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Abstract

We enumerate the self-orthogonal Latin squares of orders 1
through 9 and discuss the nature of the isomorphism classes of each
order. Furthermore, we consider the possibility of enlarging sets of
self-orthogonal Latin squares to produce complete sets.

1 Introduction

In this section we will present some definitions and a brief history of certain
aspects of Latin squares, complete sets of Latin squares, and the enumer-
ation of Latin squares. The reader who is interested in a more detalled
historical account may consult JDénes and ADKeedwell (5] and [6].
Latin square of order n is an n x n matrix each of whose rows and columns
is a permutation of a set of n elements. A Latin square is in reduced form
when the symbols in the first row and first column are in natural order.

Latin squares and their enumeration were first studied by LEuler [7]
in 1779. He showed that the number of distinct, reduced squares of order
2 was 1, of order 3 was 1, of order 4 was 4, and of order 5 was 56. In
1890, MFrolov [8] correctly calculated the number of reduced squares of
order 6 to be 9408. He also incorrectly calculated the number of squares of
order 7. In 1948, ASade [19] properly determined the number of distinct,
reduced Latin squares of order 7 to be 16,942, 080. In 1967, MBWells [23]
computed the number of distinct, reduced Latin squares of order 8 to be
535, 281, 401, 856. SEBammel and JRothstein [1] in 1975 calculated the
number of reduced squares of order 9 to be 377,597,570,964, 258, 816.
In 1995, BDMcKay and ERogoyski [11] computed the number of reduced
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squares of order 10 to be 7,580, 721, 483, 160, 132, 811,489, 280. Recently,
McKay and IMWanless [12] calculated the number of reduced squares of
order 11 to be 5, 363,937,773,277, 371, 298, 119, 673, 540,771, 840. Let ¢,
denote the number of distinct, reduced Latin squares of order n and let Ly,
denote the total number of distinct squares of order n. Since it is possible
to permute the columns of a reduced square in n! ways and to permute the
last n» — 1 rows in (n — 1)! ways, L, = nl(n —1)!¢,.

Two Latin squares of order n, A = (ai;) and B = (b;), are or-
thogonal if the n? pairs (aij,bi) (i, = 1,2,...,n) are distinct. A set

= {A1, A2, ..., A} of Latin squares of order n is mutually orthogonal
provided A; is orthogonal to A; for each i # j.

General results on the construction of mutually orthogonal Latin
squares (MOLS) were given by HF MacNeish [10] in 1922. For n a prime, he
showed how to construct a set of n» — 1 mutually orthogonal Latin squares
of order n. For any n, no larger set can exist, so a set of n — 1 mutually
orthogonal Latin squares of order n is called a complete set of mutually
orthogonal Latin squares.

In 1938, RCBose [2] proved that every projective plane of order n defines
and is defined by a complete set of mutually orthogonal Latin squares of
order n. Also he showed how to construct a set of p”—1 mutually orthogonal
Latin squares of order p" when p is a prime and r is a positive integer.
Independently and about the same time, WLStevens [21] also presented a
simple technique for constructing a set of p” — 1 mutually orthogonal Latin
squares of order p”. Earlier, in 1896, EHMoore [14] had solved the two-fold
school-girl-system, SGS[m — 1, 2, m] where m > 2 and m = p" where p is
any prime. In his solution, Moore essentially constructed a complete set of
MOLS of order p" in the same manner as did Bose and Stevens. For more
details see JDénes and ADKeedwell [6] page 379.

A Latin square which is orthogonal to its transpose is said to be a
self-orthogonal Latin square (SOLS). The term “self-orthogonal” was in-
troduced in 1970 by RCMullin and ENemeth [15); however, the problem
of constructing a Latin square orthogonal to its transpose seems to have
been considered first by SKStein [20] in 1957. In 1973-74 RKBrayton,
DCoppersmith, and AJHoffman [3] and [4] showed that there exists a self-
orthogonal Latin square of order n for n # 2,3,6. We will restrict our
attention to Latin squares of order n in which the entries are from the
set V, = {1,2,...,n}. For A self-orthogonal, the main diagonal pairs from
A, AT are repeated pairs. Because of orthogonality they are distinct; con-
sequently, the main diagonal of A must be a permutation of V,,. We will say
that a self-orthogonal Latin square is idempotent when the entries on the
main diagonal are in natural order. Let s,, denote the number of distinct,
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idempotent, self-orthogonal Latin squares of order » and let S, denote the
total number of self-orthogonal squares of order n. Since it is possible to
permute the entries of a square in n! ways, S, =nls,.

2 Results

n = 1. There is only one Latin square of order 1—namely, (1). By defini-
tion (1) is self-orthogonal. Thus, S; =s1=1.

n = 2. Since there is no Latin square of order 2 with main diagonal
entries 1, 2, there is no self-orthogonal Latin square of order 2. Hence,
Sz =82 = 0.

n = 3. The only Latin square of order 3 with main diagonal entries

1,2,3is
1 3 2
3 21
213

Clearly, this square is not self-orthogonal; therefore, S3 = s3 = 0.

n = 6. In 1900, GTarry [22] proved by exhaustive enumeration that
there does not exist a pair of mutually orthogonal Latin squares of order 6.
Consequently, there does not exist a self-orthogonal Latin square of order
6 and Sg = 3¢ = 0.

Let o be any permutation of V;, and let A be any Latin square of order
n. We will use oA to denote the isomorphic Latin square obtained by si-
multaneously permuting the rows, columns, and entries of A by 0. We will
also say that the square B is isomorphic to the square A if there exists a
permutation o such that B = oA. From this definition, it follows that (i) A
is a SOLS if and only if oA is a SOLS and (ii) A is symmetric if and only
if oA is symmetric. Furthermore, if {A, B,C,...} is a set of MOLS, then
{0A,0B,0C,...} is a set of MOLS.

n = 4. There are two idempotent SOLS of order 4,

W N B
-k N W
(-

and its transpose, AT. Thus, s4 = 2 and Sy = 48. Both A and A7 be-
long to the same isomorphism class. There are 4! = 24 permutations of
Va. The twelve even permutations map A onto itself while the twelve odd
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permutations map A onto A”. Let

1 2 3 4
214 3
B=13 41 2
4 3 21

The set A = {A, AT, B} is a complete set of mutually orthogonal Latin
squares.

n = 5. There are twelve idempotent SOLS of order 5, so s5 = 12
and S5 = 1440. Furthermore, there are two isomorphism classes. One class
contains the square

1 3 2 5 4
4 251 3
C=]543 21
3 514 2
214 35

and five distinct squares isomorphic to C. The other class contains CT and
five distinct squares isomorphic to it. There are 5! = 120 permutations
of V5. Twenty isomorphisms of C yield C, and five disjoint sets of twenty
isomorphisms each yield the other five SOLS isomorphic to C. The same
results hold for CT. Let

1 2 3 45 1 23435
315 2 4 2 415 3
D=}12 415 3 and E=1315 2 4
53 41 2 4 5 231
4 5 2 3 1 5 3 41 2

The set C = {C,CT, D, E} is a complete set of MOLS.

n = 7. There are 3840 idempotent SOLS of order 7, so sy = 3840 and
S7 =19, 353, 600. There are eight isomorphism classes of SOLS. Four classes
contain 120 isomorphic Latin squares while another four classes contain 840
isomorphic Latin squares. There are 7! = 5040 permutations of V5. If A and
B are in a class consisting of 120 squares, then there are 42 permutations
o such that A = B. If A and B are in a class consisting of 840 squares,
then there are 6 permutations o such that 0 A = B, Let
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1325476 1547632
4271653 7253146
5637124 6 431275
F=|6754312| and G=[36 24751
74625 31 2376514
21437635 5712463
3516247 41653 2 7|

The set {F, FT,G,GT} is mutually orthogonal and one Latin square
comes from each of the four classes containing 120 isomorphic squares. Let
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and =

sy

I
AN AN W=
O~ Wb =N
NN = OTW
WO = 3N
BN = WOt
N =Wt
W Ut O
N DA WN =
DU W= =N
BN =W
NWr 0N~
NI DO
N WOt
WH=NDWDMAED

The set F = {F, FT,G,GT, H,I} is a complete set of MOLS.

Given an isomorphism class containing 840 Latin squares, there is ex-
actly one distinct class of 840 squares such that the Latin squares in this
class are the transposes of the Latin squares in the given class. Furthermore,
if A is in an isomorphism class of 840 squares and if ¢ is any permutation
of Vy, then AT is in a different class of 840 squares and (0 A)T = o(AT)—
hence, {A, AT} is a set of MOLS and so is {cA,0 AT}. Let A be any square
from any class of 840 squares, the set {A, AT} is maximal—that is, there
does not exist any Latin square B of order 7 such that {4, AT, B} is a set
of MOLS.

n = 8. There are 103, 680 idempotent SOLS of order 8, so sg = 103, 680
and Ss = 4, 180, 377, 600. There are eight isomorphism classes of SOLS.

The isomorphism: class of

1 3 2 5 6 7 8 4]
4 2781356
5 4 36 8127
J_31847265
“176 425813
8 7513 6 4 2
2 86 34571
| 6 517 2 4 3 8
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contains 40, 320 distinct Latin squares. The SOLS J7 is not in this class,
so there is a second distinct isomorphism class containing 40, 320 SOLS.
The set {J, JT} is maximal in that there does not exist a Latin square X
such that {J, JT, X} is a set of MOLS.

The SOLS ) )
13256784
42813567
5736841 2

K—|6874123s5
(86475321
2418765 3
31524876
|7 56321 4 8]

does not belong to either of the two previous classes. The isomorphism class
of K contains 5040 SOLS as does the distinct isomorphism class containing
KT, Let

00~ O L W=
O 00 Wb =t
OO RDN - AW
N W= oo
BN = WUty O,
W= N oo O
WA NN,

O UV 00 = =N WA

The set {K, KT, L} is maximal.
The isomorphism class of

-

TN WOoo T &~
N =0 N W
00 = =] WU
BN WO~
=R N W00
O - O W

N WO =g
Wb =N 0o

does.not belong to any of the previous four isomorphism classes and it con-
tains 5760 distinct SOLS as does the distinct isomorphism class containing
MT. The set {M, MT} is maximal,
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The isomorphism class of

13456782
52718463
6 4381257
N_|7 8542136
=ls 7265314
2 5837641
31624875
| 4617 352 8]

does not belong to any of the previous six isomorphism classes and it con-
tains 720 distinct SOLS as does the distinct isomorphism class containing
NT. Let

U =3 = 30N
0o WOt
N 00 Wik Ol
- O 00 W
- 00 W J Ut
BN =t~ oW
L~y = 00N G
00 = ~J D WO~ O,

U WN 0o~ -
N RO W~
O N~ & W 0o
~ WO U= DN

1
U AW 0o -
OO N~ &~ 00
O =] W 00 Ut = b N
00 BN =0~ W

| | -

The SOLS O and P are in the isomorphism class of N while OT and PT
are in the isomorphism class of NT. Let

‘123456781
2 15 8 376 4
3516 2 4817
|4 8617352
Q=153 2718486
6 7 4381235
76 85 4213
| 8 47265 31

The set {N,NT,0,07, P, PT,Q} is a complete set of MOLS of order 8.

n = 9 . There are 69,088,320 idempotent SOLS of order 9, so sg =
69,088,320 and Sp = 25,070,769,561,600. There are 283 isomorphism
classs of SOLS. Figure 1 summarizes the characteristics of the isomorphism
classes based on the orbit length, whether or not the transpose of each
square in the orbit occurs in the same orbit, and the type of maximal set
associated with the orbit.

Four projective planes of order 9 have been known for a number of
years and in 1991 DWHLam, GKolesova, and LThiel [9] proved there are
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no other projective planes of order 9. TGRoom and P* B' Kirkpatrick (18]
used the following notation for the four projective planes of order 9: the
desarguesian plane is denoted by &, the translation plane by £, the dual
of the translation plane by 22, and the Hughes plane by ¥. Affine planes
are obtained from projective planes by selecting a line, called the line at
infinity £, and then deleting this line and the points on it. The remaining
lines and points are an affine plane. Deleting the line at infinity and the
points on it, one affine plane is obtained from the desarguesian plane ® and
two non-isomorphic affine planes are obtained from each of the projective
planes Q,QP, and ¥. We number the affine planes as follows:

Affine Pla.he Projective Plane Line at Infinity

1 d Any

2 Q b =t

3 Q boo #t

4 QP bl T
5 QP b} T
6 14 Real

7 v Complex

where ¢ denotes the translation line, T denotes the translation point, I
denotes incidence of a point and a line, and J denotes its negation.

The set of SOLS which are members of complete sets of order 9 consist
precisely of those SOLS in 18 orbits. One SOLS from each orbit—the
square in the orbit which was found first by our search procedure—appears
in Figure 2. In Figure 3 we present information regarding the total number
of Latin squares orthogonal to each SOLS pair Z, ZT in Figure 2, as well
as orbit information. In Figure 4, we display complete set information and
plane information for the same set of SOLS. From Figure 4, we observe that
it is possible to represent any of the seven affine planes by a complete set
of Latin squares which contains exactly 2 pairs of SOLS and also exactly 3
pairs of SOLS. We see when 3 pairs of SOLS appear in a complete set, the
remaining two Latin squares are always a symmetric square and a square
with constant diagonal. SOLS N, O, P, and Q belong to three different
types of complete sets while R belongs to 78 different types of complete
sets. R appears in complete sets representing the affine planes 1 and 2—3
times each and representing the affine planes 4 and 6—36 times each. R
does not appear in any complete set representing the affine planes 3, 5, or 7.

Computer generation of SOLS. For n = 4, 5, and 7 it is easy to find
all SOLS by creating a Latin square one row at a time; checking after adding
the k-th row for the distinctness of the ordered pairs (a;j,aj) for i,j =
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1,2,...k and (4,%) for i = k+1,...,n; and back-tracking when necessary.
For n = 8 and 9, at each stage, we add the k-th partial row to the right of
the diagonal element axx—that is, the elements ayx for £ =k +1,...,n—
and add the k-th partial column below the same diagonal element—that
is, agx for £=k+1,...,n. Then we check for distinctnesss of the ordered
pairs (asj,aj) for i,5 =1,2,...k; (aij,a5) fori=1,...k, j=k+1,...7n;
(aij,a5) fori =k+1,...n, j =1,...k; and (i,i)) fori=k+1,...,n
Back-tracking was used when necessary.

Determination of plane type for n = 9. Once we find a complete
set of MOLS of order 9, we construct the associated incidence matrix and
determine the type of projective plane and affine plane which corresponds
to the complete set from the incidence matrix itself. Using a different
approach, P’ J° Owens and DAPreece [16] and [17] consider the collection
C of all complete sets of MOLS of order 9 in which the first row of each
square is in ascending order. In [16] they define an equivalence relation on
C and show that this relation partitions the collection C into 19 equivalence
classes. Also in [16] they provide an algorithm for identifying the type of
projective and affine plane associated with any complete set of MOLS in
the collection C.

Almost Self-Orthogonal Latin Squares of Orders 2, 3, and 6

Many results have been obtained regarding orthogonal Latin squares
with “holes”—that is, Latin squares which are orthogonal except for sub-
squares coincident in position. L. Euler, himself, gave an example of two
6 x 6 squares which were orthogonal except for a coincident 2 x 2 sub-
square. Our rules for constructing almost self-orthogonal Latin squares are
as follows:

1. Entries are from V.

2. Unfilled entries are designated by 0.

3. The main diagonal entries, in order, are 1,2,...,n.
4. If the i,j entry is not 0, then the 7,1 entry is not 0.
n = 2. The best attainable almost SOLS is

10
4=[0 2
The pair A, AT has two of the four ordered pairs required for orthogonality.
n = 3. The best attainable almost SOLS is

1 00
B=|0 20

0 0 3
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The pair B, BT has only three of the nine ordered pairs required for or-
thogonality.

n = 6. There are 84 best attainable almost SOLS with the same
configuration as

WO Ut
- TN W
RO W
QOO N
O NO AW
DO O = b n

The pair C,CT has thirty of the thirty-six ordered pairs required for
orthogonality.

3 Summary

Let s, denote the number of distinct, idempotent, self-orthogonal Latin
squares of order n, then the total number of self-orthogonal squares of
order n is Sy, = n!s,. Let ¢, denote the number of distinct, reduced Latin
squares of order n, then the total number of distinct squares of order n is
L, = nl(n - 1)!,. The following table summarizes the known values of s,
and 4,.

n sn Reference én Reference
1 1 1

2 0 [3] 1 (7]
3 0 3] 1 (7]
4 2 4 [7]
5 12 56 [7]
6 0 3] 9,408 8]
7 3,840 16, 942,080 [19]
8 103, 680 535, 281, 401, 856 (23]
9 69, 088, 320 377,597,570, 964, 258, 816 1]
10 7,580,721, 483,160,132, 811, 489, 280 [11)
11 5,363,937, 773,277,371, 298,119, 673, 540, 771, 840 [12]

For n = 4 all SOLS are members of complete sets of Latin squares
consisting of the SOLS, its transpose, and a symmetric square. These
complete sets are associated with the field plane of order four.
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For n = 5 all SOLS are members of complete sets of Latin squares con-
sisting of the SOLS, its transpose, a symmetric square, and one additional
square. These complete sets are associated with the field plane of order
five.

For n="7, 87.5% of the SOLS have maximal set which consists of only
two squares—the self-orthogonal square and its transpose. The remaining
12.5% of the SOLS are members of complete sets comprised of the SOLS,
its transpose, another self-orthogonal square, its transpose, a symmetric
Latin square, and a sixth square. These complete sets are associated with
the field plane of order seven.

For n=8, 88.8% of the SOLS have a maximal set with two squares—
the self-orthogonal square and its transpose. The maximal set for 9. 72%
of the SOLS contains three squares—the SOLS, its transpose, and a third
Latin square. The remaining 1.38% of the SOLS are members of complete
sets consisting of three SOLS, their transposes, and a symmetric square.
These complete sets are associated with the field plane of order eight.

For n =19, 88.37% of the SOLS have a maximal set consisting of two
squares—the SOLS and its transpose. The maximal set for 5.34% of the
SOLS contains three squares—the SOLS, its transpose, and a third Latin
square. The maximal set for 2.80% of the SOLS contains four squares—the
SOLS, its transpose, and two other Latin squares. The remaining 3.49% of
the SOLS are members of complete sets of MOLS.
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Orbit Orbit Number Complete
Length Contains of Orbits I II III IV Set

362,880 A and AT 11 8 1 1 0 1
A only 126 120 0 2 2 2
181,440 A and AT 36 30 2 2 2 0
A only 50 40 0 4 4 2
120,960 A and AT 2 0 0 2 0 0
80,720 A and AT 8 4 1 3 0 0
A only 12 12 0 0 0 0
60,480 A and AT 4 0 0 0 2 2
A only 6 0 0 0 0 6
45,360 A and AT 4 0 0 0 0 4
A only 20 10 2 2 0 6
5,040 Aand AT 2 0 0 0 0 2
A only 2 0 0 0 0 2

Type of Maximal Set: I — {A, AT}, I1 - {A, AT, S}, 111 - {A, AT, N},
IV - {A AT, X, Y}*

S-symmetric, N-nonsymmetric,
*X is symmetric if and only if Y has constant main diagonal.

Figure 1: Characteristics of Isomorphism Classes of Order 9
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Number LS

Orthogonal Orbit Orbit

SOLS Z and ZT Contains Length
A 6 A only 45360

B 6 B only 45360

C 9 C and CT 362880
D 9 D only 362880
E 10 E and ET 60480
F 10 F and FT 60480
G 14 G only 181440
H 14 H and HT 45360
I 14 Iand IT 45360

J 54 J only 45360

K 54 K and KT 45360
L 194 L only 60480

M 194 M only 60480
N 302 N only 5040
o 486 O and OT 45360
P 486 P only 60480

Q 486 Q and QT 5040
R 63666 Rand RT 5040

Figure 3. Orbit Information for Complete Sets of Mutually Orthogonal
Latin Squares of Order 9 which Contain SOLS
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