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Abstract

An (n, k) binary self-orthogonal code is an (n,k) binary linear
code C that is contained in its orthogonal complement Ct. A self-
orthogonal code C is self-dual if C = C*. Two codes, C; and Ca,
arc equivalent if and only if there exists a coordinate permutation of
C, that takes C, into C3. The automorphism group of a code C is
the set of all coordinate permutations of C that takes C into itself.

This paper is a continuation of the work presented in [2], in which
we described an algorithm for enumerating inequivalent binary self-
dual codes. We used our algorithm to enumerate the self-dual codes
of length up to and including 32. Our algorithm also found the size
of the automorphism group of each code.

We have since made several improvements to our algorithm. It
now generally runs faster. It also now finds generators for the auto-
morphism group of each code. We have used our improved algorithm
to enumerate the self-dual codes of length 34. We have also found
the automorphism groups for each of our self-dual codes of length
less than or equal to 34. The list of length 34 codes are new, as
are the lists of automorphism groups for the length 32 and length 34
codes. We have found there are 19914 inequivalent length 34 codes
with distance 4 and 938 length 34 codes with distance 6.

1 Introduction

Undefined coding theory terms and examples can be found in MacWilliams
and Sloane [5]. Let V,(2) denote the vector space of all binary n-vectors.
An (n, k) binary linear code C is a k dimensional subspace of V,,(2). (We
only consider binary linear codes in this paper, and thus, whenever we use
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the term code we will be referring to this class of codes only.) The integers
n and k are the length and dimension of C, respectively. The n-vectors in
C are called codewords. The weight of a codeword &, which is denoted by
w(E), is the number of ones in &. The weight distribution of C is a count of
the number of codewords in C with weight 7, for i = 0,1,... ,n. The weight
distribution is represented by the sequence (Ao, Ay,..., An), where A; is
the number of weight ¢ codewords in C. The distance of C is the smallest
weight of any non-zero codeword in C. An (n, k,d) code is an (n, k) code
with distance d.

Two codes C; and Cp are equivalent if and only if there exists a co-
ordinate permutation of C; that takes C, into Cy. If C; and C, are not
equivalent then C; and C; are said to be inequivalent. The equivalence
class of a code C is the set of all codes that are equivalent to C. An au-
tomorphism of a code C is a coordinate permutation that takes C into
itself. The set of all automorphisms of C, which is a group, is called the
automorphism group of C.

A generator matrix for an (n, k) code C is a k x n binary matrix whose
rows form a basis for C. We typically represent our codes with generator
matrices. For any code C, there exists a unique gencrator matrix that
is in row-reduced echelon form. Furthermore, there exists a code that is
equivalent to C and is generated by a matrix of the form [/¢|A], where I
is a k x k identity matrix and A is an k x (n — k) binary matrix.

Let @ = (uy,ug,...,u,) and 7 = (vq,v2,... ,v,) be any two n-vectors
in V»(2). The dot product of % and 7, written ©e7, is defined as (3_;-, wiv:)
mod2. Two vectors i and ¥ are called orthogonal if Z e ¥ = 0. The orthog-
onal complement of an (n, k) code C, written C*, is the set of all n-vectors
that are orthogonal to every codeword in C. It is well known that C* is
an (n,n — k) code. If C1 C C then C is called self-orthogonal. If C+ = C
then C is called self-dual. A self-orthogonal code is a self-dual code if and
only if n = 2k.

In this paper, we extend the research presented in [2], in which we
described an algorithm for enumerating inequivalent self~-dual codes. We
used our algorithm to enumerate the self-dual codes of length up to and
including 32. The algorithm also found the size of the automorphism group
of each code produced. We have since made several improvements to our
algorithm. We have used our improved algorithm to enumerate the self-
dual codes of length 34, The number of such codes is summarized in the
following theorem:

Theorem 1.1 There are 24147 equivalence classes of (34,17) binary self-
dual codes, of which 3295 consist of codes with distance 2, 19914 consist of
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codes with distance 4, and 938 consist of codes with distance 6.

Our algorithm now also finds generators for the automorphism group of
each code produced. We have used it to find the automorphism groups of
all codes we have enumcrated (i.e. all codes with length up to and including
34). The enumeration of the length 34 codes and the lists of generators for
the automorphism groups of the length 32 and length 34 codes are new.

Our enumeration consists of two main stages. In the first stage, we
produce a list of (2k, k) sclf-dual codes that contains at least one code from
each equivalence class of (2k, k) self-dual codes. A review of this stage of
our algorithm is given in Section 2. In the second stage of our algorithm,
we eliminate all the equivalent codes produced in the first stage of the
algorithm. This is accomplished by running a program on each code C,
produced in the first stage of the enumeration, that produces a unique
code C, in the equivalence class of C. The automorphism group of the
code C, is also found by our program. In Section 3, we give a somewhat
detailed description of our program. We conclude with Section 4, in which
we give a summary of the results of our cnumeration. Included is a table
of all the different weight distributions for the length 34 codes, and the
number of equivalence classes whose codes have a given distribution. The
length 34 codes with distance 6, along with their automorphism groups, are
available on the world wide web at:

www. cs.umaniloba. ca/~umbiloul/

Further information on the length 34 codes can be obtained from the
author of this paper.

2 Enumerating the Codes

Our enumeration of the sell-dual codes is split into three cases: the distance
2 codes, the distance 4 codes, and the codes with distance greater than 4.
Enumeration of the distance 2 codes is trivial, so we will only discuss our
enumerations of the other two cases. Both enumerations are recursive.

2.1 The Distance 4 Codes

We can enumerate the (2k,k,4) sclf-dual codes provided we have avail-
able a complete list of (2k — 4,k — 2) sclf-dual codes. (Such a list of
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Figure 1: The k x k matrix A(Aq, 7). The (k—2)-vector ¥ has even weight
greater than or equal to two. The (k — 2) x (k — 2) matrix Ap is such that
(Ik-2|Ao) generates a (2k — 4,k — 2) sel-dual code. The rows in A(Ao, 7)
must be orthogonal which means the rows of the (k — 2) x 2 matrix F are
uniquely determined by 7 and Aj.

(2k — 4,k — 2) self-dual codes can be found, of course, by running both
stages ol our enumeration algorithm on the length & — 2 codes.) Our al-
gorithm for enumerating a list of (2k, k,4) self-dual codes that contains at
least one representative from each equivalence class is based on the following
result:

Theorem 2.1 Let C be a (2k,k,4) binary self~dual code. Then there
exists a code C’, equivalent to C, that is gencrated by a matrix of the
form [I|A( Ao, ?)], where @ is a (k — 2)-vector with even weight and Ag is a
(k—=2) x (k—2) binary matrix such that [/,..2|Ag] generates a (2k —4, k—2)
binary self-dual code. The k x k matrix .A(Ag, ¥) is as given in Figure 1.

Proof See [2]. ]

The converse of Theorem 2.1 is also true. That is, given a generator
matrix Go = [lx-2|Ao] for a (2k — 4,k — 2) self-dual code C, and a (k —
2)-vector ¥ with even weight, the matrix G = [/¢]A(Ag,¥)] generates a
(2k, k) self-dual code. This leads us to the following simple algorithm for
enumerating a list of (2k, k,4) self~dual codes that contains at least one
representative from each equivalence class:
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Algorithm 2.2 :
Input: A list Li, of (k —2) x 2(k — 2) matrices [Ix-2|Ao] such that
for any (2k — 2, k — 2) self-dual code Co, there exists one and only one
matrix in L, that gencrates a code equivalent to Co.
Output: A list Loy, of k x 2k matrices [/x]|A] such that for any (2k, k, 4)
sel-dual code C, therc exists at least one matrix in Loy that generates
a code equivalent to C.
begin
Clear Loy;.
for each [Ix—2]Ao] in Lin do:
for each even weight (k — 2)-vector ¥ do:
Set A = A(Ag, 7).
if [7|A] generates a code with distance 4 then:
Insert [/x]|A] in Loy (unless its already present).
end if
end for
end for
end

We refer to the process of producing the generator matrix G = [Ix|A],
from the generator matrix Go = [/x—2|Ao] and (k—2)-vector ¥, as eztending
the code Cp to the code C using the vector ¥, where C and Cp are the
codes generated by G and Gy, respectively. We refer to the vector ¥ as the
ertension vector.

Due to the exponential number of vectors @, as is, Algorithm 2.2 is
too slow and produces too many equivalent codes to be of practical use.
However, many improvements can be made to this algorithm that results in
both a reduction in the running time and the number of equivalent codes
produced. A substantial reduction in the running time was achieved by
examining the different ways the weight 4 words of a self-dual code can
interact. This led us to a classification of the distance 4 codes based on
the weight 4 structures they contain. Each class of codes was enumerated
scparately. This resulted in a reduction in the number of codes input into
our algorithm, the number of vectors # used by our algorithm, and the
number of equivalent. codes produced by the algorithm. We were also able
to reduce the number of equivalent codes produced by restricting the form
of the generator matrices produced. For example, whenever we produced a
matrix [/|A], we sorted the rows and columns of A in descending order (i.e.
in order of decreasing binary value when each row/column is considered a
binary integer). For further information see [1].

We have used our algorithm to produce a rnanageable list of the distance
4 sell-dual codes of length 34. The enumeration took approximately 15
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hours. (Note: all our programs were run on a Solaris 2.5.) Our list of
length 34 codes contained, on average, 3.4 equivalent codes.

2.2 The Distance > 6 Codes

Once we have our list of (2k, k, 4) sell-dual codes that contain at least one
code from each equivalence class, we then execute the second stage of our
algorithm: removing the equivalent codes from our list (which we discuss
in Section 3). This leaves us with a list of (2k, k,4) sell-dual codes that
contain one and only onc code from each equivalence class. This list is used
to enumerate the (2k, k,d > 6) scll-dual codes.

The (2k, k,d > 6) self-dual codes come from the (2k, k, 1) sclf-dual codes
that do not contain any intersecting weight 4 words (i.e. codes that do not
contain weight 4 words that have a value of one in a common coordinate.)
Our algorithm for enumerating the (2k,k,d > 6) codes is based on the
following result:

Theorem 2.3 Let Cj be a (2k, k, d > 6) sell-dual code. Then there exists
a code Cop generated by Go = [/x|As], where Cp is equivalent to Cg, and a
k-vector 7, such that G = [Ir+2|A(Ae, 7)] generates a (2k +4, k + 2, 4) self-
dual code C that contains one and only one weight 4 word. Furthermore,
there are at most two other inequivalent codes that can be extended to a
code equivalent to C. One of these codes is a (2k, k,4) sell-dual code that
does not contain any intersecting weight 4 words. The other is a (2k, k, d’)
sell-dual code, where 4 < d' <d - 2.

Proof See [2]. O

Given any one of the three smaller codes in Theorem 2.3, we can find the
other two codes as follows: Let Cy, with generator matrix G, = [I|A,], be
any one of the three (2k, k) codes that can be extended to a code equivalent
to the (2k + 4, k + 2,1) code C in Theorem 2.3, and let 14 be an extension
vector that extends C) to a code equivalent to C. Then the matrices Go =
[1kIR( A4, 1)} and G3 = [I¢|S(A;, 1i)}, where R(A, 1) and S(A,, 14) are
defined in Figure 2, generate the other two codes. This leads us to the
following algorithm for enumecrating a list of (2k, k,d > 6) sell-dual codes
that contains at least one representative from each equivalence class:

178



weuw=1mod2
for any £ € Xg, Zo 4 = 0 mod 2

A= forany £ e X, e =1mod 2
for any £ € X, fe4 =1mod 2
forany £ € X3, Zed=0mod 2
R(A;,14) =

Figure 2: The k x k matrices R(A,, 1%) and S(A,, 14) are produced from
the k x k matrix A; and the (k—1)-vector %. The notation X @4 means add

modulo 2, component by component, # to cach vector (i.e. row segment) in
X.

Algorithm 2.4 :

Input: A list Ly, of k x 2k matrices {/k]A;] such that for any (2k, k, 4)

self-dual code C4, that does not contain any intersecting weight 4 words,

there exists one and only onc matrix in L;, that generates a code equiv-

alent to C. ,

Output: A list L,y of k x 2k matrices [Ix|Ao] such that for any
" (2k,k,d > 6) sell-dual code Cp, there exists at least one matrix in

Loyt that generates a code equivalent to Cop.

begin
Clear Loy.
for cach [/¢|Ay] in Ly, do:
for cach odd weight (k — 1)-vector % do:
if [/x+2]A(Ay, 1)) gencrates a (2k, k,4) code with only
one weight. 4 word then:
Sct As = 'R(A], 147).
Set Az = S(Ay, 140).
Let dy = the distance of the code gencrated by [/x|A2).
Let dg = the distance of the code generated by [/]As].
if dy # ds then:
if do > d3 then:

Set Ag = Aa.
else
Set Ag = Aj.
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end if-then-clse
Insert [I¢]Ao] in Loy, (unless alrcady present).
end if
end if
end for
end for
end

As with our algorithm for the distance 4 codes, this simple algorithm
is too slow and produces too many equivalent codes to be of practical use.
However, as with the distance 41 case, many improvements can be made to
this algorithm that result in both a reduction in the running time and the
number of equivalent codes produced. Again, this can be accomplished by
examining the structures of the weight d words in the codes and by limiting
the number of different codes produced. For further information see [1].

We have used our algorithm to produce a manageable list of the distance
d 2 6 sell-dual codes of length 34. The cnumeration took approximately
150 hours. Our list of length 34 codes contained, on average, 5.8 equivalent
codes.

3 Eliminating Equivalent Codes

Once we have our list L of (2k, k) sclf-dual codes that contains at least one
representative from each equivalence class of interest, we then remove all of
the equivalent codes from L. We accomplish this by running, on each code
C in L, a program that produces a unique code C, in C’s equivalence class.
That is, if Cy and C are equivalent codes, then when we run our program
on Cj, the code C,, produced is the same code that is produced when we
run our program on C,. By replacing each code C in L with the equivalent
code C, produced by our program, and then removing all duplicates from
L, we end up with a list 1. of codes that contains one and only one code
from each equivalence class of interest. Our program also finds generators
for the automorphism group of C,,.

We refer to the algorithm used by our program as a unique representalive
algorithm. We refer o the code C,, produced by the program as a unique
representative for the equivalence class of the input code C. In this section,
we will describe our unique represcentative algorithm.

180



3.1 A Simple Unique Representative Algorithm

Due to the complexity of our algorithm, we will begin by describing a simpli-
fied version of our unique representative algorithm. Though this simplified
algorithm becomes impractical for relatively small codes, it does form a
basis for our final algorithm.

Let C be a (2k, k) scll-dual code. Let G(C) denote the set of all k x 2k
binary matrices G = [/x]A] that generate a code equivalent to C. Given
any G € G(C), our unique representative algorithm produces a unique
Gy € G(C) (that, of course, generates a unique code C,, that is equivalent
to C). Before we can deseribe which matrix G, our simplified unique rep-
resentative algorithm produces, we must first introduce some terminology
involving comparisons of various structures.

Let G be a gencrator matrix for a (2k, k) self-dual code and let W; denote
the number of rows with weight i in G, for = 2,4, ... ,2k. We will refer to
the sequence (Wa, Wy, ... , Woy) as the row weight distribulion of G. Let G
and G’ be matrices with row weight distributions (Wa, Wy, ..., Wa) and
(W3, W),...,W3.), respectively. We will say the row weight distribution of
G is less than the row weight distribution of G if W; < W/ wherc i is the
smallest integer in which W; and W/ difler. Let v and ' be binary strings
of length 2k. We will say v is less than v’ if the binary value of v is less
than the binary value of v’. Let M and M’ be two binary matrices with
equal dimensions. We will say M is less than M’ if row i of M (which is a
binary string) is less than row i of M’, where row i is the first row (from top
to bottom) in which M and M’ differ. (Note, for each of the comparison
operations we have just defined, we have only described what we mean by
less than. We will also use phrases such as equal to and greater than with
the obvious interpretations.)

The matrix G, produced by our simplified unique representative algo-
rithm is the unique matrix in G(C) that posscsses the following two prop-
erties: 1) G, has a minimal row weight distribution (i.e. the row weight
distribution of G,, is less than or equal Lo the row weight distribution of
all other matrices in G(C)), and 2) G, is greater than all other matrices in
G(C) that have a minimal row weight distribution.

Given any C = [Ii|A] in G(C), our unique represcntative algorithm pro-
duces G, by applying a sequence of column permutations and elementary
row operations to G. Of course, any sequence of such operations results in
a matrix that is an element of G(C). In describing our algorithm, we will
make use of the following conventions and notation regarding these oper-
ations: We will use permutations = of the integers 1,2,...,2k to denote
both permutations of the columns of G and permutations ol the coordinates
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of C. That is, given the permutation:

( 1 2 ... 2% )

T =

a, a2 -+ Ay

we will use the notation 7C Lo denote the code C’ that is obtained by mov-
ing coordinate a; of C to coordinate i of C’, for i = 1,2,... ,2k. Similarly,
we will use the notation 7G to denote the matrix G’ that is obtained by
inserting column a; of G into column i of G/, for i = 1,2,...,2k. The
notation RREF(wG) will be used to denote the row-reduced echelon form
of #G. Let , denote any permutation of the form:

1 2 -« &k k+1 k+2 ... 2k
a;y az -+ ar k+1 k+2 ... 2k

and let 7 denote any permutation of the form:

1 2 -« k k+1 k+2 --- 2k
l 2 LA k l)] ’)2 e bk :

We will use I, to denote the set of all such permutations «;, and [y to de-
note the set of all such permutations 7p. Finally, given a generator matrix
G’ = [I¢|A’) and a permutation )75, we will refer to the permutations .
and m,

= 1 2 ... k and 7. = 1 2 k

T a az - ag i £ b1—k b2—k bk—k !
as the permutations of the rows and columns of A’, respectively, that
correspond to the permutations 7;, and mp, respectively. The reason for this
is that when we find the row-reduced echelon form of the matrix w7 rG,

the matrix that results is [/,|A”], where A” is obtained by applying 7, to
the rows of A’ and =, Lo the columns of A,

Now, given the matrix (7 = [/¢|A], our unique representative algorithm
finds Gy, in two stages. In the first stage, it produces a set [, of pairs (G’, IT),
where G’ € G(C) and I is a set of permutations 7 in which RREF(#G) =
G’. (Note, the sct Il is used to find the automorphism group of Cy,, which we
will discuss later.) The set L produced has the property that if G = [I|A”)
is any matrix in G(C) with a minimal row weight distribution, then there
exists at least one G’ = [/|A’] in [, in which the rows and columns of A’
are a permutation of the rows and columns of A”. For each G’ = [I]A’] in
L, the second stage of our algorithm finds the largest matrix G” = [I|A”]
in which the rows and columns of A” are permutations of the rows and
columns of A’. The largest G” = [/x|A”] found in the second stage gives
us our unique. matrix Gy,. For reasons that should soon be clear, we refer
to the first stage of our algorithm as the combinatlion algorithm and the
second stage of our algorithm as the permulalion elgorithm.
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3.1.1 Our Simplified Combination Algorithm

The input to our combination algorithm is a generator matrix G = [I¢|A]
for a (2k,k) scll-dual code C. The output is a set L of pairs (G',II),
where G’ is a generator matrix for a code equivalent to C and Il is a set of
permutations 7 in which RREF(zC) = G'.

Our combination algorithm is bascd on a partition of the set of all (2k)!
permutations of the integers 1,2, ... , 2k into (%) disjoint sets I1(T’), which
we define as follows: Let Sk i denote the set of all k-combinations of the
set of integers {1,2,...,2k}. That is, Sax is the set of all subsets T of
{1,2,...,2k} in which |T| = k. For cach T € Sy, we define [I(T) as
the set of all permutations 7 that move the k integers in T to the first k
integers. In other words, 11(T) is the set of all (k!)2 permutations of the
form:

1 2 - k k+1 k+2 ..o 2k
a az --+ Qg h] ’)2 bk

where {a),ay,...,ax} = T. Note that the set TI(T) is equal to the set
I, pw, where 7 is any permutation in IT(T).

For each T € Sy k, we will use the notation G(T') to denote the set of
all matrices RREF(n(G), where © € TI(T). Given any G’ € G(T'), we can
generate the set G(T') by producing cach matrix RREF (z,7pG’), where
g, € I, and 7y € Ll p. This fact can be used to easily deduce the following
three properties of the sets G(T):

P1 Either every matrix in G(T) begins with an identity matrix (i.e. is
ol the form [/¢|A’]), or none of the matrices in G(T) begin with an
identity matrix.

P2 If the matrices in G(T') begin with /i then, given any G’ = [Ik|A’] €
G(T), the matrix G” = [/x]A”] is in G(T) if and only if the rows and
columns ol A” are permutations of the rows and columns of A’.

P3 Either G(T1) = G(T3) or G(Ty) N G(Ty) = 0, where Ty, Ty € Sax k.

For each T € Sak.k, our combination algorithm produces one matrix G’
in G(T). Property P1 tells us that if the matrix G’ produced does not
begin with an identity matrix then none of the matrices in G(T) begin with
an identity matrix, and thus, cannot contain G,. Property P2 tells us
that if G’ = [I|A’] then every matrix in G(T) can be produced by simply
permuting the rows and columns of A’. Furthermore, every matrix in G(T')
will share any characteristic that does not depend on the arrangement of

183



the rows and columns of A’. In particular, the row weight distributions of
every matrix in G(T') will be the same. Property P3 tells us that whenever
our algorithm produces matrices Gy = [Ic|A1] and G, = [Ix|A2] in which
Ay = Ay, where G € G(T1) and G2 € G(T?) for some T}, T, € Sz, then
the sets G(T) and G(T3) will be the same, and thus, only one needs to be
searched for Gy.

For each T € Sy, the combination algorithm performs the follow-
ing action: First, it produces a permutation mg € I1(T) and the matrix
Go = RREF(moG). If Gy does not. begin with [y, it is discarded and the
algorithm continues on to the next combination in Sak k. If Go = [Ik|Ao),
the algorithm will then sort the rows and columns of Ap in descending order
by calling a function QuickOrderMalriz(Ag, mg, A, 7). This function uses
a simple, non-exhaustive algorithm o sort the rows and columns of Ap in
descending order, producing the matrix A’. It also returns a permutation
n € II(T) in which RREF(nC) = [lk|A’']. QuickOrderMalrix sorts the
rows and columns of Ag in lincar time with respect to the number of rows
in Ag. However, since it is not an exhaustive algorithm (and since there may
exist many dillerent. matrices whose rows and columns are in descending
order that differ in only the arrangement of their rows and columns), given
any two matrices Ag and Ag, whose rows and columns are permutations
of one another, QuickOnlerMalriz may not necessarily produce the same
matrix. The reason we call QuickOrderMatrix is to increase the chances
of our algorithm producing cqual matrices. That is, if Ty and Ty are such
that G(T1) = G(T3), then by sorting the rows and columns of our matrices,
we increase the chances of our algorithm producing matrices Gy € G(Th)
and Gy € G(T») in which G; = (75, which in turn reduces the number of
matrices we need to consider in our permutation algorithm.

Once our algorithm has produced a matrix G’ = RREF(nG) = [I|A'],
in which the rows and columns of A’ are in descending order, it adjusts the
set of pairs L as follows: First, it compares the row weight distribution of
G’ to the row weight distribution ol the matrices already in L. If G’ has
a larger row weight distribution, it is discarded. Il G’ has a smaller row
weight distribution, L is replaced with the sct consisting of the single pair
(G',{=}). If G’ has an equal row weight distribution then the algorithm
will first determine if /; contains a pair (G”, I'1) in which G” = G’. If this is
the case then 7 is added to the set I1. If this is not the case then the pair
(G, {r}) is added to /.. Note that Lhe reason we include the permutation 7
in the set L is that is allows us to find the set of permutations I1(T'), which
in turn will allow us to find the automorphism group of G.,.

At the end of our combination algorithm, we will have produced a set
L of pairs (G',T1) with the property that if T is any k-combination in
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Sakx in which the matrices in G(T) begin with [ and have a minimal
row weight distribution, then there exists one and only one pair (G',I)
in L in which I1 contains a permutation = € [I(T). We summarize the
combination algorithm for our simplificd unique representative algorithm
in Algorithm 3.1.

Algorithm 3.1 : CombinationAlgorithm(G, L)

Input: A generator matrix G = [Ii|A] for a (2k, k) scll-dual code C.
Output: A set L of pairs (G’, 1), where G’ generates a code equivalent
to C and 11 is a set of permutations « in which RREF(xG) = G’

begin
Initialize L = 0.
for each T € Szkk do
Pick any permutation mq in [I(T).
Set Go = RREF(m ().
if Co = [Ikle] then
QuickOrderMatric( Ao, mo, A', 7).
Let G’ = [I}A').
if the row weight distribution of &’ is less than the
row weight distribution of the matrices in L then
Set L = {(C',{m})}.
else if the row weight distribution of G’ is equal to the
row weight distribution ofthe matrices in L then
if the pair (G',11) is an clement of /. then
Replace IT with 11U {#}.
clse
Insert. the pair (G7, {x}) into L.
end if-then-clse
end if-then-clsc-if
end if
end for
end

3.1.2 Our Simplificd Pcrmutation Algorithm

The input to our permutation algorithm is the sct L of pairs output by the
combination algorithm. For cach pair (C/,11) in L, where G’ = [Ix|A’], the
permutation algorithm finds the unique matrix G” = [/x|A”], where A” is
the largest matrix whose rows and columns arc permutations of the rows
and columns of A’. The largest such matrix G” produced by the algorithm
gives us our generator matrix G,, for the unique representative C,,.
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Given any G’ = [I¢|A’], the permutation algorithm finds the largest
matrix G” = [I|A”], where the rows and columns of A” are permuta-
tions of the rows and columns of A’, by calling a function UniqueOrderMa-
triz(A’, A”,11”). This function is based on the following two facts: First,
the rows and columns ol A” must be in descending order (otherwise, we
could swap any pair of offending rows (or columns) and get a larger matrix).
Second, for any permutation 7, of the rows of A’ there exists at most one
column permutation 7. in which the rows and columns of w7, A’ are in de-
scending order. (The reason Lhere is at most one such column permutation
is that, provided [I¢|A’] gencrates a sclf-dual code with distance greater
than 2, the columns of A’ arc distinct.) The function UniqueOrderMatriz
uses a recursive algorithm to consider all the diflerent row permutations
of A’ that may lead to A”. At the start of the i** level of the recursion,
the Arst z — 1 rows and frst 2 — | cornponents of the columns of A’ are in
descending order. The algorithm then tries each possibility for row ¢ of A’
{where row i is selccled from the last k — i rows of A’) that may lead us to
A". For cach possibility, the algorithm moves the sclected row to row i of
A’, sorts the first 7 components of the columns of the resulting matrix in
descending order, and then proceeds to the (i 4+ 1) level of the recursion.
The function UniqueOrderMalriz also returns the set 1”7 of all permutations
w,mr, where mr, € 11, and mp € 15, in which RREF (r,wpC’) = [1e]|A”].
The set. [1” is found by the algorithm with simple bookkeeping.

The permutation algorithm also finds the automorphism group of C,,. It
does this by finding the sot I, of all permutations « in which RREF(7G) =
Gy (where G is the matrix input. into the combination algorithm). This
immediately gives us the automorphism group of €, since AUT(C,,) =
M,7~1, where 7 is any permutation in I1,,.

The permutation algorithm finds I1,, by producing two sets of permu-
tations I1; and [I,. Let Sy denote the set of all k-combinations T in which
Gy € G(T). The set I, consists of one and only one permutation w, from
each set [I(T"), where T € S, such that RREF(n.CG) = Gy. The set I,
consists of all permutations m; 7y, where m), € 1y, and mp € Ty, such that
RREF (%, mnGy) = Gy. Yor cach m, € Il¢, the sct Tl,m, gives us the set
of all permutations 7w € 11(T) in which RREF(=C) = G, where T is the
k-combination whose set II(T) contains w,. This is due to the fact that,
as mentioned, given any 7, € II(T) the set TI(T) is equal to the set of all
permutations 11, 1Tpm.. Therefore, since RREF(7.G) = Gy, the set M m,
will give us the set of all perrmuitations in I(T) that give us G,. Thus,
M, =T,ll,.

The sets of permutations 11, and Il; are found as [ollows: Let (G’,IT)
be a pair in our input sct /. in which the rows and columns of the matrix
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A’ in G’ = [Ig| A'] arc permutations of the rows and columns of the matrix
Ay in Gy = [Ix]A.]). Then when we run UniqueOrderMatriz on A', it
will return A, along with the sct T1” of all permutations w,mgr in which
RREF(wwrG’') = G,. This immediately gives us T, since I, = M7z~
where 7 is any permutation in 11”7, For cach #’ in the set II, if T is the
k-combination in S, in which o’ € 11(T), the set of permutations I1” can
also be used to find a permutation #, € [1(T) in which RREF (7.C) = G,.
That is, il 7 is any permutation in ['1” then 7 = 7w’ gives us a permutation
in II(T) in which RREF(n.C) = G,,. Finding such a permutation =, for
each @' in L that is an clement of a set IT1(T") in which Gy € G(T'), gives.us
our set [g.

We summarize the permutation algorithm for our simplified unique rep-
rescntative algorithm in Algorithin 3.2. Together, Algorithms 3.1 and 3.2
give us our simplified unique representative algorithm.

Algorithm 3.2 : PermutalionAlgorithm(l, G, AUT(C,))

Input: The set. £, output. by our combination algorithm. L is a set
of pairs (G',11), where G’ = [/,|A’] generates a code equivalent to
the code generated by ¢ (the matrix input into the combination algo-
rithm) and 11 is a set of permutations 7 of the columns of G in which
RREF(nG) =C".

Output: The matrix G, and the group of permutations AUT(C,,).
The matrix G,, generates the unique representative C,, of the equiva-
lence class of C, the code generated by G. The group AUT(C,,) is the
automorphism group of C,.

begin
Initialize G,, Lo nil.
for each pair ([/k|A’), 1) in /. do
UniqueOrderMatriz(A’, A7, 11").
Set G” = [I|A”).
if Gy = nil or " is greater than G, then
Set G, = C".
Pick any permutation 7 € 11”7,
Set 11, = "=~ 1.
Set 11, = =Il.
clse if G” is cqual 10 G, then
Pick any permutation « € I1”.
Set M, =1l Ul
end if-then-clse
cnd for cach
Set 11, = I,11,.
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Pick any permutation 7 € 11,,.
Set AUT(C,) =TT, 7.

end

Note that due to the size of the automorphism groups of some of our
codes, the scts of permutations found in our unique representative algo-
rithm can get quit large. In some cases, Loo large to store the entire sct.
Time and space limitations prevent us [rorn giving details on how we get
around this problem, so we will only bricfly discuss how we get around it in
our simplified combination algorithm. Whenever the number of permuta-
tions produced and stored in the combination algorithm reaches a certain
limit, we break from the combination algorithm and run the permutation
algorithm on the partial list [, thus far produced by the combination al-
gorithm. The permutation algorithm will find G, = [/g|A,), the largest
matrix with minimal row weight distributions in the sets G(T') that our
combination algorithm has thus far considered, and AUT(C,), the auto-
morphisms of C,, that are derived from the sets TI(T') considered thus far
by our combination algorithm. The permutation algorithm will now also
return a set. L' consisting ol a single pair ([/¢|A’], {m}), [rom our partial
list L, in which the rows and columns of A’ are permutations of the rows
and columns of A,. We then return Lo the point where we broke from the
combination algorithm, replace the sct /. with L/, and then continue on
from where we left off. Note that we do not have problems with the sizes
of our groups produced by our algorithm since we only store generators for
the group. Further, our methad for storing groups requires us to store at
most (2k(2k - 1))/2 generators,

3.2 Improvements

As mentioned, our simplified unique representative algorithm becomes im-
practical for relatively small codes. Reasons for this include the facts that
our combination algorithm nceds to produce (2:) permutations, one for
each sct I1(T"), and the function UniqueOrderMalriz in the permutation al-
gorithm may need to consider, in the worst case, k! row permutations. By
examining diflerent structures of endewords that may oceur in a self-dual
code, we have managed Lo improve our unique representative algorithm to
the point that we have been able wo use it to find unique representatives for
each ol our codes of length up to and including 34. We will conclude this
section by discussing the improvemenis we have made to our algorithm.
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* *
1000,11100,10000'11]00*
01 0 00111010
01 001101 0 . .
001011011 o 0 01 0010110
0 001001110
the es-block the e4-block
i i
o e, s e,
10 .. 00C}|1 110 ... 0 0
o1 .. 00Ottt 1r01"%.. 0 O
H
o0 --. 1011100 ... 1 0O

the di-blocks, 1 > 2

Figure 3: The different. weight 4 row blocks, up to row and column re-
arrangement, that may occur in a generator matrix [I|A] for a (2k, k,4)
sell-dual code. The vertical bar separates the columns that oceur in [ and
A. The notation 0* means cnough zeroes Lo fill out the rows.

3.2.1 The Distance 4 Codes

We will begin by discussing the improvemnents that were realized by inves-
tigating the different ways weight 4 rows can interact in a generator matrix
for a sell-dual code with distance 4.

Let Cbea (2k, k, 1) self-dual ende. 1t can be shown that the set G(C)
must, conlain matrices with weight 4 rows (sec [1]). So, let G be a matrix
in G(C) that contains at least. one weight 1 row. We group the weight 4
words in G into one or more disjoint sets we refer Lo as weight 4 row blocks.
A weight 4 row block is a set. W of rows in ¢ with the properties that: 1)
for any row ry in W there exists at least one row rp in W such that 7y and
79 interseet, 2) il 7y is a weight 4 row in G that is not in W then r; does
not intersect any of the rows in W, and 3) W cannot be partitioned into
two non-empty subscts both of which posses the first two properties. The
different weight 4 row blocks, up to row and column rearrangement, that
may occur in a generator matrix of the form [/¢|A] are the es-block, the
es-block, and the d;-blocks, 2 > 1. These blocks are listed in Figure 3.

The unique matrix G, returned by our unique representative algorithm
for the (2k, k, 1) scll-dual codes contains what. we refer to as a mazrimal com-
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bination of weight 4 row blocks. Further, the row and column arrangement
of the weight 4 row blocks in G, will be in what we refer to as standard or-
der. In order to define these concepts, we must first establish a precedence
relation for the different weight 4 row blocks. ;jFrom highest to lowest, this
precedence is e4,e3,...,d;, ... ,dy,d). We consider a generator matrix G
in G(C) as having a maximal combination of weight 4 row blocks if for
every G’ € G(C), cither ¢ and ¢’ have the same number of each of the
different weight 4 row blocks, or, ¢ has more B-blocks than G’, where B
is the highest precedenced weight 4 row block in which G and G’ contain
a different amount. We consider the weight 4 row blocks in G’ = [Ix|A’] to
be in standard order il they oceur in the top right-hand corners of I and
A’ and are ordered in descending order of precedence. More formally, we
have the following: Let m denote the maimber of weight 4 rows in G. Then
the weight 1 row blocks in G are in standard order if: 1) the m weight 4
rows in G occur in the first m rows of (, 2) the rows/non-zero columns
ol each weight 4 row block oceur before the rows/non-zero columns of all
lower precedenced blocks, and 3) the m x 2k submatrix in the first m rows
of G is greater than or equal Lo the submatrix in the first m rows of any
matrix in G(C) that. has a maximal combination of weight 4 row blocks and
possesses the first Lwo propertics.

Of course, G(C) may contain many matrices that have a maximal com-
bination of weight 4 row blocks that are in standard order. Let Gpax(C)
denote the set of all matrices in G(C) that have a maximal combination
of weight 4 row blocks that are in standard order. The matrix G, re-
turned by our unique representative algorithm for the distance 4 codes is
the unique matrix in G, (C) in which: 1) the row weight distribution of
Gy is less than or equal to the row weight distribulion of all other matrices
in Gmez(C), and 2) G, is greater than all other matrices in Gz (C) that
have a minimal row weight distribution.

Time and space limitations prevent us from giving the details of how we
use the maximal combinations ol weight. 4 row blocks to reduce the work
our unique representative algorithm performs in finding G,. So, we will
only give briel outlines of how our revised combination and permutation
algorithms work. More information can be found in [1].

Let Toaz (C) denote the set of all k-combinations in which the matrices
in G(C) have a maximal combination of weight 4 row blocks. Our revised
combination algorithm only produces permutations from the sets IT(T) in
which T € T,,0:(C) (along with permutations from some of the unwanted
sets I1(T) in which the matrices in G(T) do not have the form [I¢]|A’]). It
accomplishes this by first producing a set. L. (C) of pairs (Go, Ilp), where
(o has a maximal combination of weight 4 row blocks in standard order and
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Iy is a set. of permutations 7 in which RREF(7C) = Go. The sct Lmaz(C)
has the property that for any T € Ty..2(C), there exists one and only one
pair (Go,1Ta) € Limaz(C), and permutation w € I, for which there exists
a permutation 7’ such that «'m € 1I(T), where 7’ is a permutation that
only involves the columns of Gy that do not have a value of one in any of
the weight 4 rows in Gy. For cach pair (Go, o) € Lmaz(C), let T(Go, o)
denote the set of all T € T,z (C) for which such a permutation 7’7 exists.
The combination algorithm uscs the pair (Go, [Tp) to find permutations
for the subset of k-combinations T in Tinez(C) in which T € T(Go,Ilo).
More specifically, for each (Go,Tly) € limaz(C), the algorithm produces a
set " of pairs (G”,11”) with the property that for any T € T(Go, ITa), in
which G(T) may contain G,, there exists a (G”,11”) € L” and 7" € 11"
such that #” € T(T) and RREF(x"C) = G”. 1t accomplishes this by
first running our simpliicd combination algorithm on the matrix Gp, but
instead of considering all k-combinations in Sak &, it only considers the k-
combinations T in which 11(T) contains permutations that do not move the
columns in Gy that have a value of one in at least one of the weight 4 rows
in Gy (i.e. T is considered if, in Gy = (/| An], the columns that are moved
by the permutations in I'I(T) rom /¢ to Ag, and vice-versa, do not have
a value of one in any of the weight 4 rows in Gg). The output of this run
is a set L' of pairs (G, 11’), in which the row weight distribution of G” is
minimal (over all matrices produced during the run). The permutations
7' in the set 1T’ are such that RREF(7'CGa) = G”. For each pair (G”,II')
in L/, the algorithm then replaces the set of permutations 17 with a set
of permutations I”. The set 11”7 consists of all permutations 7#’ where
m € llp and o' € V. This gives us our set. L”, of pairs (G”,1”), for the
pair (Go, I'lo). Combining cach of the sets 1" produced during the algorithm
gives us our set [; of pairs (G, 11) output. by our combination algorithm.

The savings we realize with our revised combination algorithm are due
to the fact that we do nol prodnee permutations = from the sets [I(T)
in which the matrices in G(T) have the form [/¢|A’], but do not have a
maximal combination of weight. 4 row blocks. The algorithm also avoids
producing permutations from some of the sets I(T") in which the matrices
in G(T) do not have the form [/ A’).

Let /. denote the set of pairs (G, 1) produced by our revised combina-
tion algorithm. We can use the lact that each G’ in L has a maximal combi-
nation of weight 4 row blocks in standard order to improve our permutation
algorithm. For each G’ = [I|A’] in I, our revised permutation algorithm
finds the largest matrix G” = [/¢|A”], where the rows and columns of A”
are permutations of the rows and columns ol A’; such that G” has a max-
imal combination of weight 4 row blocks in standard order. Note that, as
with our simplified permutation algorithm, the columns of the matrix A”
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Figure 4: The [, i-blocks, w > 6, i > 1.

must be in descending order. Again, this means we only necd to consider
the diflerent permutations of the rows of A”. Now, let m denote the number
of weight 4 rows in G’. Since the weight 4 row blocks in G’ are in standard
order, the m weight 4 rows in G’ oceur in its first m rows. Therefore, any
permutation of the rows of A’ that results in A” cannot move any of the first
m rows of A’ to the last k —m rows of A’, and vice-versa. This means the
only row permutations our UniqueOrderMalriz function needs to consider
are those of the form mymy, where 7y only moves the first m rows of A’ and
w2 only moves the last k — m rows of A’. Thus, in the worst case, the call
to the function UniqueQOnderMalriz in our revised permutation algorithm
now needs to consider at. most m!(k — m)! row permutations, instead of k!.

We can realize even more savings in hoth our revised permutation and
combination algorithms by considering permutations of a weight 4 row block
W that are antomorphisms in any code C that contain W. How we can use
such permutations to reduce the amount of work we do is discussed in [1].

3.2.2 Codc With Distance Greater Than Four

Our improvements based on the weight 4 words in a code C ofler relatively
litter help if C contains only a few weight 4 words and no help if C has
distance greater than 4. For these codes, we consider some of the different
ways the weight w rows can interact in a generator matrix of the form
[Tk|A], for w > 6. In particular, we consider blocks of weight w rows that
from what we call [, ;-blocks, for i > 1, which we give in Figure 4.

For the codes C with distance greater than 4, the unique matrix G,
returned by our unique representative algorithm contains what we refer to
as a mazimal combinalion of non-inlersecling [y, ;-blocks. Further, the Jw.i-
blocks in G, will be in standard order. In order to define this concept, we
first need to define the related concepl of a combination of non-intersecling
Juw,i-blocks. We also need to establish a precedence among the fuw,i-blocks.
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Let G = [I]A] be a generator matrix for a (2k, k, d > 6) sclf-dual code. We
consider a set S of rows in GG as forming a combination of non-intersecting
Juw,i-blocks if S can be partitioned into m > 1 disjoint sets Sy, S2,...,5m
in which: 1) the rows in S, form an f,,_ -block, for 0 < z < m, and 2)
the sets T, and Ty, are disjoint, where T and T, are the scts of non-zcro
columns in S; and §,, respectively, for 0 < z < y < m. The precedence
we establish among the f,, ;-blocks is based on the weight of the rows in
the block and the number of rows in the block. We consider an fy, -
block as having higher precedence that an f,,, i,-block if cither un < wo, or
wy = wp and 71 > i5. We consider a matrix G € G(C) as having a maximal
combination of non-interseeting fo, i-blocks if for every G’ € G(C), cither
G and G’ have the same number of cach of the different f,, ;-blocks, or, G
has more 3-blocks than ¢, where 13 is the highest precedenced £, s-block
in which G and G’ contain a different. amount. The maximal combination
of non-interseeting [, -blocks in (7 is in standard order if the [, i-blocks
occur al the start of ¢, the rows of cach block oceur in consccutive rows,
the rows and columns of the blocks are order as in Figure 4, and each block
oceurs before all other blocks with lower precedence.

The revisions we make to our combination and permutation algorithms
for the codes with distance greater than 4 mirror the revisions we made
for the distance 4 code, with one slight change. The change we make is
necessitated by the fact that a generator matrix may contain more than
one maximal combination of non-interseeting f,, ;-blocks. That is, it is
possible for a generator matrix ¢ to contain two sets of rows Sy and
S2, where S) # Sy, in which both Sy and S form maximal combina-
tions of non-intersecting f,, ;-blocks.  To get around this problem, our
combination algorithm logically partitions cach set I(T) into ¢ > 1 scts
M (T), Na(T), ... 1 (), M (T). The set Iy (T) consists of all per-
mutations © € [I{T) in which RREF (7 () does not. contain a maximal com-
bination of non-intersecting [, :~blocks Lhat are in standard order. Each set
IT;(T), where 1 €1 <1 -1, consists of all permutations = € 11(T) in which
the matrices in G(T) contain corresponding maximal combinations ol non-
intersecting [y, ;-blocks that are in standard order. That is, if # € T1,(T)
and S is the set of columns in ¢/ = RREF(wC) that are non-zero in the
rows of the maximal combination of non-intersecting f,, i-blocks in G’ then
wwp7 is an elment of 11;(T') il and only il 7, and 7 do not move any of the
columns in S out of S, where ny, € 11, and 7 € 1Tz, Now, our combina-
tion algorithm will produce one permutation 7 from each of the sets 11;(T),
1 <i <L So, for each set T in which T(() contains a matrix G’ = [I¢]|A’]
that has a maximal combination of non-intersecting fy, i-blocks, the combi-
nation algorithm is essentially finding one matrix G” = (/x| A”], where the
rows and columns of A” are permutations of the rows and columns of A/,
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for each of the different sets of rows in ¢’ that form a maximal combination
of non-intersecting f,, -blocks. Thus, in the permutation algorithm, given
a generator matrix G’ = [Ix|A’] whosc first m > 1 rows contain a maximal
combination ol non-interseeting fi, i-blocks in standard order, the only row
permutations of A’ that the lunction UniqueOrderMatriz will consider are
those that do not move any the first m rows of A’ to the last kK — m rows
of A’ and vice-versa. In other words, in the permutation algorithm, we do
not have to consider the fact that ¢/ may contain more than one maximal
combination of non-intersecting f,,, i-blocks.

We also make use of the f;, ;-blocks in the codes with distance four that
contain only a few weight 4 words. For these codes, we simply combine
the concepts of maximal combinations of weight 4 row blocks and maximal
combinations of non-interseeting f,,. ;-blocks. We do so by only considering,
for each G that contains a maximal combination ol weight. 4 row blocks, the
Juwi-blocks in G whose non-zero columns oceur in the columns of G that
have a value of zero in every weight 4 row in 6.

3.3 Summary

We have used our unique representative algorithm to climinate the equiv-
alent codes from our lists of self-dual codes with length 34. We have also
used our algorithm to find generators for the automorphism group of cach
ol our codes with length less than or equal o 34. Our list of length 34
codes with distance greater than 2 contains 20,852 codes, which mecans
there arc 20,852 equivalence classes of (34, 17) self-dual eodes with distance
greater than or equal to 4. Our algarithm took approximately one month
to produce the unique representative and antomorphism group for each of
the codes produced in the first stage of our enumeration (incliding the
duplicates). The algorithm took over 30 minutes for thirteen of the codes
(excluding duplicates); with the worst case taking 104 minutcs.

4 Results

In Table 1, we give the number of equivalence classes of (2k, k, d) binary
sclf-dual codes for 2k < 34 and d = 2,4,6,8. (There are no codes within
this length range whose distance is greater than 8.) The results for 2k = 34
arc new. Armong the equivalence classes for the (34,17,4) self-dual codes,
66 of the classes consist. of composed codes, and 9936 of Lhe classes consist
of codes that do not contain weight 41 words that intersect.
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2k [246 810 12 14 16 18 20 22 24 26 28 30 32 34
d=2[11112 2 3 4 7 9 16 25 55 103 261 731 3295
d=4(0001 0 1 1 3 2 7 8 28 47 155 457 2482 19914
d=6/00000 0 0 0 0 0 1 1 1 3 13 74 938
d=800000 0 0 00 0010 0O 0 8 0

Table 1: The number of equivalence classes of (2k, k, d) self-dual codes.

In Table 2, we list all the different weight distributions for the length 34
codes with distance greater than 2. Included with each distribution is the
number of equivalence classes whose codes have the distribution, and, the
minimum and maximum automorphism group sizes for the codes with the
given distribution. Note that for each distribution, we only list the number
of weight 2i words, for 2i = 4,6, ... , 16. For all codes, the number of weight
0 words is 1, the number of weight 2 words is 0, and the number of weight
2i words, 2i > 18 is equal to the number of weight 34 — 2i words.

We have found that 159 of the inequivalent (34, 17) self-dual codes have
an automorphism group that is the trivial group. All of these codes have
distance 6. The length 34 codes with distance 6, along with their automor-
phism groups, are available on the world wide web at:

www. cs.umanitoba. ca/~umbiloul/

Further information on the length 34 codes can be obtained from the author
of this paper.
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Weight Distributions Number | Automorphism Group Sizes
4 6 8 10 12 11 16 of Codes { Minimum Maximum
0 2 287 2081 8306 21100 33750 1 64 64
0 6 283 2061 8326 21140 33719 22 2 1536
0 6 411 1165 10886 17556 35511 11 8 11520 |
0 10 279 2041 8346 21180 33679 82 1 5760
0 14 275 2021 8366 21220 33639 183 1 768
0 18 271 2001 8386 21260 33500 257 1 1152
0 22 267 1981 8106 21300 33550 214 1 768
0 26 263 1961 8426 21340 33519 111 1 128
0 30 259 1941 8146 21380 33479 11 ] 384
0 34 255 1021 &466 21420 33439 16 12 34560
1 3 297 2001 8257 21061 33835 1 9% 2304
1 7 203 2071 8277 21001 33705 27 8 12288 |
1 7 421 1175 10R37 17507 35587 21 12 258048
T 11 280 2051 8207 21131 33755 114 4 1536
1 15 285 2031 8317 21171 34715 328 4 5760
1 19 281 2011 8337 21211 33675 418 4 1152
1 23 277 1991 8357 21251 33635 146 4 6144
I 27 273 1971 8377 21201 33595 272 4 384
T 31 269 1051 8397 21331 33556 139 4 18432
T 35 265 1031 8417 21371 33515 33 4 128
1 39 261 1911 &137 21411 33475 15 32 6144
2 4 307 2101 8208 21002 33011 3 192 2048
2 8 303 2081 8228 210M2 34871 a8 16 6144
2 8 431 1185 10788 17158 35663 P 32 12288 |
2 12 299 2081 8248 21082 3383 150 16 61440
2 16 295 2041 8268 21122 33701 350 16 9216
2 20 291 2021 8288 21162 33751 545 16 6144
2 24 287 2001 8308 21202 33711 529 16 3072
2 28 283 1081 S328 21242 33671 411 16 18432
2 32 279 1961 8318 21282 33631 223 16 2048
2 36 275 1941 8368 21322 33501 116 16 1024
2 40 271 1921 8388 20362 33561 30 32 1536
2 A4 267 1901 8408 21402 33511 9 384 4006
3 1 321 2131 8130 20013 4027 1 18432 18432
3 5 317 2111 8159 20053 33087 5 128 1029 |
3 9 313 2001 8179 20003 33047 7] 61 73728
3 9 441 1195 10730 17400 35739 35 128 73728 |
3 13 309 2071 8199 21033 33907 132 64 13824

Table 2: Weight Distributions of the (34, 17,d > 4) Self-Dual Codes.
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Weight Distributions Number | Automorphism Group Sizes
4 6 8 10 12 11 16 | of Codes [ Minimum Maximum
3 17 305 2051 8219 21073 33867 ] 332 48 245760
3 21 301 2031 K239 21113 33827 458 24 27648
3 25 297 2011 8250 21153 33787 553 2 49152
3 29 203 1091 8279 21193 33747 410 24 4608
3 33 280 1071 8299 21233 33707 339 48 147456
3 37 285 1951 8319 21278 33667 144 48 9216
3 41 281 1031 8339 21313 33627 85 64 24576
3 45 277 1011 8350 21353 33587 16 128 1536
3 49 273 1891 8370 21393 33547 17 1024 1032192
4 2 331 2141 800 20864 103 2 4096 18432
4 6 1327 2121 8110 20004 34063 11 512 110592
4 10 323 2101 8130 20941 34023 13 256 552960
4 10 451 1206 10600 17360 33815 39 256 552960
4 14 319 2081 8I50 20984 33083 132 192 3870720
4 18 315 2061 8170 21024 33943 262 96 110592
4 22 311 2041 8190, 21061 33908 406 9% 552060
4 26 307 2021 8210 2110 33363 417 96 55206
4 30 an3 2001 8230 21144 33823 435 (13 184320
4 34 299 1981 8250 21184 33783 270 9% 18432
4 38 295 1981 8270 21924 33743 216 [ 18432
4 42 291 1941 3200 21264 33703 90 96 9216
A 46 287 1021 8310 21304 33663 51 256 16384
4 50 283 1801 8330 . 21341 33623 12 512 4086
4 54 279 1881 8350 21384 33583 7 4006 24576
5 3 341 2151 8041 20815 4179 2 4096 73728
5 7 337 2131 B061 20855 34130 10 1024 18432
5 11 333 2111 8081 30805 34000 43 768 98304
5 11 461 1215 10641 17311 33801 35 768 921184
5 15 320 2001 8101 20035 34059 92 384 12288
5 19 425 2071 8121 20075 34019 204 384 110592
5 23 4321 2061 8141 21015 33979 282 384 24576 |
5 27 317 2031 BIG1 21055 33039 356 384 2949120
5 31 313 2011 8181 21095 33899 301 381 24576 |
5 35 309 1991 8201 21135 33850 297 as4 73728
5 39 305 1071 8221 21175 33819 154 384 8192 |
5 43 301 1951 8241 20215 34779 155 384 196608
5 A7 297 1931 8261 21255 43739 43 384 18432
5 51 203 1011 8281 21295 33699 10 1024 98304

Table 2 continued: Weight Distributions of the (34,17, d > 4) Sell-Dual

Codos.
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Weight Distributions Number | Automorphism Group Sizes
4 6 8 10 12 14 16 of Codes | Minimum Maximum
5 655 280 1801 8301 21335 43659 7 1096 18432
5 59 285 1871 8321 21375 34610 8 8192 196608
6 0 355 2181 70972 20726 34295 1 1105920 1105920 |
6 4 351 2161 7992 20766 34255 3 12288 331776
68 347 2141 8012 20806 34215 11 3072 40152
6 12 343 2121 8032 20816 3175 Y] 1536 131072
6 12 471 1225 10502 17262 35067 Z1] 1536 23224320
6 16 330 2101 8052 20886 34135 91 1536 510935040
6 20 335 2081 8072 20926 34005 127 1536 65536
6 24 331 2061 8092 20066 34055 250 1536 98304
6 28 327 2041 8112 21006 34015 226 1152 1105920
6 42 323 2021 SI32  21M6 33975 279 1152 73728
6 36 319 2001 8152 21086 330356 178 1152 110592
6 40 315 1981 8172 21126 33895 | 192 1152 41472
6 44 311 1961 8192 21166 34855 81 1536 36864
6 48 307 1941 8212 21206 33815 92 1536 2211840
6 52 303 1921 8232 21246 33775 2 1536 331776
6 a6 299 1001 8252 21286 34735 30 3072 18432
6 60 205 1881 8272 21336 3360 3 6141 81920 |
6 61 201 1861 8292 21466 33605 4 32768 2211840
7 5 361 2171 7943 20717 34331 3 24576 1474560
7 9 357 2151 7963 20757 3201 10 6144 82944
7 13 353 2131 7983 20797 MM251 K71 6144 196608
7 13 481 1235 10543 17213 36048 ] 6144 23224320
7 17 349 2111 8003 20847 #4211 58 1608 73728
7 21 345 2001 8023 20877 $A171 133 2304 1179648
7 25 341 2071 8043 20017 34131 157 2304 73728
7 90 337 2051 S063 20057 34001 311 1536 204912
7 33 433 2031 K083 20097 3061 187 1536 193536
7 37 329 2011 K103 21037 34011 305 1536 30965760
7 A1 325 1991 8123 21077 33971 115 1546 49152
7 45 321 1971 K143 21117 33931 141 2304 786432
7 49 317 1051 8163 21157 33801 18 2304 49152
7 53 318 1031  &I8&3 21107 33851 ) 4608 884736
7 57 300 1011 8208 21237 44811 14 6144 82044
7 61 306 1801 8223 21277 43771 17 12288 142368
7 65 301 1871 8243 20317 33731 1 24576 24576 |
7 69 207 1851 8263 21357 33691 8 131072 2949190

Table 2 continued: Weight Distributions of the (34,17,d > 4) Sclf-Dual

Codes.
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Weight Distributions Number | Automorphism Group Sizes
4 6 8 10 12 1 16 | of Codes nimum Maximum
9 71 a7 1871 8163 21250 31813 3 147456 294912
9 75 313 1851 8I8; 21209 33803 1 884736 884736
9 79 309 1831 8205 21339 33763 5 881736 17694720
10 0 309 2241 7756 20400 34639 2 162570240 232243200
10 4 305 2221 7776 20630 34599 2 204912 884736 |
10 8 301 2201 7796 20570 34559 1 204912 ~ 1179648 |
10 12 387 2181 7816 20610 34519 13 147456 884730 |
100 16 383 2161 7848 20630 34479 13 98304 1179648
10 16 511 1265 10498 17066 36271 29 55296 | 19585843200
10 20 370 2141 7856 20600 34449 a3 49152 589824
10 24 315 2121 7876 20740 34399 44 49152 21233664
100 98 371 2101 7886 20770 31350 9 36864 663552
10 32 367 2081 7916 20810 319 46 18432 1179648
T0 36 ab3 2061 7086 20840 34270 108 18432 1769472
10 40 350 2041 7936 20890 34240 16 36861 1769472
10 41 355 2021 7976 20030 34199 73 18432 589824 |
10 48 351 2000 7996 20070 34150 49 10752 3538044
| 10 52 347 1981 801G 21010 34119 51 36864 1179648
10 56 A3 1961 S036 21050 34079 10 49152 | 2359296
10 60 339 1941 8056 21000 34039 37 49152 589824
10 64 335 1921 8076 21130 33000 1 98304 11059200
10 68 431 1901 8006 21170 33030 12 147456 393216
10 72 327 1881 &116 21210 33919 ] 586824 589824
10 76 423 1861 8136 21230 39870 7] 201912 580824 |
10 81 315 1821 K176 21340 33790 2 3538044 162570240
119 401 3211 7747 20521 34635 2 412368 4718592 |
11713 307 2191 7767 20561 34305 6 221184 2654208
11 17 393 2171 7787 20601 34605 18 196608 4718592
11 17 621 1275 10347 17017 46347 25 147456 4718592
1T 21 380 2151 7807 20641 44515 5 73728 884736 |
1T 25 38 2131 7827 2081 44475 41 73728 141557760 |
11 20 381 2111 7847 20721 34435 K] 73728 884736
11 33 377 2001 7867 20761 34005 72 73728 4718592
1147 373 2071 7887 20801 34456 62 43008 884736
11 41 369 2051 7907 B0841 44416 | 70 | 73798 | 2359296
1145 365 2031 70997  J08KI 34275 0 73728 884736
11 49 361 2011 7047 20021 34235 75 64512 5308416 |
11 53 a6¢ 1001 7067 20061 34195 21 73728 442368

Table 2 continued:
Codes.

200

Weight. Distributions of the (34,17,d > 1) Sell-Dual



Weight. Distributions Number | Automorphism Group Sizes
A_6 @8 112 14 16| of Codes [ Minimum | Maximum
(13 43 380 2071 7809 20743 34467 10 245760 5308416 |
13 47 485 20n1 7820 20783 34427 15 122880 2654208
13 51 381 2041 7810 0823 34387 7] 358048 56623104
13 55 a77 2011 786D 20863 34347 13 245760 7962624
13 59 373 1991 7880 20008 34307 19 245760 5308416
13 63 360 1071 7000 20013 34267 13 258048 5308416
13 67 365 1951 7920 20083 44227 37 491520 28311552
13 71 361 1931 7™M 21028 34187 K 1327104 2654208
13 75  ab7 1911 7969 21063 34147 9 884736 5308416
13 83 349 1871 KOO 21148 34067 g 2359296 | 18874368
14 87 345 1851 8029 21183 44027 2 5308116 9289728
: W3 170 N 21303 33907 A 28311552 169869312 |
TA 0 443 2301 7640 20954 34983 1 10616832 10616832
14 4 430 2081 7560 20204 349043 2 21233664 24772608 |
14 8 435 2261 7580 20434 34903 1 5308416 5308416
14 12 431 2241 7600 20371 34863 1 10616832 10616832
14 16 427 2221 7620 90414 31823 6 1769472 10616832
14 20 423 2901 7640 20454 34783 9 1760472 10616832
14 20 B&n1 1305 10200 (6R70 36575 17 1769472 10616832
T4 24 419 2i81 7660 20404 34743 10 983040 10616832
14 28 41a 2161 7680 20534 34703 15 983040 4128768
14 32 A1 2141 770 20574 34663 21 1474560 31850496
14 368 407 2121 7720 20614 34623 22 589824 10616832
14 40 408 2101 7740 20654 3583 a6 368610 108380160 |
14 44 300 2081 7700 2064 34543 16 368640 10616832
T4 48 a95 2061 7780 20744 34a08 21 983040 21233664 |
14 52 401 2041 7800 20774 34463 D 368640 15005808
14 56 487 2021 7820 J0R14 44423 b1 983040 10616832
T4 60  a83 20001 7810 20854 34383 10 983040 3538044 |
T4 64 379 1081 7800 20804 3443 16 983040 21233664
1168 375 1961 7880 20004 44303 5 1760472 21233664
A 72 371 1M1 7 20074 34263 10 983010 21233664
14 76 367 1021 7020 21014 34293 2 1769472 24772608
14 80 463 1901 7940 21054 34183 5 1769472 10616832
M 8 0. 1881 7960 2104 ¢143 1 3538044 3538044 |
11 88 ah5 1881 7O80 21134 4103 1 7077888 7077888
14 104 339 1781 SOG0 21904 433 T 42167328 42467328
15 & 449 2291  7all 20205 a5010 i 47185920 47185920

Table 2 continued: Weight Distribations of the (34,17,d > 4) Scif-Dual
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Weight Distributions Number | Automorphism Group Sizes |
i 6 8 10 12 4 16 | of Codes | Mmimum Maximum
15 9 445 2271 7531 20285 34979 1 15925248 | 15925248 |
15 13 441 2251 7551 20825 34939 2 14155776 15925248
15 21 433 2211 7501 20405 34859 7 5308416
16 21 561 1315 10151 16821 36651 18 1548288 | 928972800
15 25 429 2101 7611 20445 34819 5 5308416 15925248
15 29 425 2171 7631 20485 34779 16 1518288 14155776
15 33 421 2151 7651 20525 34739 5 737280 95551488
15 37 A17 2131 7671 20065 34699 20 2654208 28311552
15 41 413 2111 7691 20605 34659 14 737280 5308416
15 45 409 2091 7711 20645 34619 24 737280 88473600
15 49 405 2071 7731 200685 34579 5 737280 31850496
15 53 401 2051 7751 20725 34539 38 737280 33030144
15 57 397 2031 7771 20765 34499 8 737280 31850496
15 61 393 20011 7791 20805 34459 23 2359296 31850496
15 65 380 1901 7811 2085 34419 7 1474560 3096576
15 69 385 1971 7831 20885 34379 7 1474560 15728640 |
15 73 381 1951 7851 20075 34339 3 5308416 31850496
15 77 477 1931 7871 20005 34299 13 2019120 33030144
15 81 373 1911 7801 21005 34259 1 15925248 15925248
15 85 4369 1801 7011 21015 34219 2 9437184 14155776
15 93 361 1831 7951 21125 34139 7 14155776 127401984
15 07 357 1831 7971 21165 34009 1 31850496 31850496
15 109 35 1771  S031 21285 33979 1 20437401600 | 20437401600
16 6 459 2301 7462 20196 35005 1 31233664 21233664
16 10 455 2281 7482 20236 35055 1 10616832 10616832
16 14 451 2261 7500 20976 35015 2 10616832 10616832
16 18 447 2241 7522 20316 34975 7 6193152 63700092
16 22 443 2221 7542 20356 34935 5 5898210 21233664
16 22 571 1425 10102 (G772 36727 18 5808210 63700992
16 26 439 2201 7562 20396 34895 6 5808240 21233664
16 30 435 2181 7582 20436 34Ran 10 2919120 17694720
16 31 431 2161 7602 20476 34815 12 2940120 | 382205952
16 38 427 214t 7622 20516 34775 5 2949120 21233664
16 42 423 2121 7612 20556 34735 26 2064384 21233664
16 46 419 2101 7662 20506 34695 12 2919120 10616832 |
16 50 415 2081 7682 20636 3655 12 2949120 21233664
16 54 411 2061 7702 20676 34615 17 2322432 24772608
16 58 407 2041 7722 90716 3457 ) 2049120 10616832

Table 2 continned: Weight Distrilitions of the

Codes.
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Weight Distributions Number | Automorphism Group Sizes
16 8 10 2 11 16 | of Codes | Minimum Maximum
20 26 611 1365 00 10576 37081 9 35380440 | 637009920 |
30 30 470 2241 7366 20200 35190 1 106168320 106168320 |
20 34 475 2221 7486 20940 35150 7 35389440 106168320
20 a8 A71 2201 7406 20280 35119 1 106168320 106168320 |
M 42 467 2181 7426 20320 33079 4 35380440 | 212336640 |
30 46 463 2161 7446 20360 35040 11 41287680 173408256
20 50 459 2141 7466 20400 34099 4 8847360 | 106168320
20 51 455 2121 7436 20440 34059 3 106168320 212336640
20 58 451 2101 7408 20480 34919 7 8847360 148635648
30 62 447 2081 7h26 205200 34879 2 106168320 212336640
20 60 443 2061 7346 20560 34839 1 35380440 35380440
20 70 430 2041 7366 20600 4799 9 TA3178A 212336640
20 74 435 2021 758G 20610 34759 : 17694720 212336640
30 78 431 2001 606 20680 4719 [ 106168320 | 106168320
20 82 427 1981 7626 20720 346790 2 15380440 74317824
30 86 493 1961 7646 20760 34639 1 106168320 | 106168320 |
30 M A5 1921 7686 208D W50 3 74317824 212336640
31 37 403 2271 7297 20111 45315 R 160860312 | 1019215872 |
21 27 621 1375 08a7 16527 37107 8 70778880 | 339738624 |
21 35 485 2231 7437 20191 35235 5 99090432 141557760 |
21 A3 477 2191 7377 20371 35155 9 35380440 | 2038431744 |
1 47 473 2171 7497 203101 35115 1 30965760 30865760
21 al 469 2151 7417 20351 33075 1 35389440 141557760
21 o0 461 2111 7457 W31 34995 1 33030144 396361728
31 67 453 2071 7497 a1 M0i5 7 35380440 141557760 |
|21 71 449 2051 7517 205a1 34875 3 65028006 | 260112384 |
21 75 445 2031 7547 20501 34845 6 983115520 | 2038431744
9 83 A%7 1M1 7h77 2671 3AThn 2 141557760 141557760
31 Q1 420 1951 7617 J07nl 31675 7 70778880 | 2038131744
31 107 413 1871 7697 20011 Malh 2 283115520 660602880
A 149 381 1711 7857 21231 44195 1 6115205232 | 6115205232
22 0 531 2421 7108 19782 35671 2 1337720832 | 1911029760
22 12 519 2361 7168 10002 350l 1 A45006044 445906944
22 16 515 2W1 7188 19042 daol1 1 1274019810 | 1274019840
22 20 511 2321 7208 0082 a5471 1 312336640 | 212336640 |
22 24 507 2401 7298 K23 35431 T 1040149536 | 1040449536
92 38 503 2081 728 20062 3aa0l i 212336640 | 212336640 |
22 28 631 1385 ONUR 10478 37183 8 106168320 | 2675441664

Table 2 continued: -Weight Distributions of the (34,17,d 2 4) Scll-Dual
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Waeight Distributions Number | Automorphism Group Sizes
1 6 8 10 12 14 16 of Codoes Minimum Maximum
25 15 59 2391 7021 19755 85779 3 1608693120 | 3397386240
25 31 533 2311 71001 19915 45619 2 1698693120 | 3397386240
25 31 661 1415 0661 16331 37411 8 421673280 | 7134511104
25 39 525 2271 7140 19995 35530 1 421673280 | 424673280
25 A7 517 2231 7181 20075 35450 3 330301410 | 1698693120
25 55 509 2191 7221 20155 35470 1 424673280 | 424673280
25 63 501 2151 7261 20745 35000 11 198180864 | 3567255552
25 71 493 2101 7301 200415 45219 2 421673280 | 424673280
25 70 485 2071 7M1 20995 35139 5 1698693120 | 3397386240
25 87 477 20381 7481 90475 35059 ) 424673280 | 990904320
25 05 469 1991 7421 20555 44979 3 1321205760 | 1608693120
25 127 437 1831 7581 20875 34650 2 3307386240 | 5662310400
26 16 a0 2401 GO72 19706 35855 1 6242697216 | 6242697216
26 24 o551 2361 7012 10786 35775 1 4246732800 | 4246732800
26 327 671 1425 9612 16282 37487 3 1486356480 | 2123366400
26 A0 535 2981 7002 (004G 35615 3 1486356480 | 2123366400
26 48 527 92241 7132 26 A5t 1 2123366400 | 2123366400
26 52 523 2221 7152 20066 0 3 1731082560 | 12485304432
26 56 519 2201 7172 300106 350 1 4246732800 | 4246732800
26064 511 2161 7212 O018G 35375 4 123863040 | 1486356480
26 88 487 201 7333 90496 35135 q 1486356480 | 4246732800
27 25 ol 2371 GO63 10737 35851 2 2548039680 | 5006079360 |
27 33 a3 2331 7003 10817 35771 1 5006079360 | 5096079360
27 33 681 135 0563 16233 37563 8 1189085181 | 5662310400
27 A9 537 2951 7088 19977 3 2518039680 | 5662310400
27 57 520 2211 7128 (W57 3 1415577600 | 5006079360 |
27 65 521 2171 7i6G3 20137 1 594542502 | 2831155200
27 73 514 2131 7208 90217 1 2548039680 | 2518039680
27 77 500 9111 7223 20357 35031 1 2601123840 | 2601123840
27 81 508 2001 7243 20007 35001 3 495452160 | 1698693120
27 07 AS9 20011 7893 OiHA7 85131 2 2831155200 | 5096079360
27 13 473 1931 703 0617 3971 1 16647192576 | 16647102576 |
27 121 465 1891 7443 20607 3B 2 2518039680 | 5096079360
287 30 567 2361 (034 19798 15887 2 7283146752 | 10404195360
(28 #4601 1445 0314 16181 37639 3 1186356480 | 4954521600 |
28 42 5ah 2401 6091 19848 35767 1 2220534720 | 2229534720
28 50 547 9961 7041 19998 45687 1 743178240 | 743178240
28 66 531 2181 7114 RS 33597 3 1040149536 | 4954521600

Table 2 continued: Weight. Distribntions of the ‘(.'M, 17,d 2 1) Sclf-Dual
Codes.
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Woeight Distributions Number |  Automorphism Group Sizes

4 6 8 10 12 11 16 of Codes Minimum Maximum

28 08 499 2021 7271 20408 35207 1 1486356480 1486356480
28 114 483 1941 7354 0568 35047 1 4458060440 | 4459069440
20 35 574 2451 GO0 19710 35023 1 4216732800 | 4246732800
29 35 701 1455 0465 16135 37716 3 2972712960 | 23781703680
20 43  566o 2311 6045 10799 35843 1 2972712960 | 2972712960
29 59 519 2231 7025 19950 35683 1 4246732800 | 4246732800
29 67 541 2101 7065 20030 35603 5 1981808640 | 11890851840
29 75 533 2151 7105 20119 35523 1 4246732800 | 4246732800
29 99 500 2031 7925 20450 35283 1 33973862100 | 33973862400
29 107 501 1091 7265 20430 33203 1 4246732800 | 4246732800
20 115 193 1951 7305 20519 35123 5 11800851840 | 23781703680
30 20 599 2441 6776 19310 36159 i 11863564800 | 14863564800
30 36 583 2361 6Ra6 10670 35099 1 AA50069140 | 4459069440
30 36 711 1465 941G 16086 37791 5 0361045824 | 20808990720
30 44 575 2321 6806 10760 3a010 2 10404495360 | 148635643800
30 84 535 2121 7006 20150 35519 ] 4450068140 | 44580694410
31 21 609 2051 6727 19961 36235 1 17836277760 | 17836277760
A 37 721 1476 0367 (G037 37867 3 BOA5125020 | 17836277760
31 15 585 2831 6347 19701 33095 2 17836277760 | 25480396800
31 o3 577 2291 68S7 19781 35015 3 5045425920 | 8493465600
31 61  a69 2251 6927 19861 35835 1 50960793600 | 50960793600
31 60 561 2211 GA67 19941 5% 2 1161798144 | 5915425920
31 85  Hb 2131 a7 20101 1 3063617280 | 3063617280
31 03 537 2001 7087 20181 1 17836277760 | 50960793600
31 101 529 2051 7127 22061 1 3045425920 | 5945425920
31 106 525 2081 7147 20300 2 54623600640 | 76473040896
32 70 571 2221 6018 19892 ;r,s'n 1 5202247680 | 5202247680
32 94 oA7 2101 7048 301 n REEI]] 1 15606743040 | 15606743040
33 a0 613 2401 G700 2 36227 1 33781703680 | 23781703680
33 409 741 1495 9260 17 38019 3 118090851840 | 23781703680
R R W R M /TP FRE G p) A063617280 | 11890851840
33 87  abh 2151 GOAD 90003 35747 3 19818086100 | 35672555520
33 95 567 2011 GOSO 20088 35667 T 29727129600 | 29727129600
33 135 517 1011 7180 20483 35267 1 71345111040 | 71345111040
34 0 663 2601 6160 19074 36703 1 208080007200 | 208080907200
34 A0 751 1505 9220 (5800 38095 1 31213186080 | 31213486080
M 72 501 2241 G820 10707 35083 ] 31213486080 | 43698880512 |
35 25 649 2491 6ol 10265 36530 1 169869312000 | 169869312000

Table 2 continued:
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Waight Distributions Number Automorphism Group Sizes

4 6 8 10 12 11 16 of Codes Minimum Maximum

35 A1 761 1615 9171 12841 98171 2 23781703680 84934656000
a5 67 617 2341 GGO1 10585 46219 1 23781703680 | 23781703680
35 74 601 2951 G771 19745 36059 1 35672555520 35672555520
35 80  5HR5 2171 GB8h1 1000, 45800 1 169869312000 | 169869312000
35 97 577 2131 GE91 19985 36819 1 2197078886410 3497073886410
35 105 569 2001 GI31 20005 35730 1 11800851840 11890851840
35 121 653 2011 7011 20935 35579 1 41617981440 41617981440
36 42 771 1525 9122 15792 38247 3 72831467520 | 218494402560
37 43 653 2431 6ald 10327 36531 1 142690222080 142690222080
37 43 781  15d6 0073 15743 383238 2 118908518460 178362777600
37 75 621 2271 GGZ3 19647 36211 5 83235062880 | 428070666240
37 91 605 2101 G7ad 19807 6061 1 23781703680 23781703680
37 107 580 2111 G838 19967 45801 1 118908518100 118908518400
8 28 679 2521 G3%1 19118 36767 ] 218494402560 218494402560
39 45 673 251 6415 19229 36683 1 178362777600 178362777600
39 45 801 1555 8075 15645 38475 2 124853044320 178362777600
39 77 641 2201 6b7s 19510 36363 1 83235062880 83235962880
A1 A7 821 1575 8877 1amd7 48627 2 166471925760 237817036800
A1 63 677 2301 6307 19201 36675 1 237817036800 | 237817036800
41 70 661 2311 G177 10451 1 499415777280 499415777280
A1 95 645 2231 Goh7 19611 1 715111040 71345111040
A1 175 565 1831 G957 3011 T 2378170368000 2378170368000
A3 A0 841 1695 8770 15449 38779 1 1248539443200 | 1218539443200
43 81 681 2331 6370 19353 36667 2 1248339443200 1747955220480
A5 85 749 2591 61 IR77h 47200 1 1664719257600 1664719257600
45 51 861 1615 8681 15351 38931 4 428070666240 1664719257600
45 67 717 2431 G201 18005 36979 1 428070666240 428070666240
A5 147 637 2031 6601 19505 36170 1 4994157772800 | 4994157772800
49 135 693 2151 6425 10339 36643 2 2006191663680 4280706662400
51 105 745 2331 6067 10121 37115 1 2140353331200 | 2140353331200
55 61 O61 1715 SI01 14861 39691 1 7491236659200 | 7491236659200
57 63 081 1735 S0O% 14763 30843 2 20975462645760 | 20064946636800
39 49 889 2731 5idhh ISORD 38463 1 10M877313228800 | 104877313228800
61 115 B84s 2431 ohe?  1RG31 37875 | 1 A7087773286400 | 47087773286400
65 71 1061 1815 77001 14371 451 1 78170622144000 | 78470622144000
85 91 1261 2015 6721 14301 41971 1 A281987360062400 | 4281987369062400

Table 2 continued: Weight Distritnitions of the (M,17,d > 4) Seli-Dual
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