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For ease of relerence, we recall here the definition of a balanced array of
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Abstract

In this paper we obtain some necessary conditions for the exis-
tence of balanced arrays (B-arrays) with two symbols and having
strength seven. We then describe how these conditions involving the
parameters of the array can be used to obtain an upper bound on
the constraints of such arrays, and give some illustrative examples to
this effect.

Introduction and Preliminaries

strength ¢ and having two symbols.

Definition 1.1. A balanced array (B-array) T with m rows(constraints),
N columns (runs, treatment combinations), of strength ¢ (¢t < m), and with
two symbols( say, 0 and 1) is a matrix of size {(m x N) such that in every
(t x N) sub-matrix T* of T, every ¢ rowed column vector o of weight ¢
(0 £ i £ ¢; the weight of @ means the number of non-zero elements in it)

appears with the same frequency (say) u;. The vector y’' = (uo, g1, -+ -
is called the index set of T.

Remark: It is quite obvious that N = 3°}_, (‘) Hi

i

We can easily extend the above definition to B-arrays with s symbols.

In this paper, we restrict ourselves to arrays with ¢t = 7.

JCMCC 58 (2006), pp. 33-39



Definition 1.2. An orthogonal array (O array) is a B-array for which p; =
u for each i. Thus, N here equals p2¢.

Thus, O-arrays form a subset of B-arrays. These arrays have been ex-
tensively used to construct symmetrical as well as asymmetrical fractional
factorial designs. B-arrays with different values of t give rise to factorial
designs of different resolutions. For example a B array with t=7 will give us
a balanced factorial design of resolution VIII. A design of resolution VIII
will allow us to estimate all the effects up to and including three factor in-
teractions in the presence of four factor interactions under the assumption
that higher order interactions are negligible. B-arrays, a generalization of
O-arrays, are also related to other combinatorial structures such as bal-
anced incomplete block (BIB) designs, rectangular designs, group divisible
designs, nested BIB designs, etc.. Thus the existence and construction of
such arrays is very important from the point of view of applications as
well as to study the combinatorial entities. To gain further insight into
the importance of B-arrays to combinatorics and to statistical design of
experiments, the interested readers may consult the list of references (by
no means an exhaustive list) at the end of the paper, and also further ref-
erences listed therein.

The problem of constructing a B-array for a given m(m > 8) and an ar-
bitrary index set p’ = (o, p1,- -+, p7) is clearly a nontrivial problem. To
find the maximum value of m for a given u’ is an important problem both
in design theory and in combinatorics. Such problems for B-arrays and
O-arrays have been discussed, among others, by Chopra and/or Dios [6,7],
Hedayat et.al [8], Rafter and Seiden [13], Rao (14,15], Saha et.al [17], Sei-
dan and Zemach [18], Yamammoto et.al [21], etc..

In this paper we derive some inequalities involving the parameters m and
u' for B-arrays with t=7. For a B-array to exist, these incqualities must be
satisfied by the given values of m and #'. 1 we obtain a contradiction in
at least one such condition, then that B-array will not exist. On the other
hand, the B-array may or may not exist if all the inequalities are satisfied.
For a given u/, we indicate the use of these inequalities to obtain an upper
bound on the number of constraints m.

2 Main Results with Discussion

The following results can be easily derived..

Lemma 2.1. A B-urray with m = t = 7 and an arbilrary indez set p'
always exists.
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Lemma 2.2. A B-array T with p’ = (uo, 1, ... ,u7) is also of strength k
0<k<T)

Note: Considered as an array of strength k, let A(j, k) denote the j-th

element (j = 0,1,2,...,k) of T. Clearly, A(j, k) = S7—F (7 S k pivye It

is quite clear that A(j, k) are merely linear functions of the u;’s, and can
be easily calculated once we know pg,u1, ..., ete. For example, A(2,4) =

3
2?:0 (1) Pive = po + 3us + 3pq + ps.

Lemma 2.3. Consider a B-array T wilh index sel ' and m rows. Let
z;j(0 € j < m) be the number of columns of weight j in T, Then the
following results are true:

Z(Cj = N
meA(k, k) + ) a(l, k- 1)M, 2.1)

2z
=1

where mg=m(m—-1)...(m—-k+1),andk=1,2,...,7.

k—1

Remark: Results in (2.1) express the moments of the column weights in
terms of the parameters of the array T. In fact, the R.H.S. of each is
merely a polynomial function in m with coefficient function of the y;’s. To
derive (2.1), one has merely to count the number of vectors of weight k
in two ways (through rows and columns) by considering T as an array of
strength k (k=1,2,...,7).

Note: For ease in computation we next provide the values of various
coefficients in (2.1)

i—k
and of a{l,k — 1) with!{=1,2,... ,k~1,and k =1,2,...,7 arc given by,
0; 1; 3, -2; 6, -11, 6; 10, -33 , 30, -24; 15, -85, 225, -274, 120; and 21, -175,
735, -1624, 1764, -720.

Theorem 2.1. Consider a B-array T with m rows and index: sel y'. For
T to erist, the following results must be salisfied:-

(a) ME < M:Ms
(b) MZ < MMs (2.2)

We obtain the values of A(k, k),k=1,2,...,7, by using 2;’__,: (7 - k) i,

Proof: We make use of the Cauchy’s inequality which is

(Z agbk)? < Z a} Z b
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Where (aj,az,... ,an) and (b1, bz, ... , bs) are sequences of reals. We set
ar =7 ';',/'z:_.,’, and by = 3 %,/z_j in the Cauchy’s inequality to obtain

m

m m
OEE DD DL

3=0

IA

ie., Mg MzMs which is (a) above
To obtain (b), we use a, = j’z‘\/:?_,,-’, and by = j%\/f}.

Theorem 2.2. For a B-array T with m rows and index set y'. For T to
exist, the following results must be salisfied:-

(a) M: < M§M5M7
(b) M < MM; (2.3)

Proof: We use the following classical inequality to obtain (2.3)

O (arbeek)) <> ak > B (D k)’
Set ax =j§ Y=; and by =j%\4/x_j and ¢, = j/%; for (a);
and set ag = j1 Yz and b = it YZ; and ci = j’}\/x_j to obtain (b).

Theorem 2.3. For an m-rowed B-array T with index set p' to exist, we
must have the following:

(¢) M3 < MM
(b) Mg < MsMj (2.4)

Proof: To derive (2.4), we use the Holder Inequality:

11 1
For p > 1 with 2 + 1 =1, we have Za}c’b; < (Zak)%(z:bk)s

We pick p = 3; thus < = % and the above is

Y afbf < (e b
which gives (Z aébé ¥ < Zak(z bi)?
To obtain (a) we set ax = jz;, by = j'z;, we get

O Pz < DY ixs)

ME < MME

1
q
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To obtain (b) above, weset p =4, ¢ =3

Qe (X b
Zak(z be)®

Set ax = j3z;, by = jz;, and we obtain (b)

2

o T A
o
xat
IA

...
®
™
)
LYo
o=
> e
N
o
IA

Theorem 2.4. For a B-array T with m rows and indez sel u'. For T to
exist, the following resulls musl be satisfied:-

(M) + 3Ma + 6Ms + TMy + 6Ms5 + 3Ms + M7)3
< M§+Mj+ M3 (2.3.1)

Proof: Here we use Minkowski’s inequality:
(Z(a;c + b + )PP < (Z aZ)?‘? + (Z bZ)é + (Z cﬁ)'#, where p > 1.

. p L) L .4 i .2 1
We pick here p = 3, and set ax = j3z}, b = Jizi, and ¢k = j3z}, and
then

Qi +35+ 52 < O gz)d + Qi) + (3 57z

After some simplification, we get the desired result,

A computer program was prepared involving m, p/, and ¢ = 7. If we
are given m and p', we substitute these values in (2.2)-(2.4). If any one
condition is contradicted, then T does not exists for that = and p. We
must caution that these are merely necessary conditions, and even if all are
satisfied that does not mean that T will exist. These conditions can also
be used to obtain the maz(m) for a given p’. For the sake of illustration,
we provide below some values of p and list the maz(m) for each by using
the conditions (2.2)-(2.4) B

Examplel. Select M < M7 Ms

a) Consider the B-array (0,1,1,0,1,1,0,0) This array contradicts the
above inequality for 7n = 9. (2.291863F + 12 should be less than
2.270575L + 12). Hence, we require m < 8.

b) Consider (0,1,2,0,0,2,1,0). This array contradicts the above in-
equality for mn = 9. (1.241283/% + 13 should be less than 1.22991F +
13).

Hence, we require m < 8.
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¢) Consider (1,1,0,0,0,0,1,1). Again we contradict the above inequal-
ity for m = 9. (3.341087 £ + 12 should be less than 3.323769F + 12).
Hence we require m < 8.

Example2. Sclect MZ < M7 M3

a) Consider (1,0,1,0,1,0,1,0). We contradict the above inequality for
m = 19. (6.017366F + 13 should be less than 6.007429F + 13).
Hence, we require m < 18.

b) Consider (1,1,1,1,0,0,0,0). We contradict the above inequality for
m = 9. (3.716413F + 08 should be less than 3.578778E + 08).
IHence, m < 8.
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