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Abstract

Comma-free codes are used to correct synchronization errors in
sequential transmission. Systematic comma-free codes have code-
words with fixed positions for error correction. We consider only
comma-free codes with constant word length n > 1. Circular codes
use the integers mod n as indices for codeword entries. We first show
two easily stated conditions are equivalent to the existence question
for circular systematic comma-free codes over arbitrary finite alpha-
bets. For n > 3 a family of circular systemnatic comma-free codes
with word length n = p, a prime, is constructed, each corresponding
to a fair partition of a difference set in Z,, .

1 Introduction

Ifg>1,let A= {ao,...a,-1} denote a finite set of distinct elements called
the alphabet. A block code with codewords of length n > 1 is a collection
of n-tuples whose entries are elements of A. For notational convenience we
write the codewords as x = z[0] - - - z[n—1] rather than, say, x =g - - - Tpn—1.
If x is any codeword we identify x[n+ k] and z[k] for all k € Z,, , the integers
mod 7, and refer to x as a circular codeword. A circular code is a collection
of circular codewords.

Definition 1 The mth overlap of codewords x = z[0]---z[n — 1] and y =
y[0]- - -y[n — 1] is a codeword of the form

Om(xy) = zlm] - -zfn — 1y[0] - -yfm - 1],
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where 1 < m < n-1. A code C is comma-free if for any two codewords
x,y € C, Op(xy) €C for everym=1,...n—1.

To establish synchronization; i.e., not permit an incorrect framing of a
message stream, one solution is to use comma-free codes. Clearly fram-
ing errors are prevented in a noiseless channel by comma-free codes since
synchronization is obtained after at most n — 1 entries are read.

If d denotes Hamming distance, the index of any comma-free code C is

pc = min{d(z,Om(xy) )},

where the minimum is over all X, y, z € C and 1 <m < n — 1. The index
of a comma-free code was first introduced in [10]. Comma-free codes C may
also be defined by simply requiring pc > 1.

There is some confusion in the literature about the term “overlap”.
On the one hand, in [11] Levenshtein uses the term "splice” rather than
“overlap”. But Levenshtein & Tonchev [14] and Tonchev [17] use the word
"joint” instead. These different terms may result from different transla-
tions. Further confusion arises when variable length codewords are con-
sidered. Codewords x = z[0]---z[n — 1] and y = y[0].--y[m — 1] are
sometimes said to “overlap” if there is k = 1,...n — 1 such that

afk]--afn - 1) = yl0]---ylk - 1]

Comma-free codes were first defined in a biology paper (3], and the first
mathematical paper about comma-free codes [8] defined “overlap” as we
have.

When x = y then overlaps O, (xx) m = 1,...n—1 are cyclic permutations
of x. It is useful to rewrite Definition 1 as:

Om(xy)[i] = { y[iz [_,::;n ]m] fE;)rr iiés [[r(z),-? n:?:)) ()

where [0,n—m)={0,...n—-m—1} CZy, and [n—-m,n) ={n—-m,...n—
1} C Zn .

Systematic codes reserve certain positions for error correction. We con-
sider here only correcting of synchronization or “mis-framing” errors in a
noiseless channel. For a study of combining both bit error correction and
synchronization errors see [9].

Definition 2 C = Co(Qo, ... Qq¢-1) is a systematic circular code over the
alphabet A = {ap, ...aq-1} with respect Lo a colleclion of non-emply disjoin!

88



sets Qo, ... ,Qq—1, g > 0 contained in Z,, , provided any codeword x € C
x = z[0] - - - z[n — 1] satisfies z[i] = a; whenever i € Q;, i=0,...n— 1.

The redundancy of a systematic code is | U Q;| where | - | denotes
cardinality. The redundancy of a systematic code simply counts the number
of positions fixed by the systematic code. Positions not in any Q; are called
information positions and can contain arbitrary entries from A. There can
be at most one codeword if |UQ;| = n and ¢ > n. Otherwise, the number of
codewords in a systematic code Cr(Qo,...Qq¢-1) is bounded by ¢* where
t =q—|UQi|l. Ca(Qo,...Qq-1) can be taken as a t-dimensional finite
vector space if A is an appropriate finite field of prime power order.

2 Equivalences

The following theorem gives two easily expressed conditions for a circular
systematic code to be comma-free.

Theorem 1 Let Cn(Qo,...Qq-1) be a systemalic circular code with code-
words of length n over a finite alphabet A. The following are equivalent:

(i) Ca(Qo,...Qq-1) is a comma-free code.

(i) Forallm € {1,...n—1}, there exists a pair of inlegersi,j € {0,...q—
1},% # j such that either
(Qi+m)NQ; #0 or (Q; + m)NQ; #0.
(44) Z, — {0} C A(Qo,...Qq-1) ={a~-b (modn)|aeQ;be Qj,i#
j$ i,j=os~"q—l}’

Proof: (i) = (ii). We arguc by contradiction. Suppose there is
m=1,...n —1 such that for every pairi,5 € {0,...q -1}, i #J

(Qi+m)NQ; =¢. (2)

Define a codeword x for a €Z, by

a; a€Q;U(Qi+m)
z[a] = a; a€Qj 3)
0 otherwise.
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Clearly x is well-defined by (2) and is in Cn(Qo, ... Qq-1) by definition.
We claim O,,(xx) € Cn(Qo,...Qq-1) as well. We must check that
Om(xx)[e] = a;, if a € @;. Now,

onteold = { ghtm gl @

foralle e {0,...n —1}.

If a € [0,n — m) then Op(xx)[a] = z[a + m]. Since a+m € (Q; +
m),z[a + m] = a;, by the definition (3) of x because a € Q;. If a €
[n — m,n) then Om(xx) = z[a + m — n]. Since indices are from Z, ,
z[a+m—n] = z[a+m] and the argument is the same as before. Therefore,
Om(xx) € Cn(Qo,...Qq-1) , contradicting (2).

(i4) = (i1i). Let m € {1,...n —1}. Then, (¢i) implies either there will
be a € Q;,b € Q; i # j such that a+m = b; i.e,, m = b — a or there will
be o’ € Q;,b’ € Q; such that ¥’ + m = a’; i.c.,, m = a’ — b, In cither case,
(441) is satisfied.

(7i1) = (3). Let O,(xy) be the mih overlap of two codewords x,y
€ Cn(Qo,...Qq—1) . Without loss of generality suppose m = b — a where
a € Q;,b € Q;. By definition,

Om(xy)la] = { y[: [-(:- :r-trﬁln] : ee [E'(:,:‘ 7—7—%::))

If a € [0,n —m) then
Om(xy)la] = zla+m] = zft] = ay,
contradicting @ € Q; because i # j. Accordingly, Om(xy) € Cn(Qo,...Qq-1) .
If a € [n — m,n) then in the same way
Om(xy)la] = yle — n+ m| = yla + m| = y[b] = a;,

again ensuring that O (xy) € Cn(Qo, ... Qq—1) . Therefore Cr(Qo, ... Qq-1)
is comma-free.

Clague [1] first claimed the equivalence of () and (ii7) for the case
g = 2. He used the word “synchronous” rather than “comma-{ree”. Since



there are other ways to synchronize a code not discussed here, we prefer
the more explicit term which is now standard in the literature. Levenshtein
[13] generalized Clague’s result to finite alphabets.

3 Comma-Free Codes from Difference Sys-
tems of Sets

Comma-free codes over finite alphabets were introduced in [8] but without
specifying how the codes were to carry information. The first fixed position
or “systematic codes” for synchronization were binary codes proposed by
E. N. Gilbert [7] in 1960. Gilbert’s binary systematic codes were prefix
codes and and he found bounds on the number of code words in the codes
given the parameters of codeword length and number of fixed entries used
to establish synchronization. Later work by Clague (1] showed that binary
systematic comma-free codes could be obtained by bipartitions of difference
sets and Levenshtein [13] studied a generalization to finite partitions of per-
fect difference sets which he called difference systems of sets. Levenshtein
incorporated (#it) of Theorem 1 as part of the definition.

Definition 8 A diflerence systems of sets (DSS) is a collection of disjoint
subsets Q; C Zy ,i,7=1,...n—1,1 5% j such that for cachm=1,...n-1

the equation
m = a-b (modn) ©(3)

has at least one solulion in inlegers a,b from 1., where a € Qi,b€ Q;,1%#
3.

If D = {do,...dx—} is any difference sct in Z, then there is always the
trival DSS where Q; = {d;},7 = 0,...k—1. I[ n = 2 there is only a trivial
DSS since ¢ > 0. If n = 3 then a DSS with, say, Qo = {ao}, Q1 = {a1}
is possible with codewords taken from {apaiu | u € A}. If ¢ = 2 with
A = {ap, a1} a resulting code would have two codewords, apaiao and aga;a;
and it is easy to see this code is comma-free since the elements of A are
assumed to be distinct. For ¢ > 2 and n = 3, there is a code C3(Qo, @)
with codewords, apaiag, apaiai,. .. ,aoa1a,-1 and it is comma-free. Wang
has compiled exhaustive lists of DSS for the ranges ¢ = 2,3,4,n=17...12
(18].

If for each m there are precisely p > 0 solutions to (5) then Leven-
shtein called the DSS a perfect difference system of sets. Partitioning known
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(v, k, X)—difference sets, Tonchev [17] has studied perfect regular DSS where
regular means all Q; have the same cardinality. For n = mq + 1 he has
constructed perfect regular DSS from the trivial cyclic (n,n —1,n —2) dif-
ference set. Using difference sets of quadratic-residue type he has shown
that for every prime n = 2mqg + 1 = 3 (mod 4) there is a perfect regular
DSS with parameters (n,m,q) and index p = (n — 2m — 1)/4. He has also
found examples of DSS from Singer difference sets.

For a systematic code Cr(Qo, ... Q4-1) with index p over a finite field
of prime power order as alphabet Levenshtein [13] gave a lower bound for
the redundancy r4(n, p) of Cn(Qo,...Qy-1) :

gp(n — 1)
>, (8= 0/
rem ) 2 1| 15 (6)
which generalized the bound given by Clague [1] for ¢ = 2. Levenshtein
further showed that the lower bound (6) redundancy is attained if and only
if the DSS Cn(Qo, ... Qq-1) is perfect and regular.

This bound has been further improved by Hao Wang [18].

If Cr(Qo, . .. Qq—-1) is a systematic comma-[ree code then UQ; is clearly
a difference set in Z,, . For systematic DSS codes the definition of comma-
freedom takes a more special form:

A code C is comma-free if for all X,y € C and for all m,1 <m <n-1
there exists
a € Zn such that O (xyle]) # a; and a € Q;.

As might be expected, not every systematic comma-free code can be
obtained by considering perfect DSS. For example it is easy to see that the
(7,3,1)-difference set {1,2,4} € Z7 contains no subsets Qp, @ that yield
a systematic code but its complement, {0,3,5,6}, is a (7,4, 2)-difference
set that can be partitioned as Qo = {0,5},Q1 = {3,6} so that (iii) in
Theorem 1 is satisfied in Z7. Further, the (7,4, 2)-difference sct {0,3,5,6},
can be partitioned as Qg = {0}, @, = {3,5,6}. This is the only partition
of {0,3,5,6} containing a singleton. All 6 possible partitions of {0, 3, 5, 6}
of the form {a,b}, {c, d} are DSS, however. S, on the under (12)(48).



4 A Family of Systematic. Circular Comma-
Free Codes

The following definition in the context of systematic codes is due to Hao
Wang [18].

Definition 4 Positive integers ng...nq—) are a g-partition of the integer
r>0ifeachn; >0 and n = 2;’;& ni. A g-partition is fair if there do
not exist integers i # j such that |n; —nj| > 2. By an abuse of language,
we call a collection of disjoint non-emply subsets {Qo,...Qq—1} of Z,, a
fair partition of U;'='01 i of {|Qol,....|Qq-1l} s @ fair partition of r =

i1

Equivalently the collection {|Qol, ... ,|Qq-1]} is fair if [|Q:] = |Q;]| £ 1
when i # 3. For every difference set 1) = {dp,...dk..1} in Z, , the trival
DSS Q; = {d;},7 = 0,...k —1is a [air partition of D.

Theorem 2 Lel n be a prime p 2 3 and A an alphabel with 1 < |A] =
q =< | 5] There exisls a non-trivial systemalic circular comma-free code
Cn(Qo, ... Qq--1) over A whose sels Qo,...Qq.1 are @ fair parlilion of

-1
Ug:() Qi .

Proof: Define a sequence X = {z; | 0 < i < |}]} in Z, by.the
elementary recursion

zg = 0,
Ty i fom‘:l,...,[gj. (7)

Z;

It is easy to see that the sequence X is also given by z;_; = ﬂ%ﬁ fori=
1,...,|2]. The recursion, however, shows that (iii) of Theorem 1 will be
satisfied by the Q; we now define. Define ¢ = |A| subsets Q, C Z,, by

Q: = {zi]i=t (modq)} fort=0,...q—1. (8)

Note that in this definition, the z; are integers, not integers mod n. Defini-
tion (8) simply distributes the elements of X into congruence classes mod
g according to their indices. Necessarily, successive clements z; and z;.,
from X are in different Q.

93



If n is odd then the differences
1= n—1 _
=T — IOy ’——z"‘i'l —Zn_z—_:!

2
are distinct integers less than n and hence will be distinct mod = since n is
prime.
Since inverses are unique in Z, viewed as an additive Abclian group,
n-—1
n—l=z0—x],... ,—_2-=zg_—aﬁ —J:LF

are also distinct. No entry of the second list can appear in the first list and
vice versa. So the two lists are disjoint. Therefore together they arc all
non-zero elements of Z,, listed exactly once.

If n is even then n — 1 is odd and the argument is similiar.

1=z —=x,... ,-2-=x§—z%_z
and
n
n—1=:co—zl,...,—§=:c£;3 —z3
also lists the = — 1 non-zero elements of Z,, except -3 = 2.

By Theorem 1 (iii) we see C,,(Qo, ... Qq-1) is comma-free.
Cn(Qo, .. .Qq-1) has redundancy |U Q;| = | §] by construction.

If an arbitrary element of Z,, is chosen as zg then the resulting sequence
is a translate of (7) as is easily seen by simply noting that if we choose
as zp’ an arbitrary element ¢ € Z, then, in a finite number of steps,
z/ =7r+1+4---4+L Henee, X' = X +r. It follows that Q} = Q, + 7 for
t=0,...,9—1. This also refleets the fact that translates of dilference sels
are difference sets.

In Theorem (2) the redundancy is r¢(n,1) = [§]. In the [ollowing
corollary we use the redundancy as a initial parameter. In a trivial system-
atic code, each Q; is a singleton and so for any index p, rq(n,p) = q. If
Cn(Qo,...Qq-1) is a non-trivial systematic code then r4(n, p) > q.

Corollary 1 If {no,... ,ng-1} C {0,... ,n—1} is any set of posilive inte-
gers salisfying |n; —n;| <1 then there exisls a circular systematic cornma-

Jree code Cr(Qo, - - - Qq-1) wilh |Q;] = n;.

Proof: There exists m > 0 such that for all z, n; = m, m + 1. Reorder
{no,... ,ng—1} if necessary so that the n; = m + 1 are first and chose the
Q; as defined in (8).
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5 Final Remarks

It is not know whether the bound (6) extends to alphabets other than those
of prime power order. If (6) does extend then the family of codes exhibited
in Theorem 2 is not best possible.

6 Acknowledgement

The author is indebted to Vladimir Tonchev for pointing out his own work
and that of V. I. Levenshtein. The author is further indebted to conversa-
tions with Hao Wang.

References
[1] D. J. Clague, New classes of synchronous codes, IEEE Trans. Elec-
tronic Computers EC-16(1967), 290-298.

(2] J. Berstel and D. Perrin, Codes circulaires, Combinatorics on Words,
Progess and Perspectives, L. J. Cummings, ed., Academic Press, 1983,
133-165.

[3] F.H.C. Crick, J. 8. Griffith, and L. E. Orgel, Codes Without Commas,
Proc. Nat. AcadSci. (Physics), 43(1957), 416-421.

[4] L. J. Cummings, Overlaps in binary systematic codes, Congressus Nu-
merantium 171(2004), 33--39.

[5] L. J. Cummings and M. E. Mays, On the parity of the Witt formula,
Congressus Numerantiurm 80(1991), 49-56.

(6) W.L. Eastman, On the construction of cormma-free codes, IEEE Trans.
Information Theory 11(1965), 263-267.

[7] E. N. Gilbert, Synchronisalion of binary messages, IRE Trans. Infor-
mation Theory IT-6(1963), 470-477.

[8] S. W. Golomb, B. Gordon, and L.. R. Welch, Comma-free codes, Cana-
dian J. Math. 10(1958), 202-209.

[9) W. E. Hartnett,ed, Foundations of Coding Theory, D. Reidel, Boston,
1974.

95



[10] B. H. Jiggs, Recent results in comma-free codes, Canadian J. Math.
15(1963), 178-187.

[11] V. L. Levenshtein, Combinatorial problems motivated by comma-free
codes, Journal of Combinatorial Designs, 12(2004), 184-196.

[12) V. I. Levenshtein, Bounds for codes ensuring error correction and
synchroniation, Translation from: Problemy Peredachi Informatsii,
5(1969), 3-13.

[13] V.I Levenshtein, One method of construcling quasilinear codes provid-
ing synchronization in the presence of errors, Translation from: Prob-
lemy Peredachi Informatsii, 7(1971), 30-40.

[14] V. I. Levenshtein and V. D. Tonchev, Constructions of difference sys-
tems of sets, in “Algebraic and Combinatorial Coding Theory”, Eight
International Workship Proc., St. Petersburg, Russia, Sept. 2002, pp.
194-197.

[18] R. A. Scholtz, Mawximal and wvariable word- lenglh cornrna-free codes,
IEEE Trans. Inform. Theory IT15(1969), 300-306.

[16] B. Tang, S. W. Golomb, and R. l.. Graham, A New Result on Comma-
Free Codes of Even Word Length, Canadian J. Math. 39(1987), 513-
526.

[17] V. D. Tonchev, Difference systemns of sets and code synchronization,
Rendiconti del Seminario Mathematico di Messina, Series I1, 9(2003),
217-226.

[18] H. Wang, A New Bound and Ezhaustive Algorithm for Difference Sys-
tems of Sets, (to appear in this volume).

96



