1

This paper will focus on the mathematics underlying error correcting codes
over a natural biological metric space. It is hoped that a better theoret-
ical understanding of this space and its code can be used to improve an

LMAS: The Key to Enumerating
2-Spheres Over the Edit Metric

Jessie Lenarz
Department of Mathematics & Computer Science,
Concordia College,
Moorhead, Minnesota, USA 56562,
lenarz@cord.edu

Abstract

This paper gives the exact size of edit spheres of radius 1 and 2
for any word over a finite alphabet. Structural information about
the edit metric space, in particular a representation as a pyramid
of hypercubes, will be given. The 1-spheres are easy to understand,
being identical to 1-spheres over the Hamming metric. Edit metric
2-spheres are much more complicated. The size of a 2-sphere hinges
on the structure of the word at its center. That is, the word’s length,
number of blocks, and most importantly (and troublesome) the num-
ber of locally maximal alternating substrings (LMAS) of each length.
An alternating substring switches back and forth between two char-
acters, e.g. 010101, and is maximal if it is contained in no other such
substring. This variation in sphere size depending on center charac-
teristics is what truly separates the algebraic character of codes over
the edit metric from those over the Hamming metric.

Introduction

evolutionary algorithm based search heuristic for these codes.

Often times when studying the genetics of a living organism, we wish
to know what a particular gene does or which gene controls a certain char-
acteristic. One problem in investigating these genes is that many genes are
inactive during the life of the organism, only turned on by particular en-
vironmental conditions. Researchers must then provide the environmental
conditions necessary to activate a particular gene. An example might be

JCMCC 58 (2006), pp. 69-86

subjecting a plant to extreme cold, excess water, lack of sunlight, or treat-
ment with a pesticide. Once the gene is activated, the RNA associated with
the gene is isolated and mass produced by E. coli or a like organism to cre-
ate a cDNA library. It is typically not cost effective to create a different
c¢DNA library for each condition, so all of the samples are mixed together
when making the cDNA library. The problem then becomes identifying
which condition was being used for a particular sample.

To identify the source tissue, short stretches of DNA, called DNA bar-
codes, are embedded into the tissue libraries. Tissue identifying is then
simply a matter of finding the barcode and matching it to the correct source
tissue. A potential problem with this method lies in the sequencing of the
DNA. Sequencers often miscall, ignore, or duplicate bases. To correct this
problem, one can employ an error correcting code.

A code of length n is simply a collection of strings, each n characters
long, called codewords. An (n,d)-code is a collection of strings of length
n with all pairs at distance d or more under some appropriate measure of
distance. A k-error correcting code is a code in which up to k errors in a
codeword can be corrected [3]. This is done by using only those codewords
that are sufficiently far apart (d = 2k+1) under the metric being used. The
natural choice to measure distance for DNA barcodes is the edit distance
over the set of bases {C, G, A,T}. The edit distance between two strings is
the least number of single character insertions, deletions, and substitutions
needed to transform one string into the other. Two codewords that are edit
distance k from each other are called k-edit neighbors.

To find an error-correcting code we can use a greedy algorithm under
evolutionary control. This greedy algorithm is described in the next section.

1.1 Greedy Algorithms

Mathematics often uses algorithms to solve problems. Many problems can
be solved using greedy algorithms. A greedy algorithm is an algorithm in
which a local measure of some sort chooses which option will yield the best
immediate results. An example of a greedy algorithm that always produces
optimal results is Kruskal’s algorithm for producing a minimum spanning
tree of a connected weighted graph [4, 7].

1.2 Evolutionary Algorithms

So the natural question becomes, how can one modify a greedy algorithm
to produce better, possibly optimal results? Before we attempt to answer
that question, we need to define evolutionary algorithm. An evolutionary
algorithm creates a population and then evaluates its fitness by some mea-
sure. The members with high fitness are copied and the copies are slightly

70

Table 1: Comparison of binary Hamming code sizes found using Con-
way’s Lexicode Algorithm and the greedy closure evolutionary algorithm
for length n, minimum Hamming distance d codes

n | d | Basic Lexicode | Evolutionary Algorithm
16 7 32 32

18] 7 128 128

181 9 8 20

19 9 16 40

19 | 11 4 6

varied, in a process similar to biological evolution, creating a new popula-
tion. The process is then repeated. The process may or may not terminate,
depending on the context of the problem. For example, if an evolutionary
algorithm is used to find a maximum value, it will terminate, but if an
evolutionary algorithm is used to find a strategy for playing & game like
tic-tac-toe, it will not terminate [1]. [6] gives an example of an evolution-
ary algorithm may be used to control a greedy algorithm. Using Conway's
Lexicode algorithm as an example, [2] evolves the order in which words are
considered.

Algorithm 1. Conway’s Lexicode algorithm

Input: A minimum distance d under a specified metric and a word length
n.
Output: An (n,d)-code.

Algorithm: Place the binary words of length n in lezicographical order. Ini-
tialize an empty set C of words. Scanning the ordered collection of binary
words, select a word and place it in C if it is at distance d or more from
each word placed in C so far.

‘We will place this algorithm under evolutionary control in the following
fashion. A set of words called a seed is initially chosen and Conway’s
algorithm extends the seed to complete a code. The fitness of a seed is the
size of the code it creates. The evolutionary algorithm evolves the seeds to
find more fit ones.

A comparison of Conway’s Lexicode Algorithm using the Hamming dis-
tance on binary words to the greedy closure evolutionary algorithm is given
in Table 1. Notice that the greedy closure evolutionary algorithm performs
better than Conway’s Algorithm as the code length and minimum distance
increase.

Notice Conway’s algorithm can be re-specialized to the edit distance, so
we can see the analog of Table 1 in Table 2. The edit metric version of this

71

algorithm can be used to find a lower bound on the size of edit codes, see
Table 3 for binary examples.

Table 2: Comparison of DNA edit metric code sizes found using Con-
way’s Lexicode Algorithm and the greedy closure evolutionary algorithm
for length », minimum edit distance d codes. The figures in parenthesis are
the fraction of times the best result was located.

n | d | Basic Lexicode | Evolutionary Algorithm
413 12 16 (18%)
513 36 41 (2%)
5|4 8 11 (1%)
6|3 96 106 (2%)
6|4 20 25 (11%)
65 4 9 (9%)
713 311 329 (2%)
7| 4 57 63 (1%)
715 14 18 (12%)
716 4 7 (92%)

An examination of the structure of the edit metric space suggests that
an improvement to the greedy closure evolutionary algorithm for finding a
k-error correcting code of length in [2] can be made by starting with code-
words with the smallest number of k-edit neighbors and continuing from
there. This amounts to replacing the lexical order in Conway’s algorithm
with a potentially more efficient ordering. This will hopefully yield a larger
number of words in the code.

In order to improve the error correcting code produced by the greedy
closure evolutionary algorithm, a thorough study of the edit metric space is
needed. The following provides the beginnings of the theory of edit metric
spaces.

2 Structure of the Edit Graph

The edit distance between two words is the minimum number of edit oper-
ations needed to change one word into the other, where an edit operation is
a substitution, insertion, or deletion of a single character. The edit distance
is actually a metric, see [5].

A block of a word is a locally maximal substring comprised of exactly
one character. The block representation of a word is a sequence of numbers
representing how many times a character repeats. Notice the representation

72

Table 3: Lower bounds on the size of a maximal size binary edit code with
length n and minimum distance d between words

d
n| 3 4 5 6 7 8 9 10
4 2 2 - - - - - -
5| 4 2 2 - - - - -
6 5 4 2 2 - - - -
7110 S5 2 2 2 - - -
811 9 4 2 2 2 - -
9128 10 4 4 2 2 2 -
10146 19 5 4 2 2 2 2
1118 26 8 5 4 2 2 2
121150 43 12 7 4 4 2 2
131268 71 19 10 5 4 2 2
141478 117 29 13 7 5 4 2

does not specify a unique word. For example, over the binary alphabet, the
block representation 1,2,2,1 represents the strings 011001 and 100110. The
number of words with the same block representation depends on the size
of the alphabet and the number of blocks.

The edit graph has complex structure. For words of length n, the in-
duced subgraph that considers only substitutions is the Hamming graph.
When g = 2, the structure of this subgraph is known to be an n-hypercube,
where the vertices are words of length n and edges connect words that differ
in exactly one position. To construct the edit graph, we let n =0,1,2,...
and stack the hypercubes with the empty string A at the top, and continue
down in increasing length n. Then connect the hypercubes by connecting
vertices that differ by a deletion or insertion. Notice that each level of the
stack of hypercubes is only connected to the level directly above it and the
level directly below it. We end up with a pyramid of hypercubes with an
extensive network of edges between hypercubes adjacent to each other in
the stack. Figure 1 shows the top portion of the graph.

3 Edit Metric Over the Binary Alphabet

To begin, we consider the edit metric over a binary alphabet. Given a
binary string w with length n and & blocks, we would like to know the
number of neighbors it has at edit distance d. Due to the complexity of the
edit metric, we restrict ourselves to d = 1,2. We will later generalize these

73

m T Tvctjunjpo
MR SEERREPRES JHEfm

Figure 1: The top “levels” of the edit metric on the binary alphabet shown
as a graph with distance one edges. Recall that A denotes the empty string.

results to a g-ary alphabet.

3.1 Spheres of Radius 1

We say we lengthen a block if we insert a character in a block that changes
only the length of the block and does not add any new blocks. We say
we split a block if we insert a character within a block that changes the
number of blocks in the word. Lastly, we say we add end extensions if we
create a new first or last block of size one.

Theorem 1. Suppose that w is a binary word of length n with k blocks.
Then the number of 1-edit neighbors of w in is 2n +2 + k.

Proof. The word w has three sorts of neighbors, those obtained by single
character substitution, insertion, and deletion. The deletion of a character
from any position in a block of w yields the same result as a deletion
in any other position of that block. The number of neighbors resulting
from deletion is thus the number of blocks k. Substitutions require that a
position be picked and a new character placed there which can happen in n
ways. Insertions are slightly more complex. There are three possible types
of insertion. We can insert a matching character into a block, lengthening
it. There is one way to do this per block for a total of &k such insertions. We
may insert at a position in the interior of the string that is not a boundary
between blocks, splitting the block. There are (n —1) — (k—1) = (n — k)
positions where this can happen and 1 possible character for each such
insertion. Finally we may add a character to the beginning or end of the
string in a manner that does not lengthen an existing block in 2 positions

74

with 1 available character. Summing up,
k+n+k+(n—k)+2=2n+2+k.

3.2 Spheres of Radius 2

We wish to count the 2-edit neighbors of a given word w that have the
same length as w. We need to consider words we can obtain from w by two
substitutions, or an insertion followed by a deletion, or a deletion followed
by an insertion.

Theorem 2. The set of 2-edit neighbors of a word w found by first deleting
a character and then inserting a character is the same as that found by first
inserting a character and then deleting a character.

Proof. Obvious. []

This result means we only need consider the 2-edit neighbors of a word
found by two substitutions or a deletion followed by an insertion. A 2-edit
neighbor found by a deletion followed by an insertion is called a del-in. A
del-in event is the ordered pair that gives the specific deletion and insertion
used to arrive at a del-in. We make this distinction because distinct del-in
events can lead to the same del-in. Notice that all of the action occurs
between the point of insertion and the point of deletion. The initial and
terminal segments of the string remain anchored, which severely limits the
amount of shifting allowed.

Observe that the number of words found by substituting d characters in

a word w of length n is Z since there are d positions we want to change
and 7 positions to choose from. So the number of 2-edit neighbors found

by two substitutions is (g .

Finding the number of del-ins is a bit more difficult.

Lemma 1. Let w be a word of length n with k blocks. The number of ways
to delete a character and then insert a character to arrive at a word w' # w
is nk.

Proof. From the proof of Theorem 1 we know there are k& ways to delete
a character from a word. Now we have a word of length n — 1. Also by
the proof of Theorem 1, we now have (n — 1) + 2 = n + 1 ways to insert
a character in the shortened word to arrive back at a word of length n.
However, one of these words will be the original word, so there are n ways

75

to insert and arrive at a new word. Since there are k ways to delete and n
ways to insert, there are kn ways to delete and then insert and not arrive
back at the original word. |

This formula overcounts the number of del-ins because there are some
words that can be obtained by two distinct del-in events. To find the
amount of overcounting, we first need to consider certain special strings.

Definition 1. An alternating string is e string comprised of ezactly two
distinct characters in which each character is different from the characters
adjacent to it.

Lemma 2. Ifw is an alternating string of length n, then any word w’ # w
obtained from w by a del-in event can be found by a del-in event in ezactly
two ways if the deletion and insertion occur in non-adjacent blocks and
ezactly one way if the deletion and insertion occur in adjacent blocks.

Proof. The proof, found in [5], is a tedious but simple examination of cases.
n

Theorem 3. Let w be an alternating string of length n. If we count all
possible ways to delete and then insert, we overcount the number of del-ins

n
by2.

Proof. By Lemma 2, all del-ins are counted either once or twice. The del-
ins found by deleting block 7 and lengthening block j (consider an end
extension as a lengthening of block 0 or block n + 1) where [¢ — j| > 2
are counted twice. Consider if ¢ < j, we can also find the same del-in by
deleting block j — 1 and lengthening block ¢ — 1. Now, if i > j, we can also
find the same del-in by deleting block j + 1 and lengthening block 7 + 1.
But if ¢ > j, the other del-in event that deletes block j + 1 and lengthens
block i+ 1 has already been considered because j+1 < i+ 1. So to find the
overcounting we only need to count the pairs of pairs (%, 7),(j — 1,i — 1),
which amounts to counting pairs of the first entries (¢, — 1) where ¢ > j.
Notice this is equivalent to counting unordered pairs (Z,j) which we see

s (7). .

Definition 2. Let w be a word of length n. A locally maximal alternating
substring (LMAS) is a substring of w that is an alternating string contained
in no other alternating string that is a substring of w. Define a; to be the
number of locally mazximal alternating substrings of w of length2 <i < n.

Let n; be the length of the ith block. We say a block is non-trivial if it
has length exceeding 1.

76

Definition 3. The L-B decomposition of a string is a segmentation into
adjacent substrings that are either locally mazimal alternating substrings or
locally mazimal non-trivial blocks. These are called the elements of the L-B
decomposition.

For example, the L-B decomposition of 11011 is 11,101,11. Notice that
there is overlap between the elements.

Theorem 4. If w' # w is obtained from w by a del-in event, then this may
be done in only one way unless the deletion and insertion occur within a
single element that is a locally mazimal alternating substring (LMAS) or
the deletion occurs on the boundary between two adjacent blocks and the
insertion occurs one character into one of the two blocks, in which case
there are exactly two ways.

Proof. The proof, found in [5], is another tedious but simple examination
of cases. |

Theorem 5. If w is a word of length n with k blocks then the number of
del-ins of w of length n is

nk—k+1—im((é)-(i—1)),

=2
where a; is the number of LMAS of w of length i.

Proof. The number of ways to delete and then insert is nk by Lemma 1.
But by Theorem 4, this counts del-ins that can be found by deleting and
inserting within a LMAS or on a boundary between two adjacent blocks
twice. Since there are k — 1 block boundaries, we need to subtract k — 1

n
from our total number of ways to delete and then insert. There are Z a;

i=2

LMAS?’s and the amount of overcounting that occurs in each LMAS is ;) .

So the total amount of overcounting due to a del-in event within a LMAS is

n .
Z a; (;) . But block boundaries occur within a LMAS as well as between
o
;.djacent elements. Since we have now subtracted them twice, we need to
add them back in. There are ¢ — 1 block boundaries in a LMAS of length

%, 80 we arrive at

nk—(k—l)—iw(;) > ai-1) = nk—k+1—-iag ((;) —(i- 1)) .

i=2 i=2 i=2
n

77

In order to finish counting the number of 2-edit neighbors, we also need
to exclude any del-in events that can be accomplished by a one character
substitution, since these are 1-edit neighbors and are therefore, by defini-
tion, not 2-edit neighbors.

Lemma 3. Given a word w, every word w' found by substituting one char-
acter in w can also be found by a del-in event.

Proof. Obvious. (]

Notice that a word found from w by one substitution can also be found
from w by a del-in event in exactly one way. Since the number of words

of length n found by substituting one character is '1"

del-in events that are edit distance 1 (and hence not edit distance 2).
We also need to be concerned if a word can be found by both a del-in
event and by substituting two characters.

= n, there are n

Theorem 6. The number of 2-edit neighbors of a word that can be found by
both a del-in event and by substituting two characters is 2n—n; —nx—k+1.

Proof. Let w be a word of length n and v’ found from w by a deletion
followed by an insertion. Notice if we delete from block 4 and insert in block
j, we can say something about the possible Hamming distance between w
and w’. Deleting in block ¢ causes all of the blocks between block ¢ and j to
shift to the left or right one character. All of the block boundaries between
block i and j will contribute one to the Hamming distance between w and
w'. If the insertion in block j is a lengthening, it will not contribute any
more to the Hamming distance. However, if the insertion in block j is a
split, it will contribute one more to the Hamming distance. So the Hamming
distance between w and w' is either |i — j] if the insertion is a lengthening
or |i — j| + 1 if the insertion is a split.

There are three types of del-in events that produce words that are also
found by two substitutions:

1. delete from block i and lengthen block j where |i—j| =2,1<4,7 < k.
2. delete from block i and split block j, where |i — j| =1,1<4,j <k.

3. delete from block 2 (respectively k — 1) and add an end extension on
the left (resp. right).

Case 1: To delete from block ¢ and lengthen block j with

i<j weleti=1,...,k-2; j=3,...,k
i>7 weleti=3,...,k; j=1,...,k-2

78

There is only one way to lengthen block j so we have
((k=2)-1)+1)+[(k-3)+1)=2k—-4

ways to do this.
Case 2: To delete from block ¢ and split block j with

i<j weleti=1,...k—1j=2....k
i>j weleti=2,.. .k j=1,... k-1

The number of ways to split block j is n; — 1, so the number of ways to
delete from a block and split a block 1 block away is

k—1 k
E("J -1+ Z("J -1) = (2 Z("J’ - 1)) =(n1—1)—(nx—1)

j=2 Jj=1 j=1
= 2m—-2k—-n —ng+2

But this overcounts insertions made at the block boundaries. Every delete-
split event at a block boundary is counted twice, so the number of unique
del-ins found by a delete-split is

2n—-2k—n; —n+2—-(k—-1)=2n—-3k—n; —np +3

since the number of block boundaries is k — 1.
Case 3: There are only two possibilities here.

So the total number of 2-edit neighbors found by both a del-in event
and two substitutions is

2k-4+2n-3k—n; —ng+3+2=2n—-n; —np—k+1. []

Putting all these results together, we arrive at a formula for the number
of 2-edit neighbors.

Theorem 7. If w is a word of length n with k blocks, then the number of
2-edit neighbors of w is

(g)+n(k—3)+n1+nk—gai((;)—i+1),

where a; is the number of LMAS in w of length i.

Proof. The number of 2-edit neighbors of a word is the number of words
found by two substitutions together with the del-ins that are not also 1-edit

79

neighbors. But some del-ins are also found by substitution, so we need to
subtract them. By Theorem 5, Lemma 3 and Theorem 6, we have

(:)+ [nk—k-{-l—ia‘.((;) ‘(i—l)) -n] —(2n—-ny—ne—k+1)

i=2

= (;) +n(k—3)+m +nk—ia,- ((;) —'i+1).

=2

Finding bounds on the 2 spheres is not very satisfying.

Lemma 4. Let w be a word of length n. Let |Sz| be the number of 2-edit
neighbors w' £ W of length n. Then

(’2‘) <15l

and egquality holds if k = 1 where k is the number of blocks.

Proof. Every word at Hamming distance 2 from w i8 also a 2-edit neighbor
of w (if it was not a 2-edit neighbor, it would have to be a 1-edit neighbor,
but since it must be of length n, that would make it Hamming distance
1 which contradicts being Hamming distance 2). If k = 1, notice that
n1 =n, =n and that a; =0 for i = 2,...,n. Using Theorem 7 we see the
number of 2-edit neighbors is

(’2‘) +n(1—3)+n+n—g;(0) ((;) —-i+1) - (’2‘) m

This shows that the obvious sphere packing bound for spheres of radius
2 is no better than that for codes over the Hamming metric: the smallest
2-edit sphere is the same size as a 2-Hamming sphere at each length. The
number of words for which equality in Lemma 4 holds should be small, so
it would be a good next step to examine all possible cases where equality
holds and exclude them to see if we can find a better bound for that subset
of the edit code.

3.3 Generalizing to g-ary Strings

We would like to generalize our results about the edit metric on binary
strings to g-ary strings. This will have biotech applications for ¢ = 4
(DNA) and g = 20 (protein). We will use block representation in the same
manner.

80

3.3.1 Spheres of Radius 1

Theorem 8. Let w be a word over a q-ary alphabet of length n with k
blocks in its block representation. w has k 1-edit neighbors of length n -1,
n(g — 1) I-edit neighbors of length n, and n(q — 1) + g 1-edit neighbors of
length n+ 1.

Proof. The proof is the same as the proof of Theorem 1, except there are
more characters available for substituting, splitting and end extending, re-
sulting in different formulas for the number of 1-neighbors.]

As with binary words, for 1-error correcting codes, we have restricted
ourselves to 1-edit neighbors that have the same length as the original word,
due to the nature of the motivating application of DNA barcodes.

3.3.2 Spheres of Radius 2

Let w be a word of length n created from a g-ary alphabet. We need to
consider words of length n that we can obtain from w by two substitutions,
an insertion followed by a deletion, or a deletion followed by an insertion.
Theorem 2 still holds because the size of the alphabet was irrelevant in
the proof. So we now need only consider words obtained from w by two
substitutions or by a deletion followed by an insertion. Observe that the
number of words found by substituting d characters in a word w of length

nis (¢g—1)¢ Z) since there are d positions we want to change, n positions
to choose from, and ¢ — 1 possible characters to use. So the number of
2-edit neighbors found by two substitutions is (g — 1)2 (;) . Now we need

to compute the number of del-ins. We begin by counting the number of
del-in events.

Lemma 5. Let w be a q-ary word of length n with k blocks. The number of
ways to delete a character and then insert a character to arrive at a word
w' #w is nk(g—1).

Proof. From the proof of Theorem 8 we know there are k& ways to delete a
character from a word. Now we have a word of length n — 1. By the proof
of Theorem 8, we now have (g —1)(n — 1)+ g = n(q¢— 1) + 1 ways to insert
a character in the shortened word to arrive back at a word of length n.
However, one of these words will be the original word, so there are n(q —1)
ways to insert and arrive at a new word. Since there are & ways to delete
and n(g — 1) ways to insert, there are nk(q — 1) ways to delete and then
insert and not arrive back at the original word. n

81

This result overcounts the number of del-ins because some del-ins can
be reached by two distinct del-in events. As in 3.2, we begin by considering
the special case of alternating strings.

Lemma 6. Ifw is an alternating string of length n comprised of characters
X and Y, then any word w’' # w obtained from w by a del-in event can be
found by a del-in event

1. in ezactly two ways if the deletion and insertion occur in non-adjacent
blocks and the character inserted is either X or Y, or

2. ezactly one way if the deletion and insertion occur in adjacent blocks
or the character inserted is neither X norY.

Proof. The first part of the lemma follows directly from Lemma 2 with X
taking on the role of 0 and Y taking on the role of 1. The second part also
follows from Lemma 2 and noticing that if you insert a character that is
not X or Y, there is no other possible way to arrive at that word.]

Notice that Theorem 3 still holds.

Now consider any word over a g-ary alphabet. We can segment the word
into locally maximal alternating substrings (LMASs) and blocks. Notice
that we may have a character appear in two adjacent LMASs. For example
CGCGAGAGAG is comprised of two LMASs: CGCG and GAGAGAG.
Notice that the boundaries of these LMASs do not provide any further
problems because they are comprised of three characters, not just two.
Hence we only worry about the block boundaries and LMASs to find the
number of ways to arrive at a del-in as shown in the following:

Theorem 9. If w' # w is obtained from w by a del-in event, then this may
be done in only one way unless

1. the deletion and insertion occur within a single element that is a lo-
cally mazximal alternating substring (LMAS) of characters X and Y
and the character inserted is either X or Y, or

2. the deletion and insertion occur on the boundary between two adjacent
blocks composed of characters X and Y and the character inserted is
either X or Y,

in which case there are ezactly two ways.
Proof. This is a straightforward generalization of Theorem 4 |

Using the results of Lemma 1, Lemma 6, Theorem 3, and Theorem 9,
we arrive at the following result.

82

Theorem 10. If w is a g-ary word of length n with k blocks then the
number of del-ins of w of length n is

nk(q—l)—k+1—iai((;) —(2"1)),

i=2
where a; is the number of LMAS of w of length i.

Proof. The number of ways to delete and then insert is nk(¢—1) by Lemma

5. But by Theorem 9, this counts del-ins that can be found by deleting and

inserting (the correct character) within a LMAS or on a boundary between

two adjacent blocks twice. Since there are k — 1 block boundaries, we need

to subtract k£ — 1 from our total number of ways to delete and then insert.
n

There are Zai LMAS’s and the amount of overcounting that occurs in
i=2

each LMAS is (;

event within a LMAS is Zai (;) But block boundaries occur within a

). So the total amount of overcounting due to a del-in

=
LMAS as well as between'adjacent elements. Since we have now subtracted
them twice, we need to add them back in. There are i — 1 block boundaries

in a LMAS of length 7, so we arrive at

nk(g—1) — (k1) -Za,-(;) +3a(i—1)

=2 i=2

=nk(q—1)—k+1—zn:m((;) —(i—-l)).. =

=2

We now know how many words can be obtained from w by two substi-
tutions and how many are del-ins of w. But this overcounts the number
of 2-edit neighbors in two ways. First, notice that Lemma 3 still holds.
Since the number of words of length n found by substituting one character

n . .
is 1)=" and there are g — 1 possible characters to substitute, there are

n(g — 1) del-in events that are edit distance 1 (and hence not edit distance
2). We also want to find the number of words that can be found from w by
both a del-in event and by two substitutions.

Theorem 11. The number of 2-edit neighbors of a q-ary word that can
be found by both a del-in event and by substituting two characters is (q —
1)(2n — ny — nx) — k + 1, where n; is the length of the ith block.

83

Proof. Just as in Theorem 6, we have three cases. Case 1 is identical. In
Case 2, the number of ways to split the jth block becomes (¢—1)(n; — 1)+
(g — 2). To see where the extra ¢ — 2 comes from, observe that inserting a
different character in the last position of the block is not always the same
as lengthening the next block because we have g — 2 extra characters. So
for each j = 2,...,k — 1, we can insert a character in block j that does not
lengthen block j in (g — 1)(n; — 1)+ (¢ —2) ways. For j =1 and j =k, we
only have (g — 1)(n; — 1) ways to split because the extra two are now end
extensions. This causes our result for Case 2 to become

k-1
> g —1)(n; 1) + (g - 2)] + (g = 1)(nx — 1)
j=2
k—1
+3 (g = 1)n; = 1) + (g~ 2)] + (g = 1)(m - 1)
j =2
=(g—1)(2n—ny — nx) — 29 — 2k + 6.

This counts delete-splits occurring at block boundaries twice. So we need
to subtract the number of block boundaries, which is k£ — 1. This give us

(g-1)(2n—ny —ny) —2¢—2k+6—(k—1) = (g—1)(2n—ny —ni) —2g—3k+T7.
Case 3 now has 2(q — 1) possibilities, g — 1 for each end. The overall result
is

2k—4+(g—-1)(2n—ny —ni)—2q—3k+7+2(q—-1) = (g—1)(2n—n; —ni)—k+1.
|

Putting all these results together, we find the number of 2-edit neigh-
bors.

Theorem 12. If w is a q-ary word of length n with k blocks then the
number of 2-edit neighbors of w s

@-12(3) + @Dt -9 +m+ml= Y ((§) -i+1).
i=2
where a; i3 the number of LMAS of W of length i.

Proof. The number of 2-edit neighbors of a word is the number of words
found by two substitutions together with the del-ins that are not also 1-edit
neighbors. But some del-ins are also found by substitution, so we need to

84

subtract them. By Theorem 10, Lemma 3, and Theorem 11, we have

(q-1)2('2‘) +nk(q-1)-k+1-znja.- ((;) —-(i—l))

=2

—(g-1n—-((g—1)2n—n; —nx) —k+1)

= (q—1)2(’;) + (g — 1) [n(k — 3) + 11 + ny _,-Z;:,ai ((;) —i+1) .
a

Now we have a sphere packing bound for 2-edit neighbors, but again, it
is not very satisfying.

Lemma 7. Let w be a word of length n over a q-ary alphabet. Let |Ss| be
the number of 2-edit neighbors w' # w of length n. Then

@-17(3) <l

and equality holds if k = 1 where k is the number of blocks.

Proof. Every word at Hamming distance 2 from w is also a 2-edit neighbor
of w (if it was not a 2-edit neighbor, it would have to be a 1-edit neighbor,
but since it must be of length n, that would make it Hamming distance
1 which contradicts being Hamming distance 2). If £k = 1, notice that
n1 = n, = n and that a; = 0 for ¢ = 2,...,n. Using Theorem 12 we see
the number of 2-edit neighbors is

(q—l)z(g) +(q—1)[n(1—3)+n+n]—i(0)((;) -—12+1)

=(g—-1) (g) - m

4 Discussion

While significant progress has been made in enumerating the edit space and
determining the symmetry of the edit space [5)], there are still a number of
unanswered questions.

First, while there has been a formula found to compute the number
of edit distance d neighbors of a strictly alternating string [5], there is no
generalization to a g-ary alphabet.

Secondly, the above mentioned formula needs to be generalized for arbi-
trary strings. At present, formulae are only given for monotone and strictly

85

alternating strings. Computer enumeration demonstrates that the formula
for other types of strings is not a polynomial as the formulae for monotone
and strictly alternating strings are.

Third, because of the motivating biotech application, the theory has
been developed for codes made of strings of uniform length. Other applica-
tions may require formulae for all neighbors, rather than neighbors of the
same length.

This paper illuminates some features of the edit metric space and devel-
ops tools toward finding an upper bound on the size of edit metric codes.
The codes in actual use were created by various computer heuristics. Con-
structions for edit metric codes are a potentially interesting area not treated
in this paper. The material in [5] suggests that such constructions are likely
not to be as elegant as those for the Hamming metric. Nevertheless, this is
an essentially untouched area.

References

[1] Daniel Ashlock. Optimization and Modeling with Evolutionary Compu-
tation. Springer-Verlag, New York, 2005.

[2] Daniel Ashlock, Ling Guo, and Fang Qiu. Greedy closure evolution-
ary algorithms. In Proceedings of the 2002 Congress on Evolutionary
Computation, page 1296. IEEE Neural Networks Council, IEEE, 2002.

[3] Norman L. Biggs. Discrete Mathematics. Claredon Press, Oxford, 1985.

[4] Richard A. Brualdi. Introductory Combinatorics. Prentice Hall, Edge-
wood Cliffs, NJ, second edition, 1992.

[5] Jessie Campbell. Enumeration and Symmetry of Edit Metric Spaces.
PhD thesis, Iowa State University, 2005.

[6] Isaac K. Evans. Evolutionary Algorithms for Vertez Cover, volume 1447
of Lecture Notes in Computer Science. Springer-Verlag, New York, 1998.

[7] Douglas B. West. Introduction to Graph Theory. Prentice Hall, Upper
Saddle River, NJ, second edition, 2001.

86

