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Abstract

A (v,k, ) covering design is a set of b blocks of size k such that
each pair of points occurs in at least A blocks, and the covering
number C(v, k, ) is the minimum value of b in any (v, k, A) covering
design. For k = 5 and v even, there are 24 open cases with 2 < A <
21, each of which is the start of an open series for A, A4-20, A+40,.. ..
In this article we solve 22 of these cases with A < 21, leaving open
(v,5,)\) = (44,5,13) and (44,5,17) (and the series initiated for the
former).
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1 Introduction

A t-(v,k, \) covering design, (V,B), is a set of blocks, B, of uniform size
k with the property that every ¢-tuple of the point set, V, occurs in at
least A blocks. We will only consider 2-(v,5,A) covers with A > 1 here,
i.e., pair covers by blocks of size 5, and restrict our study to the case v
even. Mills and Mullin [14] dealt with v odd, apart from 4 open cases
(see Theorem 1.4). We wish to establish the value of the covering number,
C\(v, 5, 2), which is the number of blocks in the smallest 2-(v, 5, A) covering
design. This number satisfies the Schdnheim bound [18]:

C(v, k,2) > La(v, k,2) = [% [’\g’_‘ll)” .

However, it is known that the Schonheim bound cannot always be at-
tained.

Theorem 1.1 (Hanani [9]) [fA(v—1)=0 (mod (k—1)) and Mw(v—1) =
(k —1)? (mod k(k — 1)), then Cx(v,k,2) > La(v,k,2) +1.

Definition 1.2 Let By(v,k,2) = Ly(v,k,2) + 1 in the cases that the hy-
potheses of Theorem 1.1 are satisfied, and Bx(v, k,2) = La(v,k,2) other-
wise.

Table 1: Cases where By (v,k,2) = Ly(v, k,2) +1

v (mod 20)
0,1,5,6, 10, 11, 15, 16 never
2,4,12, 14 A =8 (mod 20)
3 A=6 (mod 10)
7,19 A =8 (mod 10)
8, 18 A =16 (mod 20)
9,17 A=3 (mod 5)
13 A=1 (mod 5)

In most cases, it is known that Cy(v,5,2) = Bx(v,5,2). This is proba-
bly true of all (», A\) with the definite exception of a handful of small cases
listed in Table 2. However, in spite of much work by a number of authors
extending over at least thirty years, the spectrum is still not fully deter-
mined. For A = 1, the earlier work [11, 13, 15, 16] completed the cases
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v = 2,3 (mod 4) and limited v = 1 (mod 4). Recent work [1, 2, 6] has
limited v = 0 (mod 4) and improved v =1 (mod 4). We summarize the
current status in Theorem 1.3 for A =1, and in Theorem 1.4 for A > 1.

Table 2: Cases where C(v, k,2) > Bi(v, k, 2) is known

v A Cx(v,5,2)
9,15 1.2 Ba(v,5,2) + 1
12,2024 1 By(v,5,2) +1
13 1 Bx(13,5,2)+ 1= Ly(13,5,2) + 2
13 2 Bx(13,5,2) +1
1617 1 Bx(v,5,2) +2
29 1 B (29,5,2) + 1 or +2

Theorem 1.8 For A =1, Cy\(v,5,2) = Bx(v,5,2), except possibly when:

a v=15;

b. v = 0 (mod 4) and v = [12-24], [40-52], [96-108], 124, [132-144],
(176-184), 220, 228, 252, 260, 280, 284, 340, 344;

c. v=9,17 (mod 20) and v = [9-89], 109, [129-189], 209, [229-289),
309, [329-377], 429;

d. v=13 (mod 20) and v € {13, 53, 73}.
Theorem 1.4 ([5]) For A > 1, Cy\(v,5,2) = Bx(v,5,2), ezxcept possibly
when.

a. A=2andv € {9, 13, 15, 53, 63, 73, 83);

b. A=3 (mod 20) and v € {18, 26, 122, 126, 138, 142, 146, 158, 162,
178, 186, 218, 226, 278};

c. A=5 (mod 20) and v € {28, 56};

d. A=7 (mod 20) and v € {22, 142, 162};
e. A=9 (mod 20) and v € {28, 56};

S A=13 (mod 20) and v = 44;

g. A=17 (mod 20) and v € {28, 44}.
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Our main objective is to improve Theorem 1.4 and so establish the main
result of this article. The result for A = 3 is established in Theorem 2.10
(using Examples 2.8-2.9 and one design in the appendix); the result for
A =T is established in Theorem 2.12 (using Example 2.11 and one design
in the appendix); the result for v = 28 is given by three designs in the
appendix; the result for v = 44 is given in Remark 2.7; and the result for
v = 56 is given in Corollary 2.5.

Theorem 1.5 For A > 1, Cy\(v,5,2) = Ba(v,5,2), except possibly when:

a. A=2 andv € {9, 13, 15, 53, 63, 73, 83};
b. A=13 (mod 20) and v = 44;
c. A=17 and v = 44.

2 Constructions

Some of the terminology we will use is quite standard in design theory;
see [7]. For clarification of our notation (specifically how we indicate the
standard parameters), we refer to pairwise balanced designs (PBDs), (in-
cluding BIBDs), as (v, K, A) designs, where K is a list of block sizes that
possibly occur. A group divisible design is referred to as a {K,\) GDD of
group type ¢3' ...t9 if there are g; groups of size ¢; and transversal designs
of order n as TD, (k,n), dropping the subscript when A = 1; note that a
TD.(k,n) is a (k, A) GDD of group type n*. The prefix “R” will denote a
resolvable design.

Theorem 2.1 (Hanani [9]) The necessary conditions for the existence
of a (v,k,\) BIBD are that \(v — 1) =0 (mod (k—1)), (v —-1) =0
(mod k(k—1)) and v > k. These conditions are sufficient when k = 5 with
the definite exception of (v,k,A) = (15,5,2).

Theorem 2.2 ([20]) A 5-GDD of type g* exists when u > 5 and either:

a. g=0 (mod 20); or
b. g=0 (mod 4) and v =0,1 (mod 5).
Theorem 2.3 ([2, 6, 8, 17, 19]) A 5-GDD of type g°m! exzists if g =0

(mod 4), m = 0 (mod 4) and m < 4g/3, with the possible exceptions of
(g,m) = (12,4) and (12,8).
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Next we have a couple of arithmetic results.

Lemma 2.4 If a (v,k,\) BIBD exists, then Cy(v,k,2) = La(v,k,2) and
LA+p(v’ k,2) = Ly(v,k,2) + L,‘(v, k,2).

Corollary 2.5 C,(56,5,2) = Bx(56,5,2) for all A > 1.

Proof: In [1], it was established that C5(56,5,2) = B)(56,5,2) for A = 1,
and since a (56, 5,4) BIBD exists, the result for A = 5 and 9 then follows
by Lemma 2.4. n

Remark 2.8 Since a (v,5,20) BIBD exists for all v > 5, if we have
Ci(v,k,2) = By(v,5,2) with 2 < A < 21, then we have C,(v,k,2) =
B,(v,5,2) for all g = X (mod 20) and p > ), by repeatedly adjoining
(v, 5,20) BIBDs to the minimum (v, k, A) cover.

Remark 2.7 One possible construction of a t-(v, k, A + pu) covering de-
sign is to take a ¢-(v,k,\) covering design and adjoin the blocks of a
t-(v, k,p) covering design. In particular, if Ca(v,k,2) = La(v,k,2) for
a = )Xand a = u, and Lyi,u(v,k,2) = La(v,k,2) + Lu(v,k,2), then
Ca(v,k,2) = La(v, k, 2) for & = A+ p. For the cases we leave open, we have
Lxiu(v,5,2) = Ly(v,5,2) + Ly(v,5,2) for (v, A\, 1) = (13 (mod 20),1,1),
(44,1,16), (44,9,8) and (44,13,4). Theorem 1.1 increases the Schonheim
bound when (v,A) = (13 (mod 20),1) and (44, 8) where X is computed
modulo 20. We do not know C,(44,5,2) for A = 1 or A = 13 (mod 20),
but we do know Cy;(44,5,2) = L21(44,5,2) and Cx(44,5,2) = Lx(44,5,2)
for A = 16 (mod 20), so Cx(44,5,2) = Lx(44,5,2) for A = 17 (mod 20)
with A > 37.

We next look at A = 3.

Example 2.8 A 2-(22,5,3) incomplete covering missing a 2-(2, 5, 3) cov-
ering on Zy U {00,002} :

(0,2,3,12,19), (0,1,6,8,12), (1,12,14,18),
(0,5,10,15),  (0,5,10,15).

The first three orbits are full, while the last two are of length 5. The last
orbit gives a parallel class on the finite points. For the other 5 parallel
classes, we note the orbit of the third and fourth blocks is given by adding
0,1,...,4 to the following parallel class:
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(1,12,14,18), (6,17,19,3), (11,2,4,8),
(16,7,9,13), (0,5,10,15).

We add infinite points to the parallel classes on the short blocks and obtain
our incomplete design. The missing subdesign is on the infinite points.

Example 2.9 An 2-(26,5,3) incomplete cover missing a 2-(6,5,3) cover
is constructed on ({a,b,c,d} x Zg)U {o0; : 1 =0,1,...,5} and is given in
three parts.

For the first part, we give a 3-resolvable 4GDD of type 2!°. Each
row forms a 3-resolution set when developed over Zs. The missing pairs
are generated by (a0, b0) and (c0, d0). This design has an automorphism of
order 720, and can be identified with Design 5 in [10] by labelling our points
a0, b0, c0, d0 with their 0, 10, 2,12, and noting we use their automorphism
B to develop the design.

(a0, a4,c0,c3), (40,c2,d1,d3), (a0, b2,b3,d2),
(a0,b1,b4,c2), (b0, c0,c4,d2), (al,a2,do,dl).

For the second part, we considered using Lamken et al.’s RC(20,4) [12],
but the excess graph of their design is three triangles and two squares, all
disjoint, and this has no 1-factor, so we give a (20,4,1) cover which has
three 2-resolution sets (generated by the first three pairs of base blocks)
and a parallel class generated by the last base block. The repeated pairs
are generated by (a0, b0), (a0, b2) and (c0, d0), (<0, d2).

(a0,a1,b0,b2), (c0,cl,d0,dl), (a0,a2,c0,d3),
(b0,b1,c0,d2), (a0,b3,cl,c4), (a0,b2,d0,d2),
(a0, 50, c2, d4).

The third part of our design is an RTD(4,5) with the groups filled in.

The combined design has 90 4-blocks which can be partitioned into 6
3-resolution sets of 15 blocks, and a parallel class of 4 5-blocks. We add an
infinite point to each 3-resolution set for our IC.

We have a (6, 5, 3) cover with 5 blocks (given by taking a (5,4, 3) BIBD,
and augmenting each block with an extra point), and adjoining this cover
to the IC constructed above gives a (26,5, 3) cover.

Theorem 2.10 C3(v,5,2) = B3(v,5,2) for allv > 5.

216



Proof: For v odd, this was given by [4, 14] and, for v = 0 (mod 4), by [3].
Also, with our constructions for v = 18 and » = 26 in the Appendix and
Example 2.9, designs for all v < 100 are known, see [5].

For the values v > 100, we can use our new designs and the previously
known designs to give a more uniform presentation than was possible for
Assaf and Singh [5]. For v = 2,6 (mod 20), withv = 20n+eand e =
2, 6, we can take a (5,3) GDD of type 20" and, using e extra points,
fill n — 1 groups with a (20 + ¢, 5,3) incomplete cover missing an (e, 5, 3)
subcover, then fill the final group with a (20 + ¢, 5, 3) cover. For v = 10
(mod 20), we follow Assaf and Singh and fill a (5,3) GDD of type 10%/10,
For v = 14,18 (mod 20), we can take a (5,3) GDD of type (20n)%u! with
u < 100 and v = 8,12 (mod 20) and, using 6 extra points, fill 5 groups
with a (20n + 6,5, 3) incomplete cover missing a (6,5,3) subcover, then
the final group with a (u + 6,5,3) cover. Assaf and Singh [5, Lemma 5.1]
note that the incomplete cover exists for 2 < n < 4, (as well as for 38 and
58 points) and we have shown existence for all the other values (noting
our construction above always gives a (20n + 6, 5, 3) cover with a (6, 5, 3)
subcover). The required GDD is from Theorem 2.3, but this fails to give
us constructions for 134 < v < 198, 274 < v £ 298 and 394 < » < 398.
However, Theorem 2.3 does give us GDDs of types 32°m! and 525m! for
m = u and m = 204w, which deals with 174 < v < 198 and 274 < v < 298,
and Hanani gives (6,3) GDDs of types 57 and 5% (see [9, Lemma 4.22)),
and we can also get a {5,6} GDD of type 5!7(10 + u/4)! by removing a
parallel class of an (85, 5, 1) RBIBD and augmenting 12 or 13 other parallel
classes with a new point. Truncating one group of the (6,3) GDDs to size
u/4 and giving all points of these and the augmented RBIBD a weight of
4 in Wilson’s fundamental construction gives (5,3) GDDs of types 20™u!
for m = 6, 7, and of types 2017(40+u)!. We can fill all but the exceptional
group of these GDDs with an incomplete cover missing a (6, 5, 3) subcover
using 6 extra points, and then fill the final group with a known cover to get
our result. [ ]

Example 2.11 A 2-(22,5, 7) incomplete covering missing a 2-(2,5, 7) cov-
ering on Iz U {001,002} : First we construct a (22,5,4) PBD missing a
(2,5,4) subdesign, by taking a (5,1) GDD of type 4% with 5 groups span-
ning Iy and the last group on {ai, a2, as,a4}. Identify the points a; with
009, and form a block on each other group with co;, then form a (21,5, 3)
BIBD on I3pU{oo; }. Finally adjoin a 2-(22, 5, 3) incomplete cover missing a
2-(2, 5, 3) subcover given in Example 2.8. (We also remark that a complete
2-(22,5,7) cover is given in the appendix.)

Theorem 2.12 C7(v,5,2) = B+(v,5,2) for all v > 5.
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Proof: The only cases we need deal with, by [5, 14], are v = 22 which is
solved in the Appendix, and some v = 2 (mod 20) with v > 100, and we
can write these as v = 20n + 2 with n > 5, take a GDD of type 20™ and,
using 2 extra points, fill n — 1 groups with a (22,5,7) incomplete cover
missing an (2,5, 7) subcover given in Example 2.11, then fill the final group
with a (22, 5,7) cover. [ ]
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Appendix

The appendix contains the covers for (18,5, 3), (22,5, 7), (28,5, 5), (28, 5,9)
and (28,5,17).

Let X(v) = {1,2,...,v}. Let X(®)(v) be the set of all k-subsets of X (v).
We use the following compressed notation. Suppose the k-subsets of X (v)
are arranged in lexicographical order (for example, let v = 4, k = 3, then
the order is 123, 124, 134, 234). We present the blocks of a design by a se-
quence a1, az, . . ., @, such that the n-th block of the design is the (E:;l a;)-
th k-set from the lexicographical arrangement of X(¥)(v), where 1 <n < b.

An (18,5, 3) cover:
46, 9, 58, 185, 475, 74, 190, 281, 35, 204, 44, 149, 18, 365, 452, 283, 278,
119, 490, 38, 160, 113, 101, 129, 157, 48, 164, 21, 121, 611, 141, 335, 25,
232, 243, 211, 92, 345, 124, 231, 337, 71, 8, 68, 293, 309, 14.
The excess pairs are (1,7) fori = 2,3,...,6 and (§,j+6) forj = 7,8,...,12.

219



A (22,5,7) cover:

512, 39, 82, 103, 21, 71, 94, 189, 186, 132, 176, 9, 121, 27, 38, 36, 383, 38,
2, 260, 74, 37, 109, 65, 212, 24, 204, 170, 158, 185, 430, 198, 248, 797, 126,
52, 239, 63, 139, 113, 18, 200, 107, 370, 93, 47, 96, 84, 241, 251, 60, 314,
151, 41, 32, 596, 63, 220, 152, 108, 365, 7, 72, 62, 74, 138, 137, 586, 17, 164,
8, 329, 165, 466, 573, 16, 164, 284, 54, 351, 144, 6, 514, 63, 84, 48, 280, 71,
43, 208, 185, 256, 529, 268, 176, 158, 60, 41, 335, 231, 1, 269, 48, 164, 36,
168, 54, 229, 63, 297, 8, 275, 150, 382, 195, 146, 23, 167, 7, 109, 111, 135,
221, 98, 178, 51, 2, 70, 193, 142, 67, 78, 345, 312, 25, 180, 48, 15, 109, 32,
179, 78, 91, 210, 63, 151, 279, 153, 58, 242, 194, 154, 153, 301, 236, 319,
172, 92, 282, 132, 36, 64, 250.

The excess pairs are (1,4) fori =2,3,...,6 and (4,j+8) for j = 7,8, ...,14.

A (28,5, 5) cover:

131, 298, 314, 242, 1307, 99, 380, 470, 296, 523, 100, 843, 404, 262, 339,
1340, 30, 280, 670, 446, 76, 184, 1040, 2450, 170, 222, 363, 616, 353, 438,
736, 381, 931, 162, 465, 483, 44, 1766, 24, 908, 44, 336, 633, 538, 175, 1564,
237, 186, 453, 758, 406, 53, 241, 620, 319, 869, 463, 263, 986, 912, 845, 377,
48, 471, 774, 259, 766, 274, 150, 4, 378, 1382, 479, 1707, 674, 749, 87, 62,
854, 679, 117, 649, 95, 142, 750, 454, 209, 952, 1511, 136, 17, 152, 618, 40,
52, 174, 7, 866, 46, 899, 1328, 529, 2035, 266, 390, 655, 132, 462, 1655, 65,
202, 584, 659, 413, 195, 1596, 153, 600, 667, 214, 109, 302, 342, 314, 726,
702, 719, 660, 417, 157, 945, 1227, 1392, 118, 93, 697, 60, 1003, 3, 106, 199,
951, 839, 216, 96, 247, 267, 1329, 8, 899, 278, 163, 472, 2206, 334, 412, 646,
446, 651, 165, 154, 484, 26, 712, 99, 184, 556, 41, 1372, 276, 163, 427, 346,
160, 609, 976, 73, 293, 301, 1338, 399, 533, 1017, 116, 811, 156, 1367, 865,
178, 409, 302.

The excess pairs are (1,1) for i = 2,3,...,6; (2,1) for i = 7,8,9,10; (7,7)
for i=11,12,13,14, and (5,7 + 7) for j = 15,186, ...,21.

A (28,5,9) cover:
22, 96, 139, 98, 267, 217, 646, 418, 143, 446, 77, 182, 112, 199, 199, 260,
452, 807, 341, 158, 44, 639, 49, 444, 536, 295, 345, 523, 238, 90, 43, 418,
166, 130, 407, 674, 285, 292, 35, 215, 662, 164, 132, 161, 50, 354, 120, 8,
566, 69, 1203, 310, 386, 22, 120, 422, 809, 40, 157, 128, 73, 315, 504, 33,
102, 507, 266, 296, 1127, 280, 36, 375, 479, 13, 26, 588, 338, 33, 847, 283,
112, 35, 25, 298, 587, 204, 9, 1153, 84, 326, 81, 91, 245, 491, 624, 42, 351,
10, 298, 189, 273, 9, 307, 304, 230, 122, 72, 83, 429, 231, 1282, 35, 42, 677,
651, 116, 86, 21, 496, 439, 50, 705, 184, 496, 208, 650, 29, 320, 114, 38, 365,
544, 368, 71, 131, 84, 227, 131, 353, 68, 111, 260, 382, 24, 104, 181, 194,
379, 366, 251, 110, 1216, 479, 71, 52, 193, 521, 149, 292, 324, 88, 247, 24,
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365, 543, 120, 312, 65, 153, 23, 1108, 128, 102, 420, 77, 289, 1213, 74, 33,
823, 261, 147, 13, 558, 90, 183, 301, 224, 55, 136, 413, 238, 118, 29, 710,
208, 433, 675, 330, 44, 168, 338, 245, 237, 516, 62, 251, 1033, 103, 61, 718,
271, 222, 109, 490, 90, 88, 265, 274, 23, 21, 528, 1076, 38, 61, 16, 861, 73,
129, 1071, 253, 216, 376, 304, 346, 135, 25, 145, 982, 229, 462, 40, 548, 192,
114, 493, 134, 147, 401, 48, 1, 68, 576, 290, 269, 244, 52, 256, 113, 718, 275,
691, 165, 358, 438, 215, 302, 10, 569, 8, 259, 280, 446, 147, 210, 329, 155,
65, 762, 115, 8, 236, 245, 5, 606, 301, 309, 215, 246, 596, 657, 102, 163, 35,
1096, 91, 241, 374, 761, 114, 53, 79, 444, 181, 23, 472, 319, 137, 432, 531,
78, 123, 70, 400, 462, 358, 378, 134, 288, 257, 526, 587, 169, 207, 184, 124,
169, 85, 95, 78, 334, 109, 467, 380, 157, 610, 172, 672, 431, 60, 194, 57.
The excess pairs are (1,2) twice, (1,%) for i = 3,4,5, (2,7) for i = 6,7,8,
and (4,7 + 10) for 4 =9,10,...,18.

A (28,5,17) cover:
184, 271, 469, 69, 77, 90, 67, 17, 31, 368, 73, 3, 262, 149, 227, 202, 10, 275,
22, 13, 114, 5, 93, 111, 189, 248, 45, 350, 44, 291, 8, 101, 132, 305, 210, 37,
354, 35, 57, 290, 84, 366, 245, 64, 19, 101, 74, 158, 351, 155, 16, 292, 213,
7, 98, 101, 273, 48, 303, 63, 17, 28, 251, 326, 47, 94, 65, 112, 515, 118, 51,
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