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Abstract

This article continues the study of a class of non-terminating
expansions of sin(ma) (even m > 2) which in each case possesses
embedded Catalan numbers. A known series form of the sine
function (said to be associated with Euler) is taken here as our
basic representation, the coefficient of the general term being
developed analytically in an interesting fashion and shown to
be dependent on the Catalan sequence in the manner expected.
The work, which has a historical backdrop to it, is discussed in
the context of prior results by the author and others.

Introduction

Background

The earliest awareness of the Catalan sequence {co,c1,¢2,€3,¢4,...} =
{1,1,2,5,14,...}, with general (n + 1)th term

1 2n
cn=n—_|'_'1'( n )v n=0,12,..., (1)
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has so far been traced to Antu Ming who found them occurring in some
expansions of the sine function. In [1] the author discussed this historical
point and, having established formally the infinite series forms (in odd
powers of sin(a)) of sin(2a) and sin(4a), went on to develop those for
sin(6a),sin(8a) and sin(10a) using a methodical algebraic process. The
paper concluded with a predicted generalised structural format for sin(2pa)
(integer p > 1), convergent when |a| < Z. It was standardised to the
following not long afterwards by Xinrong [2] in his work on the topic:!

sin(2pa) = 2 { i aP)gin®* 1 (a)

n=1

h (cn-—I: -3 Cn- —2),, 2 -1
+Z . 22(n+p)-3 E=="sin?(n+) (a) (2)

The key feature here is a linearity of the function h, in the p Catalan
elements cn—1,...,Cn4p-2 that was asserted by Larcombe in [1] (w.r.t. an
equivalent function g,, see p.45). Based on (2), the linear combination

ho(Cnmts---sCnip-2) = B en 1 + BPen + -+ BP cnip—z  (3)
has been shown by Xinrong to have a general coefficient
BP =["[{Hp(2)},  n=0,...p-1, @
where, for p > 1 (note the sign factor omitted in [2, Theorem 1.2, p.158)),
VITaP-(-ViTer
8v4i—z

is a degree p—1 polynomial in z; such polynomials (computed symbolically)
are listed in [2], amongst which those for values p = 1, ..., 5 validate results
of the author given in [1] We note, in passing, that H,(z)—clearly an

(ordinary) generating function for the finite p-sequence {8 (" ) . ﬁ(‘l)l} of
coefficients—can be written in terms of the corresponding function

G(z) = 1-vi-4z
2z
for the Catalan sequence as

Hy(z) = (-1p2F (5)

=co+caz+cx’+czzd 4+ (6)

(@)F — P ()
T-1) , ™)

1 A preprint of Xinrong’s 2004 article [2] was sent to this author privately in the spring
of 2001, and some of its findings developed in [3].

Hy(a) = (-1per? 21




with I(z) = 1 - /T= % = 2G()-

The potential to reduce the dependency of h, as resting on fewer of the

p aforesaid Catalan numbers arises from the relation (valid for n > 0, given

co = 1) _,Gn+)
n +

Cn+ ( ) =757 Cn (8)

between neighbouring members of the Catalan sequence. By first identify-
ing BP (4) as a binomial coefficient sum, the author arrived in (3, p.218]
at a surprisingly compact (and, mathematically, entirely natural) represen-

tation of hy = hy(ca—1) by employing hypergeometric function theory. We
repeat here, for reference purposes later, the result stated therein:

Theorem 1 For p,n > 1,

hp(en-1) = (—=1)"p(n + p) (n E(;;:- 211;'[2(171]1:;)],‘« v

Concerning the characteristics of h, as initially proposed in (2), the theorem
constituted a further step forward from the study of this class of expansions
by Xinrong, and it was duly verified for values p = 1,2,3 in [3]. The
univariate function hp(cn—1) evidently has a tighter form, and is consistent
with the main result of this article in which we see that in an alternative
expansion of sin(2pa) the coefficients of all powers of sin(a) are available
from a new and different type of generic expression.

This Paper

Here, the analysis of [3] is extended by virtue of the fact that we find the
general coefficient in the complete expansion

00
sin(ma) = Y S¥™sin®**(a), 9)

n=0

where m > 2 is even. As alluded to already, in seeking such a formulation
the r.h.s. of (9) has the obvious advantage of being a single sum (that covers
all powers of sin(a)) when compared to the split sum format of (2). The
motivation for (9) stems from a series version of sin(ma) associated with
Leonhard Euler. Computational investigation of the latter gives rise to a re-
sult involving the Gamma function that paves the way for the development
of a closed form for S{™ which, like k,, is expressible as a (functional) mul-
tiple of ¢;—1, and which confirms the asymptotic behaviour of h, found in



[3]. The next section details all of this, and ends with a couple of corollaries
to the work. A short summary concludes the paper.

Formulation of S(™

With reference to (9), we start by considering the equation
sin(ma)

[m(m2 - 12)

= msin(a) — —3'—] sin®(a)

N m(m? — 12)(m2 32)]

sin®(a)

_ m(mz—lz)(mﬂ— i lLuaind ) PRV

m [sm(a) + E {( -1)* @n + i L H[m - (2 - )2]} sm2"+1(a)]

m [sin(a) + Z {(271—4-1)' H[(2i - 1)2 - m2]} gin2n+! (a)]
n=1 =1

Y SEsin®** (a) (10)

n=0

where, defining []}_, [(2 — 1)2 — m?] = 1 (so that S((,"‘) = m, as it must),

Sim) = (21:-’:-+1)' ﬁ[(2i -1)2 —m?, n>0. (11)
i=1

Given (11), the expansion (10) holds for all integer m > 1 (it indeed gen-
erates correctly those finite series for m odd), and is credited to Euler by
Chinese scientific historian Luo.? We shall proceed to derive a closed form

for S&™ from (11), under the assumption that m > 2 is even.

Remark 1 It is a straightforward matter to re-produce, based on Luo’s
representation

sin(ma) = msin(a) + z {A" }smz”"'1 (o), (12)

n=1

2J. Luo disseminated an appreciation of the work of Antu Ming in textbook form in
1998 (see [1] for details, and Remark 6 later for some recent news on Ming). His first
publication relevant to the topic of this paper appeared a decade earlier [4].



the recursion for his coefficients (no closed form is, of course, given by Luo).
Comparing (12) with the penultimate line in (10),

A
e i 1] 1'[ §(i;m) (13)
where f(i;m) = (2i — 1)2 — m?. It then follows that
A 2 .
A—s::% = mf(n + 1) M)
_ S2n—(m-1)2n+(m+1)]
= X—rhenry " zh @

with Ag"') = —m(m — 1)(m + 1)/6 an initial value to begin Luo’s recursive
procedure to calculate the coefficients in the sum of (12) for fixed m; it is
evident from (10),(12) that

S((,m) = m,
A
sim = =g n>1 (15)

Regarding S,(,"'), we now state and prove (partially) a result which under-
pins our formulation of it, having been obtained via one of the mainstream
computer algebra systems currently available commercially.

Lemma 1 For integer m (even) > 2,n > 1,

g[(2i—1)2- 2]=(—1)’*‘§r(n+§-g)r(n+%+gﬁ).

Two properties of the Gamma function to be used in the proof are first
noted. These are

F(s+%)=ﬁl'3'5‘ 25 .(28_1): 8=1,23,..., (16)

and
sl'(s) =T(s +1), 8#0,-1,-2,... 17

Proof An mductlve argument suffices. When m = 2, n = 1, the Lh.s. of
Lemma 1 is 12 — 22 = —3, whilst (given I‘(z) = /7 ) the r.h.s. evaluates to



~(4//mT(3) = -3 also (since I'(3) = 3/7 by (16)). Now, let m > 2 be
fixed, and assume Lemma 1 holds for some n > 1. Then
n+1

[T1@ - 1)? -m?

=1

= [(2n+1)2 —m?] f_[[(2z’ -1)2 —=m?

=1

4(n+-;-—%) (n+%+%)i13[(2i—1)2—m2].

By hypothesis,

1 m 1 m
4(n+§—?)(n+-2-+5)x
v 1 m 1 m
1% Bt 4=
(-1) WI‘(n-i-z 2)P(n+2+2)

n 47*! 3 m 3 m
(-1)3 - I‘(n+-2-—5)r‘(n+§+3)
as required using (17); this completes the inductive step on n. That on m
is more involved algebraically but, being fairly straightforward nonetheless

(it utilises (17) in a similar way to that just seen), it is omitted.0

Consider now setting n = 0 in Lemma 1. It reads
0
1_./1 m 1 m
12 —m? = (_1NBRip(l_m L.
g[(% 1)2 — m?] (-1) ”I‘(2 2)r(2+2)
= (_1)‘5‘% -(-1)%rx
=1 (18)
as required, having used (16) and the counterpart equation
r (—s + 1) = (-1)'VF 2
2]~ 1-3-5- --- -(28—1)
(for 3=1,2,3,...) which together give

r (% - s) r (% + s) = (-1)°mw, 82>0, (20)

a special case of Euler’s Reflection Formula (see, e.g., [5, (1.2.1), p.9]). In
view of (18) and Lemma 1, equation (11) can be modified accordingly to
the following:

(19)



Lemma 2 For integer m (even) > 2,n > 0,

m_(ngF__m ¥ ( 1 m 1. m
Sy (-1) (2n+1)!1rr ntz-3 r n+2+2 .

Remark 2 For fixed m the coefficients 35."') are those of the Taylor series of
the function f(a) = sin[msin™(a)]. We qualify this by noting that it can
be shown without teo much difficulty that in an appropriate domain

o0
f(a) -(m)a + St(m) 3 + St(m) 5 P Z S;(m)azn-l—l, (21)
n=0
say, whence

sin(ma) = sin(msin~![sin(a)))

= f (Sin(a))
= ZS‘("‘)S in>**!(a), (22)

n=0
so that S5™ = S{™ (n > 0) by (10).

At this point we check our analysis thus far with a couple of results es-
tablished in [1], noting that I'(s+ 1), as defined by (16), is easily re-written

as
(2s)!
r(s+3)=vaga 220 (23)
whereupon
2 L)
r (s 2) TR 8> 0, (24)
in terms of the Catalan number ¢, (1). First, choosing m = 2 Lemma 2
gives
92n+1 1 3 .
@ 2" -1 3 ,
Sy Gn+ 1)!"I‘ (n 2) r (n + 2) , n>0 (25)

By (17),T(n- 1) =T(n+})/(n—}) and T'(n + $)=(m+3T(n+3), 80
that

(o )elerd) - el). e o



which in conjunction with (24) means that in turn (25) becomes

@____(+l) ,
Sﬂ 22n_1(2n 1) cﬂ? n Z 0’ (27)

this gives (correctly) Sé ) = 2, and further, by (15), that for n > 1,
(n+1)
2@n—1)"
using (8)—this agrees with the Appendix of [1]. If m is now set to 4 (for

our second example here), then according to Lemma 2

4n+l 3 5
W - 4 (-3 5
Sn @+ )it (" 2) r ('”’ 2)

_ (r+1)(2n+3)
T 412 -1)(2n-3) ¥ n20, (29)

on deriving the relations

p( _é) _ Llr-3)

AD = 4180 = _ = —Cp—1 (28)

p(+2) = (o d)r(o+))
- (n+%)(n+§)[‘(n+%) (30)

for n > 0 (by (17)) and again employing (24) as appropriate. We recover

.S'( ) =4 trivially from (29), whilst using (8),(15) it yields

2(2n + 3)
(2n - 3)

concurring once more with the Appendix of [1].

Ag;) = 4qn-1 3(4) n>1, (31)

In summary, it is seen from (28),(31) that S@ = —41-n¢,_, and S =
23-2n[(2n + 3)/(2n — 3)]cn—1 for n > 1. The value m = 6, when verified,
leads to S = -3 41-"((2n + 3)(2n + 5)/(2n — 3)(2n — 5)jcn—1 (n > 1),
and other cases of m, treated in the same way, allow a final form for S{™
to be concluded by appealing to the result

O R B o) - =

10



for n > 0 (the proof of which, by induction, is left as a reader exercise).
From (8),(24) and (32), Lemma 2 may be re-cast as

S((,m) = m,
Sm = (-1)%2'"2"mQ(n;m)cn-1, n>1, (33)
where
1 m=2
Qmm) = { megensd-bnsin ) =468, O

Moreover, with Q(n;m) as defined, we now introduce the Catalan number
¢_1 = —} as an addition to the Catalan sequence (1). Then, since writing

Q(0;m) = (—1)%~1 Vm > 2 is consistent with (34) at n = 0, equation (33)
can itself be re-stated in a slightly neater form to constitute our main result
of the paper.

Theorem 2 For integer m (even) > 2, n > 0,

sS4 = (-1)#2'72"mQ(n; m)ca-1.

ark 3 We can easily relate the coefficient function Ay to the correspond-
mg coeﬂicxent in (9). Writing m = 2p (p = 1,2,3,...), the expansion (9)
reads

o0
sin(2pa) = ZS,(?”)sinz"“(a)

p—1 o)
= ) S@Psin®™(a) + Y SPPsin*+ (), (35)
n=0 n=p

comparison of which with (2) gives by inspection that

o0

2 E 22(n+p) ssmz(”ﬂ) Ho) = Z S¢Psin®™* (a)
n—-r
= Y SEn 1sin®™PNa),  (36)
n=1
and so
hy = 47+p-2509) pn>1 (37)
By way of a sample check of (37), consider the case p = 2 for which
(2n +5)

hy =478, =2 (38)

(2n - l)c"

11



directly from (31). Expressing this in terms of ¢,—; as

(2n + 5)

he(cn-1) = 4mcn—1

(39)

using (8), it is found to match up with h2(cn—1) as given by Theorem 1.
We finish with two corollaries to the work presented.

Corollary 1 For finite (even) m,

(m)
lim { =Bl =1,
n—00 { Sgﬂ) }

Proof Equations (14),(15) give a coefficient ratio (this is also available via
Theorem 2)

S¥Hl _ 1[2n— (m—1)]2n + (m +1)]
st T 2 (n+1)(2n +3) ’
from which the result is immediate.O]

Corollary 2 For finite (even) m,

lim {s¢™} =o.

n—o0

Proof By Theorem 2,
tm {50} = 0%2m i (2P Qmen)
= (-1)%2m lim {27, ,}
_ _ ?E . —-2n
= ( 1) 3 nh—{Iolo {2 cn}a

using a simple change of limit variable and noting that Q(n;m) — 1 as
n — oo. Stirling’s approximation for large n! yields that for large n
14
VW

hence

i {517} = (07572 i { 7} =oo

12



Remark 4 It seems appropriate to show that the asymptotic form of S,(,'")
is in line with that of h, found in [3]. Theorem 2 gives that
ngx))—l = (-1)P42~("+P)pQ(n + p — 1;2p)Ca+p-2, (40)
which for largen > p2>1
1 472 (—1)Pp 1
~ (—1)P42-(04P) . 1. — = ;
(-1)"4 Pl WA (41)
as anticipated, h, thus behaves asymptotically as
(=1)p4ntr—2p 1
vr nyn
by (37), recovering the result derived in [3, (37), p.219)].

(42)

Remark 5 For completeness we remark that another article 6], to which
the interested reader is directed, has looked briefly at the role of hyperge-
ometric functions in generating such series expansions of the sine function
as considered here. It can in fact be used to provide a more direct route to
Lemmas 1,2, as shown in the Appendix.

Summary

This paper, with reference to previous work by the author and others,
has drawn on a particular result associated with Euler to develop a new
representation of certain non-terminating expansions of the sine function
which contain embedded terms of the Catalan sequence. The analysis has
been validated as appropriate.

Appendix

Here, as alluded to in Remark 5, we give a different derivation of Lemma 2
(Lemma 1 is also easily recovered in the process).

Equation (A1) of [6, p.73] gives Euler’s expansion of sin(ma) (10),(11)
as

1_ o i4m
sin(ma) =msin(a)2 /L [ 2 2 3_3 2

sinz(a)) (A1)
2

in hypergeometric form, so that, by comparison with (9),

1_my (l,.m
(3 22{(‘5: 2)n , n>0. (A2)

Sim =m

13



Since, for n > 0, (@), = I'(a + n)/I'(a),

1 m\ (1, m\ _ T+i-2)Tn+i+3)
(-3).G+3), = “=erdeh
Fn+3-2)Tn+1+2)

(-D%ax

(A3)

by (20) for even m > 2. Substituting (A3) into (A2) and noting that
n!(3)n =47"(2n + 1)! (n > 0) yields Lemma 2.
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Remark 6 Antu Ming (c.1692-1763) studied mathematics under the per-
sonal supervision of emperor Kangxi who had established a royal college
by decree in 1670. As well as being an exponent of the idea that geometric
figures and numbers could be transformed into each other, contributing to
the initial idea of a limit (in a geometrical context) and founding the the-
oretical notion of an inverse function, Antu Ming, as we have seen, worked
with series representations of trigonometric functions for which he in fact
found application in astronomy. Such was his influence in this particular
field (he became a youth royal astronomer, and later a top-ranking national
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scholar and head of the Imperial Observatory, participating in the compila-
tion and edition of three very important astronomical works) that, Chinese
astronomers having found a new Minor Planet (No. 28242) in 1999, the
Minor Planet Centre of the International Astronomical Union decreed on
May 26th, 2002, it be named as “Antu Ming’s Star”. The year 2002 was
designated the 310th anniversary of Ming’s birth, and in August a so called
Naming Meeting for the star and Nadamu® was held accordingly in the In-
ner Mongolian village of Chagannor (which lies within the local county of
Zheng Bai Qi%) at which a conference was held to consider and reflect upon
his scientific contribution (this also includes his work, as part of a team, on
the early topographical mapping of China). More than 500 delegates and
20,000 local residents took part in the event, where the decisions to re-name
the village after him and to build the Antu Ming Museum of Science and
Technology were announced in recognition of his achievements and last-
ing legacy in China.® Further details about this fine mathematician and
astronomer of the Qing Dynasty are available from the respected Chinese
historian Professor J.J. Luo (he can be reached by post at the Institute for
the History of Science, Inner Mongolia Normal University, Huhhot, Inner

3A “Nadamu” has evolved, from ancient times, to become a comprehensive modern
day celebration activity integrated with ethnic sports, culture and art, trading and fairs,
ete.

4Zheng Bai Qi (6,229 km?) is part of the city of Xilingolemeng (202,580 km?), which
in turn constitutes part of the province of Inner Mongolia (the latter covering an area
of approximately 1.2 x 108 km?). To clarify, in China “Village” (“Town”) C “County”
(“Qi”) C “City” (“Meng”) C “Province”.

5The so called “ancestral place”—where one’s ancestors/parents were born or lived—
has long been highly cherished in Chinese custom. The authorised record and filing
systems in China are still using this identifier much more commonly than a “birthplace”.
Although in the literature there are a lot of cases relating to the use of birthplace, the
Chinese are still rather respectfully retaining their ancestral places in formal personal
documentation. Since the 1980s some local authorities in China have adopted a standard
requiring that details about a person must contain both his or her ancestral place and
birthplace. This came into force to facilitate data compatibility for those who are to
travel or live abroad, so as to keep in line with some Western countries’ filing formats
which generally require birthplace.

It was once the convention that Chinese scholars named themselves according to the
dwelling place of the very first ancestor(s) they could trace back in family lineage, full
names being formed by the family name followed by that of the ancestral place. In the
official volume which details the history of the Qing Dynasty, the entry for Antu Ming
gives his ancestral place but there is no record of his actual birthplace. It would be
almost impossible to find this since the Mongolians were, historically, a nomadic people.
Chagannor Town is the place where the local governmental council of Zheng Bai Qi is
situated (it houses the central authority of the county). Re-naming it after him was
not, as some Western academic researchers wrongly believe, due to the fact that it is his
exact place of birth (for this is unknown, as just stated), but rather that Zheng Bai Qi is
truly the ancestral place of Antu Ming, a notion well understood, even in today’s times,
by the Chinese in terms of the tradition and culture of their country.
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