Regular Simplices Inscribed into the Cube and Exhibiting a Group Structure

Walter Wenzel¹

Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany

email: walter@mathematik.tu-chemnitz.de

Abstract

For $n \in \mathbb{N}$, we interpret the vertex set W_n of the *n*-cube as a vector space over the field \mathbb{F}_2 and prove that a regular *n*-simplex can be inscribed into the *n*-cube such that its vertices constitute a subgroup of W_n if and only if n+1 is a power of 2. Furthermore, a connection to the theory of Hamming Codes will be established.

§ 1 Introduction

Many mathematicians have considered problems as follows:

- (I) Which convex polytopes $P \subseteq \mathbb{R}^n$ with regularity properties can be embedded into \mathbb{R}^n via a similarity transformation such that every vertex of P becomes a lattice point in \mathbb{Z}^n ?
- (II) Which regular polytopes P can be inscribed into a given regular polytope P_0 such that every vertex of P is also a vertex of P_0 ?

In 1937, I. J. Schoenberg [14] had solved Problem (I) in case P is a regular simplex. By making use of quadratic forms, he determined all dimensions n for which there exist regular n-simplices exhibiting only integer coordinates. Almost simultaneously, H. Hadwiger settled the same problem in [4] for even n. See also [12], where the equivalence of this problem to the existence of Hadamard matrices is settled. Later on, many authors examined the problem for which dimensions n a regular n-simplex can be inscribed faithfully into the n-cube, that means, each vertex of the simplex is also a vertex of the cube; see, for instance, [6], [5], [11], [3], [15], as well as the

¹ temporary address:

Max-Planck-Institute for Mathematics in Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany

survey [9]. In particular, A. I. Medjanik has proved in [11] that the condition $n \equiv 3 \mod 4$ is necessary, and, up to now, no counter-example to the assumption that this condition also suffices is known.

Several generalizations, concerning the above mentioned Problem (II), are studied in [7].

In the present note, we study the following question: For which dimensions n is it possible to inscribe a regular n-simplex S into the n-cube, whose vertex set W_n is identified with the vector space \mathbb{F}_2^n in a canonical way, such that the vertices of S constitute a subgroup of $(\mathbb{F}_2^n, +)$?

In Theorem 2.2, it is proved that this is the case if and only if n+1 is a power of 2. Moreover, exactly in this case there exist $\frac{1}{n+1} \cdot 2^n$ regular *n*-simplices whose vertex sets constitute a disjoint covering of W_n .

Moreover, in Section 3 we prove that a linear subspace U of the vector space \mathbb{F}_2^n is – considered as a subset of W_n – the set of vertices of a regular simplex of dimension n if and only if the orthogonal space U^{\perp} is a Hamming Code of dimension $n - \log_2(n+1)$ over the field \mathbb{F}_2 .

For a recent contribution concerning coverings and packings of the n-cube by so-called rectangular simplices see [10].

§ 2 Regular simplices with a group structure

For a convex polytope $P \subseteq \mathbb{R}^n$, let V(P) denote the vertex set of P. Furthermore, put

(2.1 a)
$$C_n := [0,1]^n$$
,

(2.1 b)
$$W_n := \{0, 1\}^n = V(C_n)$$
.

Let " \oplus " denote addition in W_n modulo 2; thus (W_n, \oplus) is a group which is canonically isomorphic to $(\mathbb{F}_2^n, +)$. Since we consider W_n as a subset of \mathbb{R}^n , we prefer to write " \oplus " rather than "+".

Remark 2.1: If $x = (x_1, ..., x_n) \in W_n$ and $x_{i_j} = 1$ for exactly k indices $1 \le i_1 < ... < i_k \le n$, then the map $f_x : W_n \to W_n$, defined by $f_x(w) :=$

 $x \oplus w$, is the restriction of some congruence map defined on \mathbb{R}^n ; namely we have

$$f_x(w) = (s_{i_1} \circ \ldots \circ s_{i_k})(w)$$
 for $w \in W_n$,

where s_{ν} , $1 \leq \nu \leq n$, denotes the reflection at the affine hyperplane

$$H_{\nu} := \{(t_1, \ldots, t_n) \in \mathbb{R}^n | t_{\nu} = \frac{1}{2} \}.$$

This means: For every subset $V_0 \subseteq W_n$ the sets conv (V_0) and conv $(f_x(V_0))$ are congruent, where "conv" means convex hull.

In what follows, a (regular) simplex $S \subseteq \mathbb{R}^n$ will always mean the convex hull of an affinely independent set; in particular, one has

$$conv(V(S)) = S$$
.

We can now prove

Theorem 2.2: For $n \geq 3$, the following three statements are equivalent:

- (i) (W_n, \oplus) contains some subgroup U such that conv (U) is a regular simplex of dimension n.
- (ii) For $m := \frac{1}{n+1} \cdot 2^n$ one has

$$(2.2) W_n = V(S_1) \dot{\cup} \dots \dot{\cup} V(S_m)$$

for certain regular simplices S_1, \ldots, S_m of dimension n.

(iii) n+1 is some power of 2.

Proof: (i) \Longrightarrow (ii):

By (i), we have |U| = n + 1. Let N_1, \ldots, N_m denote the cosets of U in W_n , and put $S_i := \text{conv } (N_i)$ for $1 \le i \le m = \frac{1}{n+1} \cdot 2^n$. Then Remark 2.1 implies that S_1, \ldots, S_m are regular n-dimensional simplices, and we have

$$W_n = N_1 \dot{\cup} \dots \dot{\cup} N_m = V(S_1) \dot{\cup} \dots \dot{\cup} V(S_m).$$

- (ii) ⇒ (iii) is trivial.
- $(iii) \Longrightarrow (i)$:

We proceed by induction on $log_2(n+1)$. For n=3 put

$$U = U_3 = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$$
.

In particular, any two distinct vertices in U_3 have Hamming distance 2.

Now assume that $n \geq 3$ satisfies $\log_2(n+1) \in \mathbb{N}$, and that

$$U=U_n=\{v_1,\ldots,v_{n+1}\}\subseteq W_n$$

satisfies (i) for n, where $v_1 = (0, ..., 0)$ and any two distinct vertices in U_n have Hamming distance $\frac{n+1}{2}$. Write

(2.3 a)
$$v_i = (v_{i1}, \dots, v_{in})$$
 for $1 \le i \le n+1$

and define $w_1, \ldots, w_{n+1}, w_{n+2}, \ldots, w_{2n+2} \in W_{2n+1}$ by

(2.3 b)
$$w_i := (v_{i1}, v_{i1}, v_{i2}, v_{i2}, \dots, v_{in}, v_{in}, 0)$$
 for $1 \le i \le n+1$,

$$(2.3 c) w_{n+2} := (1,0,1,0,1,\ldots,1,0,1),$$

(2.3 d)
$$w_{n+1+i} := w_i \oplus w_{n+2}$$
 for $2 \le i \le n+1$.

By construction,

$$(2.4) \quad U_{2n+1} := \{w_1, \ldots, w_{n+1}, w_{n+2}, \ldots, w_{2n+2}\}$$

is a subgroup of (W_{2n+1}, \oplus) with $w_1 = (0, \ldots, 0)$, and any $w_i, w_j, 1 \le i < j \le 2n+2$, have Hamming distance n+1 and Euclidean distance $\sqrt{n+1}$. Since $|U_{2n+1}| = 2n+2$, we see that conv (U_{2n+1}) is a regular (2n+1)-dimensional simplex as claimed.

Remark 2.3: The step "(iii) \Rightarrow (i)" in the last proof can also be achieved in terms of Hadamard matrices. However, the above construction is more direct.

§ 3 A Connection to the Theory of Hamming Codes

In this section, we identify W_n with the vector space $\mathbb{F}_2^n = (\mathbb{Z}/2\mathbb{Z})^n$ in the obvious way, but consider the elements of \mathbb{F}_2^n as columns. For a linear subspace U of \mathbb{F}_2^n we write as usual

(3.1)
$$U^{\perp} := \{ v \in \mathbb{F}_2^n | w^{\top} \cdot v = 0 \text{ for all } w \in U \}.$$

Note that \mathbb{F}_2^n contains a Hamming Code – that is a 1-perfect error correcting code – if and only if n+1 is some power of 2. (For the theory of Hamming Codes cf., for example, [1], (Section 12.4), [2], (Section 11.1), or [13], (Section 2.2).) Thus, the existence of Hamming Codes in \mathbb{F}_2^n is equivalent to all of the statements in Theorem 2.2. In what follows, assume $n+1=2^r$ for some $r\in\mathbb{N}$. Now we prove the following stronger connection between regular simplices and Hamming Codes.

Theorem 3.1: For a linear subspace U of \mathbb{F}_2^n , the following two statements are equivalent:

- (i) U is considered as a subgroup of (W_n, \oplus) the set of vertices of a regular simplex S = conv (U) of dimension n.
- (ii) U^{\pm} is a Hamming Code of dimension n-r.

Proof: First of all, note that the dimension n of S in (i) is considered over the field \mathbb{R} of real numbers, while the dimension n-r of U^{\perp} in (ii) is considered over the field \mathbb{F}_2 .

(i)
$$\Longrightarrow$$
 (ii):
Write $U = \{\mathbf{u}_1, \dots, \mathbf{u}_{n+1}\}$ as well as

$$\mathbf{u}_{i} = (u_{i1}, \dots, u_{in})^{\top} \text{ for } 1 \leq i \leq n+1.$$

Choose some linear base B of the \mathbb{F}_2 -vector space U. Since $|U| = n+1 = 2^r$, one has |B| = r, say $B = \{u_1, \ldots, u_r\}$. Consider the matrix

$$(3.2) M := \begin{pmatrix} \mathbf{u}_1^{\mathsf{T}} \\ \vdots \\ \mathbf{u}_r^{\mathsf{T}} \end{pmatrix} = (u_{ij})_{1 \le i \le r, 1 \le j \le n}$$

as well as the F2-vector space

(3.3)
$$C := U^{\perp} = \{(c_1, \ldots, c_n)^{\top} \in \mathbb{F}_2^n | M \cdot (c_1, \ldots, c_n)^{\top} = 0\}.$$

The matrix M has rank r; thus the subspace C of \mathbb{F}_2^n has dimension n-r. Since conv (U) is a nondegenerate simplex in \mathbb{R}^n , B is neither contained in a hyperplane

$$\{(t_1,\ldots,t_n)^{\top}\in\mathbb{F}_2^n|t_{\nu}=0\}$$
 for some ν with $1\leq\nu\leq n$,

nor in a hyperplane

$$\{(t_1,\ldots,t_n)^{\top}\in\mathbb{F}_2^n|t_{\nu}=t_{\mu}\}$$
 for certain ν,μ with $1\leq\nu<\mu\leq n$.

This means that any two columns of M are linearly independent over \mathbb{F}_2 . Thus M must exhibit any column vector of $\mathbb{F}_2^r \setminus \{0\}$ exactly once, because M contains exactly $n = 2^r - 1$ columns. Therefore, by the theory of Hamming Codes, any two different vectors of $C = U^{\perp}$ have Hamming distance at least 3, and C is a Hamming Code in \mathbb{F}_2^n .

Assume $C=U^\perp$ is a Hamming Code of dimension $n-r=2^r-r-1$. According to Theorem 2.2, choose some linear subspace $U_0\subseteq \mathbb{F}_2^n\cong W_n$ such that $S=\operatorname{conv}(U_0)$ is a regular simplex of dimension n. By the first part of this proof, U_0^\perp is a Hamming Code of dimension n-r. There exists some permutation $\pi\in S_n$ such that the two Hamming Codes U^\perp and U_0^\perp in \mathbb{F}_2^n satisfy the relation

$$U^{\perp} = \left\{ (t_{\pi(1)}, \ldots, t_{\pi(n)}) | (t_1, \ldots, t_n) \in U_0^{\perp} \right\}.$$

Thus we have also

$$U = \{(t_{\pi(1)}, \ldots, t_{\pi(n)}) | (t_1, \ldots, t_n) \in U_0\}.$$

Therefore, $U = C^{\perp}$ satisfies (i), because U_0 does.

Remark 3.2: It is already mentioned in [8], Chapter 1, Section 9 – neither with a proof, nor with a reference—that the codewords of the dual of a binary Hamming Code form a regular simplex and that this dual code is therefore also called a Simplex Code. Nothing is said about the above conclusion "(i) \Rightarrow (ii)".

Acknowledgement

The author wishes to thank Eike Hertel and Horst Martini for several discussions concerning the history of the problem of inscribing a regular n-simplex faithfully into the n-cube.

References

- [1] M. Aigner: Diskrete Mathematik. Vieweg, Berlin, 1993.
- [2] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein: *Covering Codes*. Elsevier, Amsterdam, 1997.
- [3] V. L. Dol'nikov: On the Jung constant in l₁ⁿ (Russ.). Mat. Zametki 42 (1987), 519-526; Transl.: Math. Notes 42 (1987), 787-791.
- [4] H. Hadwiger: Über die rationale Lagerung des regulären Simplex. Math. Z. 42 (1937), 625-628. Verlag von Julius Springer, Berlin W9.
- [5] H. Hadwiger: Ungelöste Probleme Nr. 10. Elem. Math. 11 (1956), 36-37.
- [6] J. D. Jarratt and J. J. Seidel: A note on the equivalence of the problem of embedding a regular N-simplex in the N-dimensional hypercubic lattice to a certain integral matrix completion problem. Indian J. Math. 27 (1985), 57-62.
- [7] W. F. Kibble: Regular polytopes inscribed in other regular polytopes. Math. Student 17 (1949), 26-31.
- [8] F. J. Mac Williams, N. J. A. Sloane: The Theory of Error-Correcting Codes. North-Holland Mathematical Library, Amsterdam, London, New York, Tokyo 1993.
- [9] H. Martini: A hierarchical classification of Euclidean polytopes with regularity properties, in: Polytopes-Abstract, Convex and Computational. NATO ASI Series C, 440, T. Bisztriczky, P. Mc Mullen, R. Schneider and A. Ivić Weiss (eds.). Kluwer Academic Publishers, Dordrecht (1994), 71-96.
- [10] H. Martini and W. Wenzel: Covering and packing problems in latlices associated with the n-cube. European J. Combin. 23 (2002), 63-75.

- [11] A. I. Medjanik: A regular simplex inscribed in the cube (Russ.). Ukrain. Geometr. Sb. Vyp. 13 (1973), 109-112.
- [12] M. J. Pelling: Regular simplices with rational vertices. Bull. London Math. Soc. 9 (1977), 199-200.
- [13] V. Pless: Introduction to the theory of error-correcting codes. Interscience Series in Discrete Mathematics, Wiley, New York, 1982.
- [14] I. J. Schoenberg: Regular simplices and quadratic forms. J. London Math. Soc. 12 (1937), 48-55.
- [15] W. Wallis: Combinatorial Designs. Monographs and Textbooks in Pure and Applied Mathematics, 118. Marcel Dekker, Inc., New York and Basel, 1988.