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Abstract: In this paper we examine the classical Williamson construction for
Hadamard matrices, from the point of view of a striking analogy with isomor-
phisms of division algebras. By interpreting the 4 Williamson array as a matrix
arising from the real quaternion division algebra, we construct Williamson ar-
rays with 8 matrices, based on the real octonion division algebra. Using a Com-
putational Algebra formalism we perform exhaustive searches for even-order
4-Williamson matrices up to 18 and odd- and even-order 8-Williamson matrices
up to 9 and partial searches for even-order 4-Williamson matrices up to 22 and
odd- and even-order 8-Williamson matrices for orders 10 — 13. Using Magma,
we conduct searches for inequivalent Hadamard matrices within all the sets of
matrices obtained by exhaustive and partial searches. In particular, we establish
constructively ten new lower bounds for the number of inequivalent Hadamard
matrices of the consecutive orders 72, 76, 80, 84, 88, 92, 96, 100, 104 and 108.

1 Introduction

Hadamard matrices arise in Statistics, Combinatorics, Cryptography and other
areas and have been studied extensively. It is well known that the order of an
Hadamard matrix must be 1, 2 or a multiple of 4. An Hadamard matrix of
order n is an n X n matrix with elements +1 such that HHT = HTH = nl,,
where I,, is the n x n identity matrix and T stands for transposition. For more
details see the books [12, 15]. An important class of Hadamard matrices can
be constructed based on the 4 Williamson array. We propose a Computational
Algebra formalism to tackle the problem of constructing Hadamard matrices
from a 4 Williamson array. We use our construction to construct Hadamard
matrices from an 8 Williamson array.
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2 Hadamard matrices from a 4 Williamson array

The classical Williamson construction for Hadamard matrices is based on the
4 x 4 array
A B C D
-B A -D C
H=

-C D A -B

-D -C B A
where A, B, C, D are square matrices of order n, where n is a positive integer.
When the matrices A, B, C, D are circulant and symmetric, with +1 elements,
then H turns out to be an Hadamard matrix of order 4n, i.e. we have HHT =
4dnly,. Let U be the matrix of order n

010 ...0
001..0
U=} i1 (1)
000 ..1
100 ..0

which has the property U” = I,,. Following Williamson, [9], we will use the
matrix U to define the block matrices of order n in the four Williamson array,
as polynomials in U with £1 coefficients. Then the block matrices will commute
with each other. Moreover, by imposing symmetry conditions on the coefficients,
the block matrices will be symmetric, in view of the fact that UT = U~!. The
four matrices A, B, C, D are defined by polynomials in U as follows:

A = al, + iU + -+ + apU*!
B = bl, + U + -+ + by U 9
C = clp, + U + -+ + cpU™? 2)
D = dol, + U + - + dpUr?

where the 4n coefficients @9, ---y Gn—1, b01 LRRS} bn—lr €0y -- - Cn—1, do, me dn
satisfy the additional symmetry conditions

an—i=al')bn—i= i)cn—i=c"1dn—t'=di’ i=1...,n—L (3)
See [9] for more details.

If we decompose (conceptually) the matrix H into an Hadamard product® of a
matrix Ha,5,c,p) and the matrix of signs H,:

ABCOD 11 1 1
B ADC 11 411
H=Hasom*Be=| 6 b 4 || 211 1
D.C B 4 1111

dalement-wise product, which we denote by o
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then we see that the matrix of signs H, is itself an Hadamard matrix of order 4.
This prompts us to consider what happens when we replace the H, (which is a
particular Hadamard matrix of order 4) with an arbitrary Hadamard matrix of
order 4. It turns out that from the 768 possible Hadamard matrices of order 4,
only 256 matrices (one third of all possible Hadamard matrices of order 4) are
appropriate to be used as sign matrices Hy, in the sense that they preserve the
property HHT = 4nly,.

An example of an Hadamard matrix of order 4 that cannot be used as a sign
matrix H, (because the property HHT = 4nly, is violated) is:

1 1 1 -1

-1 -1 1 -1
1 -1 -1 -1
1 -1 1 1

The matrix H appears in the context of quaternions, which can be thought of as
an extension of complex numbers and the first number system in the hierarchy
of hypercomplex numbers. See [6, 16} for general background on quaternions.
The next number system in the hierarchy of hypercomplex numbers is given by
octonions. See [6, 13] for general background on octonions.

The real quaternion division algebra H is algebraically isomorphic to a certain 4-
dimensional real matrix algebra given by the matrix H. This striking similarity
raises the question whether it is possible to use similar isomorphisms of the real
octonion division algebra © to construct Hadamard matrices via a Williamson
array with 8 matrices. In this paper we show that this is indeed possible. The
resulting construction of Hadamard matrices of orders 8n is illustrated with
examples and solidified with exhaustive searches using Computational Algebra
techniques.
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3 Hadamard matrices from a 8 Williamson array

3.1 Left matrix representation of octonions
Consider the 8 x 8 matrix

( A -B -C -D -E -F -G -H \
B A -D C -F FE

D A -B -G -H E F

B A -H G -F E

F G H A -B -C -D

-E H -G B A D -C

G -H -E F C -D A B
\H G -F -E D C -B A |

o
|
Q

MmO Q
|
Q

which specifies the left matrix representation of an octonion a € @ over the set
of real numbers. See [14] for a complete derivation of this matrix.

Following the classical Williamson construction we first view A, B, C, D, E, F,
G, H as numbers and we obtain:

WWT = (A2 +B>+C?+D* + B2+ F* + G* + HY) x L.

Moreover, when A, B, C, D, E, F, G, H, are symmetric square matrices of
order n that commute with each other, then we will have

wwT = 8nlg,

which says that W is an Hadamard matrix of order I3, (provided these eight
matrices have £1 elements). In [8] eight matrices that satisfy these conditions
are called Williamson matrices.

For completeness we mention here an exact construction guaranteeing that the
eight matrices A, B, C, D, E, F, G, H are symmetric and commute with each
other, mimicking the construction for the matrices A, B, C, D appearing in the
classical Williamson construction, see [9].

Let U be the matrix (1) and take the eight matrices A, B, C, D, E, F, G, H
to be polynomials in U as in (2). Since U7 = U~!, the eight matrices A, B, C,
D, E, F, G, H will be symmetric if

8n—i = @i, bn—i = bi,Cn—i = Cj,dn-; = ds,
en—i = €, fa—i = fiyGn—i = Gir hn—i = by,

fori=1,...,n—-1.

When the coefficients ag, ...,, hn—1 are all £1 then W will be a matrix with
+ entries satisfying the equation WW7T = 8nlg,, i.e. W will be an Hadamard
matrix of order 8n.
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3.2 Right matrix representation of octonions
Consider the 8 x 8 matrix

(A -B -C -D -E -F -G —H\
B A D -C F —-E -H G

MmO Q
Q
[
W
>
s
I
Q
o
I
&)

G H E -F -C D A -B
\H -G F E -D -C B A

which specifies the right matrix representation of an octonion a € O over the
set of real numbers. See [14] for a complete derivation of this matrix.
Following the classical Williamson construction we first view A, B,C, D, E, F,
G, H as numbers and we obtain:

WWT = (A2 +B*+C*+ D>+ E* + F* + G* + H?) x Is.

From this point on, using the conditions of the last paragraph on the matrices 4,
B,C, D, E, F,G, H, we obtain another construction for Hadamard matrices.
Note: The 4 Williamson arrays of section 2 and the 8 Williamson arrays of
section 3 are in essence orthogonal designs described in (8]. The facts that these
arTays can be interpreted via isomorphisms of division algebras and that the
sign matrices are Hadamard matrices seem to be new.

4 Williamson matrices via Computational Alge-
bra

In this section we analyze Hadamard matrices of the Williamson type with 4
and 8 matrices, using Computational Algebra. The analogies between the two
constructions are preserved at the ideals/varieties level. We use our Computa-
tional Algebra formalism to perform exhaustive and partial searches and thus
obtain several Hadamard matrices of orders 4n and 8n. Our Computational
Algebra formalism and techniques are applied here for the first time, to the
problem of searching for Hadamard matrices of the Williamson type from the
4 and 8 Williamson arrays. Several optimizations and vast improvements for
this kind of search are still possible, see [11} for instance, but we postpone the
application of optimized techniques in a future work. We were unable to find
any previous work in the literature pertaining to exhaustive and partial searches
for even-order Williamson matrices and exhaustive and partial searches for the

21



8 Williamson array. The motivation for undertaking these searches for all or-
ders from the beginning, lies in the belief that the sequence of the numbers of
solutions for all values of the parameters, should be studied as an indivisible
entity. For each construction separately, properties of the associated sequence
such as lacunarity, monotonicity and rate of growth, provide useful insights in
the structure of the sets of solutions, whether or not symmetries are taken into
account.

The exhaustive and partial searches reported below, have been performed with
automatically generated serial C programs at the Computer Algebra Research
Group, CARGO, Wilfrid Laurier University and remotely at the Centre de
calcul formel MEDICIS, Ecole Polytechnique, Paris, France, SHARCnet high-
performance computing clusters (University of Western Ontario) and WestGrid
high-performance computing clusters (Simon Fraser University, University of
British Columbia, University of Calgary).

The automatic generation of C code was performed using the CodeGeneration
package of Maple. Using this tool offers the advantage that any modifications
and optimizations in the original Maple code, are reflected automatically in
the generated C code. Two such optimizations are to take into account the
decoupled structure of the equations and the diophantine constraints on the
generators of the cyclic submatrices.

the search for inequivalent Hadamard matrices in each order, has been per-
formed with Magma V2.11-2 running on machines at the Centre de calcul
formel MEDICIS, Ecole Polytechnique, Paris, France. In particular we used
the Magma command HadamardInvariant which computes the 4-profile of an
Hadamard matrix.

4.1 4 Williamson array via Computational Algebra
4.1.1 n=3

Taking four square matrices of order n = 3 satisfying the conditions of the
classical Williamson construction, we see that the coefficients of the polynomials
must satisfy the algebraic equation

2+ agay + boby + cocy +dpdy =0 4

where the eight unknowns ag, a,, bg, by, g, €1, do, di can only take +1 val-
ues. An exhaustive search shows that there are precisely 64 solutions with +1
elements to equation (4). These solutions are given in the table below in the
format [solution number,aq, ay, by, by, o, €1, do, dy].

22



{1, =1,-1,-1,1,=1,1, -1,1]
3, =1, =1,-1,1,1, -1, =1,1]
[5. —-1,~-1,1,-1, =1,1, =1, 1
7, =1, =1,1,~1,1,~-1,=1,1
[0, =1,1, =1, -1, ~1,1,-1,1
fi1, -1,1, -1, -1,1, -1, =1, 1
13, -1,1,-1,1, -1, -1, =1, 1
15, -1,1,-2,1,-1,1, =1, =1
17, -1,1, =1,1,1, =1, =1, ~1]
[19.~1,1,-1,1,1,1,-1,1]
[21, —1,1,1, =1, =1, =1, =1, ]
23, -1, 1,1, -1, —-1,1, -1, -1
25, —=1,1,1, =1, 1, =1, —1, —1|
27, —-1,1,1, —1,1,1, -1.1'

(33,1, -1, ~1,~1,=1,1,~1, 1
35,1, ~1,~1, =1,1, =1, ~1, 1]
37,1, -1,-1,1, =1, =1, =1, 1]

(39,1, -1,-1,1,-1,1, =1, -1

(61,1, -1, -1,1,1, -1, -1, =]

[2, =1, =1, ~-1,1,-2,1,1, =1]
[¢ =1, =1, ~1,1,12, =1, 1, =1]
6, —1, ~1,1, =1, ~1,1,1, =1
8, —-1,—1,1,—~1,1,-1,1, -1
10,~1,1,—-1,—-1,-1,1,1, -1
12, -1,1, -1, -1,1,~1,1, -1
14, -1,1, 1,1, ~1,=1,1, -1,
16, ~-1,1,-1,1,-1,1,1, 1

18, -1,1,-1,1,1,-1,1,1
20, —-1,1,~1,13,1,1,1, ~1
22, -1, 1,1, -1, -1, -1,1, -]
24, -1,1,1, -2, -1,1,1,1

26, -1,1,1, ~1,1,=1,1,1
28, —1,1,1,~-1,1,1,1, -1

30, =1,1,13,1, -1,1,1, =1
}az. -1,1,1,1,1,-1,1, =1]
34,1, =1, =1, -1, ~1,1,1, =1
36,1, -1, =1, ~1,1,=%,1, =1
38,1, —1,~1,1, -1, =1,1, 1]

42,1, -1, ~1,1,1,-1,1,1

40,1, -1, -1,1, -1,1,1, IE

(3.1, ~1,~-1,2,2,2,-1,1)

48,1, -1,1, -1, =1, =1, =1, 1]
47,1, ~1,1, =1, —1,1, =1, =1
49,1, -1,1, 1,1, =1, =1, =1

44,1, -1, -1,1,1,1,1, -1
46,1, -1,1, -1, -1,-1,1, ~1]
48,1, -1,1,~-1,-1,1,1,1
50,3, -1,1,-1,1,-1,1,1
52,1,-1,1,~1,1,1,1,-1
54,1, -1,1,1,-1,1,1, -1
56,1, -1,1,1,1,~4,1, -1

51.1.-1.1, -1,1.1,—1,1)
53,1, ~1.1.1, 1,1, -1,1]
5.1, -1,1,1,1, =1, =1,1}

{57.1,1,=1,1,~1,1,~-1,1 56,1,1,-1,1,-1,1,1, -1
59,1,1,~-1,1,1,~1,—1,1 60,1,1,-1,1,1,-1,1, -1
61,1,1,1,-1,—1,1,—1,1, 62,1,1,1,~1,-1,1,1, =1
f6s,1,1,1,-1,1, -1, -1,1} 64,1,1,1,~1,1,-1,1, =1

Note: The last of the solutions (the one numbered 64) given above, is the same
as the solution in the example given in page 253 of [9]). This exhaustive search
documents the fact that there are exactly 64 Hadamard matrices of order 12
coming out of the classical Williamson construction.

4.1.2 n=5

Taking four square matrices of order n = 5 satisfying the conditions of the
classical Williamson construction, we see that the coefficients of the polynomials
must satisfy the system of two algebraic equations

2 + agay + azay + bobz + baby + cocz + 20y + doda + d2d) =

2 + apay + azay + boby + baby + cocy + cacy + dody + dady = (5)

where the twelve unknowns ag, a1, @2, bo, b1, b2, co, €1, 2, do, d1, d2 can
only take +1 values. An exhaustive search shows that there are precisely 192
solutions with +1 elements to equations (5). The last solution found is:

a=1a=1a6=-1,b=1 b =1, bb=-1,

-l,aa=1l,do=1,dy=-1,dy=1.

These solutions give rise to 192 Hadamard matrices or order 20 coming out of
the classical Williamson construction.

c=10c=

4.1.3 Synopsis of the results

In this paragraph, we present a synopsis of the results of exhaustive and partial
searches for (n = 3,...,27) we have obtained using our algebraic formalism for
the 4 Williamson array.
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. bor of uah
n order 2". + 2, n Odd aumber of I V(M) l l::;::‘:l::t
4n 2ﬂ + 4’ n even solutions matrices

3 12 8 64 = 1x 28 1

4 16 12 256 = 4% 26 2

5 20 12 192 = 3x28 1

6 24 16 1,536 = 24 x 28 1

71 28 16 960 = 15 x 28 2

8] 32 20 1,536 = 24 x 28 2

9| 36 20 2,112 = 33 x 26 3
10| 40 24 7,680 = 120 x 26 2
11 4 24 1,920 = 30 x 26 1
12| 48 28 16,384 = 256 x 28 4
13| 52 28 5,184 = 81 x 29 4
14 56 32 87,552 = 1,368 x 28 9
15 60 32 4,608 = 72 x 28 6
16| 64 36 24,576 = 384 x 26 5
17| 68 36 6,144 = 96 x 26 5
18 72 40 622,080 = 9,720 x 28 64
19 76 40 14,400 = 225 x 26 10
20| 80 44 > 403,046 partial search 49
21| 84 44 11,904 = 186 x 28 12
22| 88 48 > 152744  partial search 52
23| 92 48 4,224 = 66 x 28 2
251 100 52 >9,077 partial search 17
27| 108 56 > 610 partial search 11

Remark:

In the table above, despite the fluctuations of the size of the numbers, we remark
a certain divisibility property satisfied by all the elements of the sequence of
numbers | V(W) |, namely:

[ V(W,) | = 0(mod 64).

Moreover, it is known that there are no Hadamard matrices of the Williamson
type for the 4 Williamson array for n = 35, i.e. | V(W4) |= 0. However,
the divisibility property is still (trivially) satisfied even in such cases. The fact
that there are no Williamson matrices of order 35 was first proved in 7], by an
exhaustive computer search. This was also confirmed by an independent search
in [10]. A table with values n < 1000 for which Williamson type matrices of
order n are not known is given in [5].

4.2 8 Williamson array via Computational Algebra
421 n=3

Taking eight square matrices of order n = 3 satisfying the conditions of the 8
Williamson array construction, we see that the coefficients of the polynomials
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must satisfy the algebraic equation
4+ agay + boby + cocy + dody + eoer + fof1 + gog1 + hohy =0 (6)

where the sixteen unknowns ao, a1, bo, b1, co, ¢1, do, d1, o, €1, fo, f1, 90, 91, ho,
h; can only take £1 velues. An exhaustive search shows that there are precisely
7168 solutions with +1 elements to equations (6). Solutions are presented used

the order of variables: g, a1, bO: bla €, €1, do, d, €0, €1, fOr fla g0, 91, hOr h;.
The first solution found is:

----- + -+ -+ -+ -+ -+
The last solution found is:
P T Ik SRR TR

Note that the last solution is exactly the first solution, multiplied by —1. These
solutions give rise to 7,168 Hadamard matrices of order 24 coming out of the 8
Williamson array construction.

422 n=5

Taking eight square matrices of order n = 5, subject to the conditions described
at the end of paragraph 3.1, in the 8 Williamson array, we see that the coeffi-
cients of the polynomials must satisfy the system of two algebraic equations

4 + agay + a1a3 + boby + bybz + cocy + crcz + dody + dida+

+eoe; +erex + fofi + fifz + gog1 + 9192 + hohy + hih2 =0 (
7)

4 + agag + a1a2 + boba + biba + cocz + c162 + dodz + dida+

+egez +e1e2 + fof2 + fifz + gog2 + 9192 + hoha + hyha =0

where the twenty four unknowns ao, ..., A2, can only take X1 values as usual.
An exhaustive search shows that there are precisely 394, 240 solutions with +1
elements to equations (7). The first solution found is:

- -— - - - — -~ m -k -t ~-=-++
The last solution found is:
TR T I A AR I IR R B B IR R

Note that the last solution is exactly the first solution, multiplied by —1. These
solutions give rise to 394, 240 Hadamard matrices or order 40 coming out of the
8 Williamson array.
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423 n=7

Taking eight square matrices of order n = 7, subject to the conditions described
at the end of paragraph 3.1, in the 8 Williamson array, we obtain a system of
three equations in the thirty two binary unknowns ag, ..., h3. An exhaustive
search shows that there are precisely 11,289. 600 solutions with &1 elements to
these equations.

The first solution found is:

i R it e St Tl IR TR S S Sy
The last solution found is:
I A R R R I TR IR T T I T S S A A S G I A,

Note that the last solution is exactly the first solution, multiplied by —1. These
solutions give rise to 11,289,600 Hadamard matrices or order 56 coming out of
the 8 Williamson array construction.

424 n=9

Taking eight square matrices of order n = 9, subject to the conditions described
at the end of paragraph 3.1, in the 8 Williamson array, we obtain a system of
four equations in the forty binary unkoowns ay, ..., k4. An exhaustive search
shows that there are precisely 241, 597, 440 solutions with 1 elements to these

equations.

The first solution found is:

T S R T Tt T T T e S S S St
o+ -+ -

The last solution found is:

+++F—F -ttt mm b b mm bt~ —F -+ -+ =+
- =4 -

Note that the last solution is exactly the first solution, multiplied by —1. The
solutions give rise to 241,597,440 Hadamard matrices of order 72 coming out
of the 8 Williamson array construction.

4.2.5 Synopsis of the results

In this paragraph, we present a synopsis of the results of exhaustive (n =
3,...,9) and partial (n = 10,11,12,13) searches we have obtained using our
algebraic formalism for the 8 Williamson array.
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number of
i unknowns
et 411 + 4 gumber of number of
| ow | nodd i VOV et
n+8
n even
3 24 16 7,168 = 7x 210 2
4 32 24 65,536 = 64 x 210 3
) 40 24 394,240 = 385 x 210 8
6 48 32 10,608,640 = 10, 360 x 210 17
7 56 32 11,289,600 = 11,025 x 210 30
8 64 40 775,290,880 = 757,120 x 210 60
9 72 40 241,597,440 = 235,935 x 210 418
10 80 48 >1,137,151,116 partial search 76
11 88 48 > 129,902, 861 partial search 1,074
12 96 56 > 100, 055, 428 partial search 2,664
13 104 56 > 1,854,318 partial search 1,714
Remark 1:

In the table above, we remark an exponentially increasing sequence of numbers

of solutions, contrary to the 4 Williamson array case;

Remark 2:

In the table above, we also remark an analogous divisibility property satisfied
by all the elements of the sequence of numbers | V(W§) |, namely:

5 Inequivalence of solutions

We describe three different concepts of inequivalence of solutions for Williamson

| V(W8) | = 0(mod 1024).

matrices constructed via the 4 and 8 Williamson arrays.

e Naive definition: two solutions are inequivalent if they consist of dif-

ferent sequences of plus signs and minus signs;

e Hadamard inequivalence: two solutions are inequivalent if they give rise

to inequivalent Hadamard matrices;

e Williamson equivalence: suppose that we have a solution specified by
a quadruple of Williamson matrices of order m, A = circ(ao,-.-,@m-1),
B = circ(bo, - - ., bm—1), C = circ(co,-..,m-1), D = circ(do,. . - dm—1)-
Then applying the transformation j — js( mod m), (s,m) = 1, we obtain
another quadruple of Williamson matrices. These quadruples are called
equivalent and we need to know only one quadruple from each equivalence
class. In each equivalence class there are at most ﬂ;ﬂ- such quadruples
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where ¢(m) is the number of integers s such that (s,m) = 1,0 < s <m
(Euler totient function). This is because some quadruples may be trans-
formed into themselves and the transformations j — js( mod m) and
J — j(m — s)( mod m) are identical due to the symmetry of A, B,C, D.

These three different concepts of inequivalence of solutions, give rise to three
different counts for the solutions respectively. The naive definition gives rise
to the raw count (exhaustive searches). The Hadamard inequivalence defini-
tion accounts for the numbers of inequivalent Hadamard matrices that are also
Williamson matrices from the 4 or 8 Williamson arrays. The Williamson equiv-
alence definition is the only one of these three concepts that accounts satisfac-
torily for the many symmetries that Williamson matrices have.

Remark 1: The distinction between Hadamard and Williamson equivalence is
further clarified by the fact that negation of D in the Williamson array produces
a matrix that is Hadamard equivalent to the transpose of the Williamson array.
This fact, combined with the fact that some Williamson matrices are not self-
dual presumably explains all discrepancies between the numbers of Hadamard
inequivalent matrices and the numbers of Williamson inequivalent matrices.

Remark 2: It is important to point out that two solutions may be Williamson
equivalent, but at the same time giving rise to Hadamard matrices of the
Williamson type, which are Hadamard inequivalent. For example, it is well-
known (see [3]) that the number of distinct (Williamson inequivalent) solutions
of the Williamson equations for n = 23 (order 4 x 23 = 92) is 1. There is only
one solution of the Williamson equations for n = 23 (order 4 x 23 = 92) up to
Williamson equivalence. In (3], this unique solution is given as:

1-11-11--111111--11-11- (a0, ..., a23)
--111-111-1--1-111-111- (b0, ..., b23)
111---11-1-11-1-11——-11 {(c0, ..., ¢23)
111-111-1------1-111-11 (40, ..., d23)

Hov{rever, we computed 2 inequivalent Hadamard matrices of order 92 from the
4 Williamson array for n = 23. These two inequivalent Hadamard matrices of
order 92 are specified via the two solutions given below.

¢y
1--1--113----— 111--1-- (a0, ..., a23)
---111--11----11--111-- (b0, ..., b23)
-11--1-1-1----1-1-1--11 (c0, ..., ¢23)
-11-i-1----=—-———1-1-11 (d0, ..., d23)
@

1--1--111---——- 111--1-- (a0, ..., a23)
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-—111--11-——-11--111— (b0, ..., b23)
-11--1-1-1----1-1-1-—-11 (c0, ..., €23)
1--1-1-1111111111-1-1-~ (40, ..., d23)

These two solutions are Williamson equivalent, because their a, b, ¢ components
are exactly the same and the d components of the second solution is equal to the
d component of the first solution multiplied by —1. However, these two solutions
give rise to two inequivalent Hadamard matrices, because the corresponding
Hadamard matrices have different 4-profiles

[ 1687556, 855692, 217120, 30452, 3036, 184, 0, 92, 0, 0, 23, 0 ]
[ 1691972, 845756, 2265400, 27508, 3036, 368, 0, 92, 0, 0, 23, 0 ]

as computed with Magma’s HadanardInvariant command. As an additional
consistency check, we also used the graph isomorphism criterion, as implemented
in Magma’s IsHadamardEquivalent command to check the inequivalence of
these two Hadamard matrices. In summary, equivalent Williamson solutions
give rise to equivalent or inequivalent Hadamard matrices. This is a subtle
distinction between Hadamard equivalence and Williamson equivalence. A nice
survey on the (Williamson) inequivalent 4-Williamson matrices for each order
up to 4 x 37 = 148 is presented in [10]. In the present paper, we are interested
in Hadamard inequivalent matrices of the Williamson type, constructed from
the 4 and 8 Williamson arrays.

5.1 Inequivalent Hadamard matrices from the 4 and 8
Williamson arrays

In this section we summarize the computational results on locating inequivalent
Hadamard matrices within the sets of Hadamard matrices computed in the pre-
vious section. We analyzed the corresponding solution sets with Magma V2.11
to search for inequivalent Hadamard matrices. See [1] for a full description
of Magma V2.11 available functionality for Hadamard matrices. We used the
profile criterion to distinguish between inequivalent Hadamard matrices. The
profile criterion is a necessary (but not sufficient) condition for Hadamard in-
equivalence. Hadamard matrices with unequal 4-profiles are inequivalent. How-
ever, Hadamard matrices with equal profiles may or may not be inequivalent.
The profile criterion has been implemented in Magma’s HadamardInvariant
command. See {4] for more details on the profile criterion.

All the inequivalent matrices we located in this paper, are given in the web page
http://www.cargo.wlu.ca/hi48 in Magma format, together with programs to
convert them to other formats.

Remark: The graph isomorphism criterion is a necessary and sufficient con-

dition for Hadamard inequivalence. The graph isomorphism criterion has been
implemented in Magma’s IsHadamardEquivalent command. Because we are
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using the profile criterion to locate inequivalent Hadamard matrices, it is possi-
ble that the actual numbers of the inequivalent Hadamard matrices within the
solution sets we computed, are somewhat larger. This is why in the result ta-
bles below, we only give lower bounds for the number of inequivalent Hadamard
matrices.

Notation: Let N, denote the number of inequivalent Hadamard matrices of
order n.

Our computations using the 4 Williamson array and the 8 Williamson array,
establish ten new lower bounds for N,, summarized in the following tables:
(we mention that no 4-Williamson matrix is Hadamard equivalent to any 8-
Williamson matrix of the same order)

n 72 76 80
N, | > 482 (=64 + 418) >10 > 125 (= 49 + 76)
4W,n = 18 AW.n = 19 AW, n =20
sW,n=9 . 8W,n = 10
n 84 88
N, >12 > 1,126 (=52 + 1,074)
P LAY
n 92 96 100 104 108
N, >2 > 2,664 >17 >1,714 211
4W,n =123 aW,n =12 AW, n =125 W, n =13 4W,n = 27
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7 Conclusion

In this paper we study constructions of Hadamard matrices from 4 and 8
Williamson arrays, by exploiting a noticeable similarity between the classical
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Williamson construction and a matrix representation of the algebra of quater-
nions. We establish a Computational Algebra formalism for Hadamard matrices
from 4 and 8 Williamson arrays. Using this formalism we search for inequiv-
alent Hadamard matrices of various orders using the Computational Algebra
system Magma and High-performance computing. We establish constructively
ten new lower bounds for the number of inequivalent Hadamard matrices of the
consecutive orders 72, 76, 80, 84, 88, 92, 96, 100, 104 and 108.
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