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Abstract

Groups provide the mathematical language for exact symmetry.
Applications in biology and other ficlds are now raising the problem
of developing a rigorous theory of approximate symmetry. In this
paper, it is shown how approximate symmetry is determined by a
quasigroup.

1 Introduction

Exact symmetry is modelled mathematically by group structures. Let P
be a subgroup of a group @. Then @ acts on the homogeneous space

P\Q={Pz|z€Q} (1)
of cosets of P by permutations
q:P\Q— P\Q; Pz Pzq (2)

for elements ¢ of Q. For example, the symmetry of a square is described
by the action of the 8-clement dihedral group

Q=(p7|p=1=(pr)?=1)

on the homogeneous space given as above by the 2-element subgroup P =
(r|72=1).

In the real world, symmetry is rarely exact. Usually, symmetries are
approximate, like the approximate bilateral symmetry of a face or most
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animals’ anatomy. Even the rotational symmetry of an engine is only ap-
proximate. Although the engine may appear to have returned to its initial
state after one or two rotations (for 4-cycle engines), some inevitable wear
takes place during the rotation. Unfortunately, there does not yet seem to
be a good general mathematical theory of approximate symmetry capable
of mirroring the success of group theory in dealing with exact symmetry.
As Rosen [4, p. 127] states:

Since the general theory of approximate symmetry is not very
well developed[,} I do not think it worthwhile to go into many
details.

Attempting to strike a more positive note, Rosen continues:

It suffices to state that it is possible to define approximate sym-
metry groups for state spaces equipped with metrics, and it is
possible to define a measure of goodness of approximation for
each approximate symmetry group.

Here, he uses the term “metric” to denote what mathematicians usually call
a pseudometric, i.e. he allows distinct points of the state space to have zero
distance between them. However, Petitjean [3, p. 294] has pointed out the
problems arising from the use of a pseudometric rather than a metric. Rosen
gives no reference for his definitions of “approximate symmetry group” or
“goodness of approximation,” but the concept of syntopy introduced by
Maruani and Mezey [1] may be taken as typical.

The various shortcomings of the currently available qualitative models
motivate the initiation of a rigorous mathematical theory of approximate
symmetry, understood as a property of complex systems that are charac-
terized by the presence of various different parts and levels. Approximate
symmetry is then defined as exact symmetry at one part or level of a com-
plex system [8]. For example, the wear of a well lubricated engine takes
place at a much finer spatial scale than the macroscopic scale governing
the main functions of the engine. Thus the engine’s approximate rotational
symmetry is manifest as exact rotational symmetry at the macroscopic
scale, a symmetry that does not hold on the microscopic scale. The bilat-
eral symmetry of vertebrate anatomy is an exact symmetry of that part of
the animal’s complex system that concerns itself with forward locomotion
(symmetry of an arrow — in a two-dimensional plane), but is not reflected
in the disposition of most internal organs. (The symmetry of the lungs is
presumably a vestige of the symmetric location of a fish’s gills.)

In this paper, quasigroups are used to furnish models for one kind of
approximate symmetry, exact symmetry holding at the macroscopic level of
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a two-level hierarchical system. Quasigroups, as “non-associative groups,”
are briefly introduced in Section 2. The following section recalls the con-
struction of quasigroup homogeneous spaces (cf. [5] [6] [7]). Section 4
provides a simple example to illustrate the construction, and to show how
it may lead to an instance of non-trivial approximate symmetry. Section 5
then presents the general version of the model. The section includes a new
concept in the theory of quasigroups, the core congruence of a subquasi-
group, as a quasigroup analogue and generalization of the group-theoretical
concept of the core of a subgroup. The final section gives a brief discussion
of potential developments in the rigorous theory of approximate symmetry.

For algebraic definitions and notations used in the paper, readers are
referred to [9]. In particular, mappings are generally placed in the natural
position on the right of their arguments, either in line or as an index. These
conventions help to minimize the number of brackets, which otherwise pro-
liferate in the study of non-associative systems such as quasigroups.

2 Quasigroups

A gquasigroup is a set Q) equipped with a binary multiplication, denoted by
- or mere juxtaposition, such that in the equation

zy=2,

knowledge of any two of z,y, z specifies the third uniquely. (Combinatori-
ally, this means that the body of the multiplication table of a finite, non-
empty quasigroup is just a Latin square.) Equivalently, quasigroups may
be construed as sets (@,-,/,\) equipped with three binary operations of
multiplication, right division [/ and left division \, satisfying the identities:

(IL) Ny -z)=z;
(IR) z=(z-y)/vy;
(SL) y-(y\z) ==z;
(SR) z=(z/y)-y.

Groups are quasigroups, but general quasigroups are not required to have an
associative multiplication. A subset P of a quasigroup Q is a subquasigroup
of @ if it is closed under the three binary operations. More generally, the
definition by satisfaction of the identities on the three binary operations
means that quasigroups form a variety in the sense of universal algebra,
and are thus susceptible to study by the concepts and methods of that
subject [9]. In particular, an equivalence relation « on a quasigroup Q is a
congruence if it is a subquasigroup of @ x Q. Then the natural projection

nata:Q — Q% g ¢*
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(with ¢* = {r € Q| (¢,7) € a} for g € Q) onto the quotient
R*={¢"1q€Q}

is a quasigroup homomorphism. For a non-empty quasigroup @, the group
replica congruence is the smallest congruence  on Q such that the quotient
Q" is associative (a group).

For each element g of a quasigroup @, the right multiplication
R(@): Q- Qz—z-q
and left multiplication
L@):Q—-Qiz—gqg-z

are elements of the group Q! of bijections from the set Q to itself. For a
subquasigroup P of a quasigroup Q, the relative left multiplication group
of P in Q is the subgroup LMItg(P) of Q! generated by

L(P)={L(p):Q—~Q|pe P}. (3)

3 Quasigroup homogeneous spaces

The construction of a quasigroup homogeneous space for a finite quasigroup
is analogous to the transitive permutation representation of a group on the
homogeneous space of cosets of a subgroup. Let P be a subquasigroup of
a finite quasigroup Q. Let P\ @ be the set of orbits of the relative left
multiplication group LMltg(P) on the set Q. If Q is a group, and P is
nonempty, then this notation is consistent with (1). Let A be the incidence
matrix of the membership relation between the set Q and the set P\ @
of subsets of Q. Let A* be the pseudoinverse or “Penrose inverse” of the
matrix A [2]. This is the unique matrix A" satisfying the equations

AATA = A, ()
ATAAT = AT, (5)
(A*A) = A*A, (6)
(AA*)* = AA*, (7)

in which the * denotes the conjugate transpose.

For each element ¢ of @, right multiplication in @ by ¢ yields a permu-
tation of Q. Let Rg(g) be the corresponding permutation matrix. Define
a new matrix

Rp\q(9) = AT Rq(9)A. (8)
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[In the group case, the matrix (8) is just the permutation matrix given by
the permutation (2).] Then in the homogeneous space of the quasigroup Q,
each quasigroup element g yields a Markov chain on the state space P\ Q
with transition matrix Rp\g(g) given by (8).

4 An example

Consider the quasigroup @ whose multiplication table is

D | &) no| o] ] =
(341 E- =Y IOCT ) i ] | U]
o D] = | ) Ol o

B K= A e DS 2N | S
O BN O W OOl N
O] = W d| | |

o | | wo] nof =[O

Let P be the singleton subquasigroup {1}. Note that LMltg P is the cyclic
subgroup of Q! generated by (23)(456). Thus

P\Q = {{l}$ {2,3}:{4: 5v6}}1 (9)
yielding
[1 0 0]
g i 8 100000
Ap = andAf=0 31 1 0 0 0.
0 01 2 2 00
0 0 1 000 3 3 3
[0 0 1]
Now (8) gives
0 0 1
Rp\g(8)=|[ 0 0-1 . (10)
102
3 50

One may view this Markov chain action graphically according to Fig-
ure 1. Denote the elements of the state space P\Q, the orbits of LMltg P
on Q, respectively as

a={1}, a'={2,3}, b={4,5,6}.
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Figure 1: The Markov chain Rp\q(5).

The incidence matrix Ap, giving the assignment of quasigroup elements to
state space elements, is represented by the right-hand side of the figure.

The permutation Rg(5) of Q is represented in the center of the figure. The
left-hand side represents the pseudoinverse A}. In the Markov chain, each
element of the state space on the left of the figure has a uniform chance of
transitioning along each of the arrows leading from it. After that, its path
through @Q and back to the state space P\Q is uniquely specified, according
to the matrix Rp\g(5). For example, the element b has a two-thirds chance
of transitioning to a’, and a one-third chance of transitioning to a.

In order to study the action of the full quasigroup @ on P\Q, define
Markov matrices

100 010 0 01
={010|,e=|3% 3% 0|andr=|0 0 1. (1)
0 01 0 01 1 30

Note that RP\Q(l) =, RP\Q(2) = RP\Q(3) =g, and Rp\Q(‘l) = RP\Q(S)
= Rp\g(6) = 7. Moreover, the matrices (11) commute with each other.
Consider the monoid generated by these matrices. Each element of the
monoid may be expressed uniquely in the form e'7™ for non-negative in-
tegers I and m. The action of these elements on the state space {a,a’, b}
is then given by Figure 2, which displays the image of a under ¢'7™. The
symbol k stands for any positive integer. The information in the table is



m\l 1 2 3 4
0 a’ 3a+3ad la+3a 3a+ia
b b b b
2k ta+ -g-a’ 3o+ 2a 3a+3a 3a+2a la+2a
2k +1

Figure 2: Permutation action of @ on {a, a’, b}

complete, since b = a7 and a’ = ae. In other words, a'e!T™ = ae*17™ and
belr™ = aglv™+1. Convex combinations of states are used to specify finite
probability dlst.nbumons Thus —a + 2a for example denotes the mixed
state consmtmg of a one-third chance of state a and a two-thirds chance of
state a'.

The quasigroup action may be interpreted as an approximate two-fold
symmetry between the state b on the one hand, and the states a,a’ on the
other. If the distinction between a and o’ is suppressed, then one obtains
an exact two-fold symmetry between a and b, with ¢ acting as an identity
element (just like ¢), while 7 acts as a transposition between a and b. Ac-
knowledging the distinction between a and a’, however, this symmetry is
seen to be only approximate. For example, applying 7 once to a gives b, but
a repeated application of 7 leads back to e only with probability one-third,
and otherwise gives a’. Interpreting approximate symmetry as exact sym-
metry holding at one level of a hierarchical system, one may observe that in
the present case, there is a hierarchy with just two levels: macroscopic and
microscopic. The macrostates are {a,a’} and {b}, the distinction between a
and o’ lying at the microscopic level. The approximate symmetry consists
of exact two-fold symmetry at the macroscopic level.

5 The general model

In order to establish a general framework for approximate symmetry of
the kind observed in the model of the previous section, it is necessary to
consider some concepts in quasigroup theory. Let @Q be a quasigroup with
a congruence a. A subquasigroup Qo of @ is said to be compatible with o
if it is the preimage of its image under the natural projection by «, i.e. if

Qo = (nata)~'(QP).
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In combinatorial terms, compatibility means that Qo is a union |JQ§ of
a-classes. (Compare the discussion of the Second Isomorphism Theorem
in [9, IV, §1.2).) The core or core congruence of a subquasigroup Qo in Q
is defined to be the largest congruence x or £(Qo) or kg(Qo) on Q that is
compatible with Qp. This concept matches its group-theoretical analogue:

Proposition 5.1 Let H be a subgroup of o group Q. Then the group-
theoretical core Kg(H) of H in Q is the class of the identity element 1 of
Q under the quasigroup-theoretical core ko(H) of H in Q.

Proof  Recall that Ko(H) is the intersection (.o H? of all the conju-
gates of H. As such, it is the largest normal subgroup N of @ contained
in H. The map o — 1% provides an order-preserving isomorphism from
the set of congruences compatible with H to the set of normal subgroups
contained in H. Under this isomorphism, one has kg(H) = Kqo(H). 0O

The following definition serves to specify the kind of approximate sym-
metry under discussion. In the definition, an exact symmetry is described
by a certain transitive permutation action, a faithful (or, in analysts’ ter-
minology, “effective”) group homogeneous space.

Definition 5.2 Let G be a group, and let (X, G) be a faithful homogeneous
space for G. A system is said to ezhibil macroscopic approximate symme-
try of type (X, G) if it consists of two hierarchical levels, macroscopic and
microscopic, with an ezact symmetry of type (X, G) holding at the macro-
scopic level.

Theorem 5.3 Suppose that a non-empty finite quasigroup Q contains a
subquasigroup Qo compatible with the group replica congruence of Q. Lei
K be the core of Qo in Q. Then for o subquasigroup P of Qq, the ho-
mogeneous space P\Q ezhibils macroscopic approzimate symmelry of type

(Q5\Q@", Q).

Proof  Since @y is compatible with the group replica congruence of Q,
the quotient Q" is a group. As a consequence of the isomorphism theo-
rems, Kq«(Qg) is trivial, so the group homogeneous space (Q§\Q", Q") is
faithful.

The microstates of the homogeneous space P\Q are its elements, the
LMItg(P)-orbits on Q. The macrostates are the LMItg(Qo)-orbits on Q.
Since P is a subquasigroup of Q, it is immediate that each macrostate is
a union of microstates, so that P\ forms a two-level hierarchical system.
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Suppose that (z,y) € k. Let e be an element of Q for which e* is the
identity element of the group Q. Then

y/z € (y/z)* =y"/z" =€~
Now e" is a subquasigroup of Q. Since zL(y/z) = y by (SR), it follows
that each LMItg(Qo)-orbit is a union of x-classes.

For z in @, the map

B : Qo\Q — Q5\Q";zLMItg(Qo) — z"LMlto«(Q5)
bijects. Certainly it is well-defined, since zL(q)*! ... L(g-)*! = y (with

z,y € Q and q,...,q9, € Qo) implies z*L(g})*! .. L(q )E! = y%. The
map J is clearly surJecuve For the injectivity, suppose

2 L(pf)*" ... L(pF)™" = y"L(g})*" ... L(gf)*!
for z,y € Q and py,...pr,q1,...,9s € Qo. Then
(zL(pV)*' ... L{p, )" yL(@)*' ... L(gs)*Y) € &,
so z and y share the same LMItg(Qo)-orbit.
Finally, for z,y,9 € Q and q, ..., g, € Qp, the equation

zL(q)*'... L(g)*'R(q) =y

implies z*L(q%)%! ... L(gf)*' R(¢") = y". Thus the transition matrix of
Ron\o(g) on Qo\Q is the permutation matrix of Ros\o~(9") on Q§\Q".

It follows that the macroscopic homogeneous space (QO\Q Q) has the re-
quired symmetry type (Q§\Q", Q). a

6 Discussion

Theorem 5.3 shows how a finite quasigroup may model macroscopic approx-
imate symmetry. Examples such as that of the rotating engine, in which
the symmetry group is infinite, are not covered by the theorem. A com-
binatorial attempt to extend the theorem to infinite quasigroups founders
on the lack of an operator-theoretic analogue for the pseudoinverse of the
incidence matrix of @ in P\Q. However, one might well consider a measure-
theoretical approach in this case.

The macroscopic approximate symmetry of Definition 5.2 is only one
kind of approximate symmetry. For example, [8, §5.2] considers an ap-
proximately symmetric three-level hierachical system in which the exact
symmetry holds at the mesoscopic level, but not at the macroscopic or mi-
croscopic levels. It would be of interest to develop combinatorial models
for different kinds of approximate symmetry.
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