b x C,). Since the only cycles or edge disjoint union of cycles of
(a,v5,)(b,v,) U (a x Cp)U (b x Cy,) are (a x Cy), (b x Cy,) and (a x Cp)U
(b x Cyp), as a result by Fact 1.1, O must be either (a x Cy) or (b x Cy,) or
(a x Ca)U (b x Cyp). This is contradiction because non of which contains
(@,vj,)(b,v1,). Therefore, this case cannot be happened.

Case 3. O contains at least two cycles of {(a,v;)(b,v)|1 < j,I <n}. Then
the result is done. The proof is completed.

Remark 3.1. (1) If e = (a,v;)(b,v;), then fg,(e) < 3. (2)If e =
(a’ 'l),')(b, 1);'.4.1) or (a) vi-i-l)(bt vi) or (a: vl)(b: 'Un) or (a, vﬂ)(b:vl)x then anb

(e) £2. (3) if e=(a,v:)(a,vi+1) o (a,v1)(a, ¥n), then fB, (e) < 2. (2)
If e = (b,v;)(b,vi+1) or (b,v1)(b,vn), then fg (€)= 1.

We now define the following cycle of Cp, ® Cp:

£ = { (@, v1)(b,v2)(a, va)(b,v4) ... (@, V5n-1)(b,v,)(a,v;) if n is even
" (@,v1)(b,v1)(a,v2)(b,v3)...(a,vn_1)(b,vn)(a,v,) if n is odd

Lemma 3.2. B, = B, — {S™} U {F,} is linearly independent set of
cycles. Moreover, any linear combination of cycles of B}, either contains
at least one edge of the form (a,v;)(b,vi) for some 3,1 or contains only one
copy of C,, in fact of a x C,,.

Proof. By Lemma 3.1, B, ~ {£L(™), A, 8()} is linearly independent.
Since F,, contains (b, v5)(a, v;) which is not in any cycle of Bap—{ L™, A,
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SMY, B,y — {£M, AM) SM} U {F,} is linearly independent. Since .A™)
contains (a, vy )(a, v1) which is not in any cycle of By, — {£™), A™), SM}u
{Fn}, Bap—{L™, SM™}U{F,} is linearly independent. Similarly, since £(™)
contains (a, v, )(b,v1) which is not in any cycle of By — {£™, S™MIU{F,},
B,y — {S™}U{F,} is linearly independent. The second part follows easily
from noting that the edge (b, v1)(b, v») appears in no cycle of B},

Remark 3.2. (1) if e = (a,v1)(b,v2) or (a,v2)(b,v1) or (a,vn)(b,v1) or
(a,v1)(b, vn), then fg: (€) < 2. (2) If e=(a,v:)(b,vis1) or (a,vit1)(b, %)
and not of the above forms, then fgs (e) < 3. (8)If e = (a,v;)(a,vit1) or
(a, ’01)(0:, 'Un): then fB‘ (e) <2 (2) If e = (b 'U,)(b vt+1): then fB‘ (e) =1
(4) If e = (b,v1)(6,vn), then fas,(€) =

Fact 8.1. If G and H are two isomorphic graphs, then b(H) = b(G).

Theorem 3.3. For any two cycles Cp,,Cp, with m,n > 3, we have §(Crr, ®
Cn)=3.
Proof. To prove that b(C,, ® C,) < 3, it suffices to exhibit a 3-fold basis.

We now consider the following cases:
Case 1. m is even (no matter wether n is even or is odd). Define

B(Cm ® Cn) (Um_lBaiat+l) U a.,,.nl U {C}

where

C = (a1, v1)(az,v2)(as, v1)(a4,v2) . . . (@m—1, v1)(am, v2)(ay, v1).

We now use induction on m to show that U 'B,,.., is linearly indepen-
dent. If m = 3, then U7 Ba,a,,, = Baya; UBayas- By Lemma 3.1, each lin-
ear combination of cycles of Ba, e, contains an edge of {(ai, vJ)(ag,vk)ll <
Jik < n}U E( a; x C,) which is not in any linear combination of B,,4,.
Thus, B,,qe, U Baya, is hnearly independent. Assume m > 4 and it is true
for less than n. Now, U7'Ba.a,,, = (U2 Bosas,y) U B, _ya... Thus, by
the inductive step and Lemma 3.1, both of U™{%B,.,,,, and B,,,_,q,. are
linearly independent. Similarly, by Lemma 3.1, any linear combination of
cyclesof B, _,.,. contains an edge of {(am_l,vj)(am,vk)ll <4k <njUE(
am x Cy) which is not in any cycle of UR72B,,q, +1- Thus URT1B, .., is
linearly independent. Now, by Lemma 3.1 and noting that

E(e; xCyp), ifj=i+1,
E(Baiaiy) N E(Boja;,,) =4 Elaix Cp), ifi=j+1,
&, otherwise,

we have that any linear combinations of cycles of U ! B,,q,,, must contain
either at least two edges of the form {(a;,v;)(ait+1, v;)ll < 3,1 < n} for some
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1 <i<m—1 which are not in B;_, or contain at least two copies of C,,.
On the other hand, by Lemma 3.2, any linear combination of cycles of
B; ,, either contains an edge of {(a1,v;)(am,vk)|1 < j,k <n} which is
not in any cycle of U B,,q, +1 O contains only one copy of C,, in fact
am X Cn. Thus any linear comblnatlon of B; ,, cannot be written as a
linear combination of cycles of Ul ' Ba,a,,, . Hence, (UR'B,,q, aUB; 4
is linearly 1ndependent We now show that C is 1ndependent of cycles of
(U1 Basaiy,) UBL,_q,- Assume that C is a linear combination modulo 2
of cycles of (U"“ a:0s +,) UB; , . By asimilar argument as in Theorem
2.7,

C= f:Di (mod 2)

i=1

where D; is a linear combination of By,,,,, foreachi=1,2,...,m—1 and
D,, is a linear combination of B; , . Thus,

Dy=C+)_ D; (mod 2)

i=2
So,
E(D) = E(Ce®D;®---®D,)
g E(Balﬂz) n (E(Ut—23¢3o0;+|) U (E (- Sy 2 ) U E(C)) .
But

E(Bataz) n (E(U —2BO-O;+1) U E( omal) U E(C))
C E(am x Cp)U E(a1 x P)U {(a1,v1)(az,v2)}.

This contradicts Lemma 3.1. We now show that B(Cp, ® C,) is a basis.
Note that

IBG"G.'“I = |B;,,.a,,| =3n
Thus,
BCm®Ca)l = 3 IBaacys| + 1B, 0,1 +1
3mn+1
= dimC(Cn @ Cy).
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Therefore, B(Crr, ® Cy,) is a basis for C(Crn ® Cy). Let e € E(Cn ® Cy).
(1) If e = (as,v1)(ai41,v2) and i is odd, or (a:,v2)(ai+1,v1) and i is
even, then fp(c.ec.) = [Bajayy, (e) + fiey(e) < 2+4+1=3. (2) If
e = (a1,1)(am, v2), then fyc.ec,) = fB:,.. (€) + ficy(e) <2+1=3.
(3) If e = (i, v5)(@i+1,%5+1) OF (@i, 541)(@i41,9;5) OF (@i, v1)(ait1,vm) OF
(ai,vm)(@i+1,v1) and not of the above form, then fg(c,.@cn) = fBaayy, (e) <
3. (4) Ife= (al,vl)(am,vz), then fB(Cm®C,.) = fB‘ (e) + f{c}(e) <

2+1=23. (5) If e = (ai,vj){ai,vj41) or (a.-,vl)(a.g,v:,) and i # 1,n,
then fgc,.ec,) = fga‘._ln‘(e) + fsai“‘“ (e) <241 =3 (6)Ife=
(alrvj)(alavj+l) or (01,'01)(01,1)';), then fB(CmGCn) = fBﬂl“? (e)+fB;m°1 (6)
<2+4+1=3. (7) If e = (am,?;)(@m, Vj+1) OF (@m,v1)(am,vn) and i 3 1,
then fgcneca) = fBo,_am(€) + fB;,.,(6) S 2+1=3. (§) Ife =
(a1,91)(am,v2), then fec.ec.) = fB:, ., (€) + ficy(€) < 2+1 = 3. (9)

Ife = (a'-,vj)(a,-ﬂ,v_.,-), then fB(C.,.,@C,.) = fsu‘_‘oi(e) < 3 (9) ife =
(a1,7;)(am,v;), then fgc,.@c,) = f,gzm1 (e) < 3. Therefore, b(Cr®C,) <
3

Case 2. m is odd. Then we have two subcases to consider.

Subcase 1. n is even. Since C,, ® C, is isomorphic to C,, ® C,, by
Fact 3.1 and Case 1, b(C,, ® C,,) < 3.

Subcase 2. n is odd. Define

B(Crm ® Cp) = (U1 Bgi0,4, ) U B, U{T}

amay

where

T = (a1,v1)(az,v2)(a3,v1)(a4,22)...(am-2,v1)(@m-1,v2)(am—2,v3)
(am—l, 'U4) see (am—21 vn—2)(am—1,'vn—1)(am’ vn)'
By using the same arguments as in Case 1. We prove that B(C, ® C,,) is
a 3-fold basis. And so b(C, ® Cy,) < 3.

To show that b(C,, ® C,,) > 3 for any m,n > 3, we argue more or less as
in the arguments of Theorem 2.7.
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