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Abstract

A labeling f of a graph G is called semi-H-cordial if for each vertex
v, |f()] £ 1, les(1) — eg(—1)| < 1 and |vs(1) — vs(—1)| < 1. In this
paper we study the forcing semi-H-cordial numbers of paths, cycles,
stars, trees, Dutch-windmill graphs, wheels, grids and cylinders.

1 Introduction

Let G a be graph with vertex set V(G) and edge set E(G). By a labeling of
a graph G we mean a map f which assigns to each edge of G an element of
{~1,1}. Let f be a labeling for a graph G. For each vertex v € V(G) we
define f(v) to be the sum of the labels of all edges having v as an endpoint.
In other words, f(v) = Zeel(v) f(e), where I(v) is the set of all edges
incident with v. For each integer k, es(k) is the number of edges having
label k and vg(k) is the number of vertices having label k.

A labeling f of a graph G is called semi-H-cordial (see (3]) if for each vertex

v, |f(v)] <1, |eg(1) — es(—1)] < 1 and |vg(1) —vp(~1)| < 1. A graph G is
called to be semi-H-cordial if it admits a semi-H-cordial labeling.
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The proof of the following lemma is straightforward and is left to the
reader.

Lemma 1 If f is an assignment of integer numbers to the edges and ver-
tices of a given graph G such that f(v) =3 ¢ I(v) f(€) for each vertex v,

then
Y fwy=2 " fle)

veV e€E(G)
Lemma 2 Let G be a semi-H-cordial graph with m edges. Then

1. each vertex of even degree has label zero;

2. Y veviq) F(V) = 2 ccp(c) f(e), where V,(G) is the set of vertices
with oéd degree;

3. m is even.

Proof. The proofs of Parts 1 and 2 are clear. Here we only prove Part 3.
Since |vs(1)—vy(~1)| < 1 and |[Vo(G)| is even we must have vs(1) = vy (—1).
This implies 23 ¢ g(g) f(€) = Lyev,(c) f(v) = 0 by Part 2. Therefore m
iseven. m

A semi-H-cordial labeling f for G can also be represented by a set of
ordered pairs Sy = {(e, f(e)) | e € E(G)}. A subset T of Sy is called
a forcing subset of Sy if Sy is the unique extension of T' to a semi-H-
cordial labeling for G. The forcing semi-H-cordial number of S¢, F,(Sy),
is defined by F,(Sy) = min{|T| : T is a forcing subset of Sy}. The forcing
semi-H -cordial number of G, F,(G), is defined by F,(G) = min{F,(Sy) :
Sy is a semi-H-cordial labeling for G}.

The concept of forcing numbers has been studied in different areas of
graph theory, including the chromatic number of a graph [2] and the dom-
ination numbers of a graph [1, 5]. For a survey of forcing parameters in
graph theory see [4]. In this paper we study the forcing semi-H-cordial
numbers of certain graphs. In Section 2 we find the forcing semi-H-cordial
numbers of paths, cycles and stars. We also study the forcing semi-H-
cordial numbers of trees. In Section 3 we find the forcing semi-H-cordial
numbers of Dutch-windmill graphs and give an upper bound for the semi-
H-cordial number of a wheel. In Section 4 we give upper bounds for the
forcing semi-H-cordial numbers of grids and cylinders.
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2 Paths, cycles and stars

In this section first we find the forcing semi-H-cordial numbers of paths,
cycles and stars. Then we find sharp lower and upper bounds for the forcing
semi-H-cordial number of a graph G. Finally, we prove that if T is a tree
then F,(T) = 1 if and only if T is a path of odd order. Note that by Part 3
of Lemma 2 a path of even order, an odd cycle and the star k;  for n odd
are not semi-H-cordial graphs.

Lemma 3 For each odd positive integer n, F,(P,) = 1.

Proof. Let P be a path of odd order n, say P : v;,vs,...,%,. Define a
labeling f of G by:

f(v,-v,-+1) = (—1)“’1 for i = 1, 2, ey — 1.

It is easy to see that f is a semi-H-cordial labeling for P,. Now let T =
{(v1v2,1)}. Obviously T is a forcing subset of Sy. So F,(P,) < F,(Sy) = 1.
This implies F.,(P,) = 1, since for every graph G we have F,(G) > 1. m

The proof of the following lemma is similar to that described in Lemma 3.

Lemma 4 For each even positive integer n, F,(C,) = 1.
Lemma 5 For each even positive integer n, F,(K1n) = %.

Proof. Let V(K1,n) = {vo,%1,...,vn} and deg(vp) = n. Define the label-
ing f of K ., as follows:

flwows) = (—1)! for1 <i < n.

It is easy to see that f is a semi-H-cordial labeling for K n. Now let
T = {(vovi, 1) | ¢ is even}. Since deg(wvo) is even we must have f(vg) =0
by Lemma 2. This implies that the labels of the remaining edges must be
~1. So T is a forcing subset of Sy. Thus F,(K;,) < F,(Sf) < g#. Now

we show that F, (K .) > g Let T be a subset of E(K ) such that each
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edge in T has label 1 or -1 and |T| < g Let n; be the number of edges

with label 1 in T'. Obviously n; < g Now we can give label 1 to g -m

arbitrary edges of E(K;,) \ T and give label —1 to the remaining edges
of E(K1,,) \ T. This is an extension of T to a semi-H-cordial labelmg of

K ,n. By construction this extension is not unique. So F,(K3,,) > <. This
completes the proof. m

Theorem 6 For a graph G, 1 < F,(G) < IE(G)I Furthermore these
bounds are sharp.

|E@G)
Proof. Obviously 1 < F,(G). Now we prove F,(G) < ———. Let f be a

semi-H-cordial labeling for G. We have |ef(1) — es(—1)| < 1. This implies
ef(1) = eg(—1), since |E(G)| is even by Lemma 2. Now it is clear that

T = {(e, f(e)) | f(e) = 1} is a forcing subset of Sy. So F,(Sy) < —= IE(G)I

This implies F,(G) < L2 (G)l

The graphs C,, and K », for even n, serve to show that these bounds are
sharp. m

Theorem 7 Letnbeevenand1 <k < 5 Then there exists a graph
G, with n edges such that F.,(Gi) = .

Proof. Foreach1 <k < g, let G = (Vi, Ey), where Vi = {vg,%1,...,0n}

and Er = {voUn—2k+2,U0Vn-2k+3,---,%0Un} U {vivs41 | 0 < i < n — 2k}.
Define a labeling f; of Gy as follows:

fr(vovy) = (-1) if j=n—-2k+2,...,n;
fre(vjvjpn) = (-—1)j+1 if 0<ji<n~-2k.

Obviously fj. is a semi-H-cordial labeling for Gi.

Now let Ty = {(vovj,1) | n—2k+2<j<nandjis even}. It is clear that
T}, is a forcing subset for Sy,. So F,(Gy) < k. Now an argument similar
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to that described in the proof of Lemma 5 shows that F.,(Gx) > k. This
completes the proof.

The following result shows that if the forcing semi-H-cordial number of
a tree is one then the tree must be a path of odd order.

Theorem 8 For every tree T, F,(T) = 1 if and only if T is a path of
odd order.

Proof. Let T a be tree and F,(T) = 1. By Lemma 2 Part 3 we see that
|E(T)| is even. Without loss of generality we can assume that for some
e € E(T), {(e,1)} is a forcing subset for a semi-H-cordial labeling of T
We consider two cases.

Case 1. There exists a maximal even path, say P : ujuz... %y, which
contains e.

If T = P then the proof is complete. Now let T # P. Let e = u;ui4 for
some 1 <i < n—1. We define

( )= (-1)° if 1<s<n—1 and iiseven
gaUst1) =1 (—1)#!  if 1<s<n-1 and iisodd.

Note that g(e) = 1 for both ¢ even and odd. Now we extend g to a semi-
H-cordial labeling f for T using the following algorithm.

Algorithm Let f(e') = g(e') for ¢’ € E(P). Define the three variables S,
Aandaby §=A=E(T)\ E(P) and a = 1. We update S, a and f using
the following loop.

while (S # @)

1. Suppose that ey, ey, ...,e, is the longest path in S. For each 1 < < p,
define f(e;) to be (—1)*a and then delete e; from S.

2. Let b= 3" cp(ry\s f(€)- If b # O then set @ = b, otherwise set a = 1.
end while.

We claim that f is a semi-H-cordial labeling for T. First note that after each
iteration we have a € {—1, 1}, because in the k-th iteration if p is even, then
f(e1)+...+f(ep) = 0and 3 45 f(€) does not change. Otherwise we have

f(er)+...+ f(ep) = —a and 3 4\ s f(€) changes to 0 or —a. So for each
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e € E(T') we have f(e) € {—1,1}. Now if the edges incident with a vertex v
are completely removed from S in the k-th iteration, then we have f(v) =0
before the k-th iteration and |f(v)| < 1 after the k-th iteration until $ = @.
On the other hand we see that ZveV(T) fv) =23 ¢ ey f(e) = 0. So

vp(—1) = vs(1).

If initially we start with S = A = E(T) \ E(P) and ¢ = —1 then we
obtain another extension of g for T which is a contradiction.

Case 2. Each maximal path of T containing e is odd.

Since T is semi-H-cordial it follows that T has at least two maximal odd
paths containing e. Let P : ujus...u,, be a maximal odd path of T
containing e and e = w;u;4, for some 1 < i < m — 1. Obviously P — e has
even edges. We consider two subcases.

Subcase 2.1. P — e is connected. Then one of the endpoints of e has
degree 1. Now it is clear that for each maximal odd path @ containing e,
@ — e is connected.

Subcase 2.2. P - e is disconnected. Then both components of P — e
have the same parity, since P is an odd path. Now it is clear that for
each maximal odd path @ # P containing e, @ — e is disconnected by
Subcase 2.1. Moreover, the components of P — e and @) — e have the same
parity, otherwise we have a maximal even path of T' containing e, which is
a contradiction.

Now let @ : wyw,...w, be another maximal odd path of T containing e
and e = wjw;4; for some 1 < 4 < r — 1. Let m; and m2 be the smallest
and the largest subscripts such that wp,,,wn, € V(P). Define a labeling
g1 on E(P U Q) as follows.

_f (-1) ifl<s<m-—1andiiseven
91(Uetle+1) = 1 (_1)*+! if1<s<m—1andiisodd.

and
( )= (-1 f1<t<m -1, m<t<r—1iiseven
GMWeWe1) =1 (-1)t  f1<t<my—1, mp<t<r—1,iisodd.

If |E(P)NE(Q)| is even then 3 ¢ p o 91(€) = 0 otherwise 3° . p o 91(€) €
{-1,1}. Using the algorithm described in Case 1, with § = A = E(T)\

E(PUQ)anda=3  p,q9i(e) if 3 .cpug g1(€) #0, otherwise a = 1, we
can find an extension of g, to a semi-H-cordial labeling for T.
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Again define a labeling g» on E(P U Q) as follows.

_ | ai(e) if eePNQ
92(3)‘{-191@) if egPNQ.

As above we can extend go to a semi-H-cordial labeling for T. Thus we
have two semi-H-cordial labelings of T containing {(e, 1)} which is a con-
tradiction.

Conversely, if T is a path of odd order then the result follows by Lemma 3.
(]

3 The Dutch-windmill graphs and wheels

The Dutch-windmill graph, K3 (m ), is a graph which consists of m copies of
k3 with a vertex in common. The wheel, W,,, is a graph with n+ 1 vertices
{vo,v1,...,un} and edges {vov; | 1 < & < n}U{v1v2,v203, .. vy Un—1Un, VpV1 }.
In this section we find the forcing semi-H-cordial number of K3 (m) and give
an upper bound for the forcing semi-H-cordial number of W,;.

Lemma 9 K{™ is semi-H-cordial if and only if m is even.

Proof. Let Kj (™) be a semi-H-cordial graph and let f be a semi-H-

cordial labeling for K(’"). Since deg(v) is even for each v € V(G), we
must have f(v) =0 by Theorem 2. Now we have 23°__ E(RS™) fle) =

ZveV(xg"") f(v) = 0. This forces es(1) = eg(—1). Therefore |E(K. K™ is
even. Hence m is even.

Conversely, let. m be even. Assume v, u;, w; are the vertices of the zth copy
of K3 in K3 (v is the common vertex). Define a labeling f of K. ) as
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follows:
. .._m
1 if e=wu;vw; and 15z_<_—2—;
P 1 if e=wu;w; and %+15i$m;
e) =
-1 if e=vu;vw; and -rg-+1$i_<_m;
-1 if e=uwuw;and 153’5%.

It is easy to see that f is a semi-H-cordial labeling for Kém). This completes
the proof. m

Theorem 10  For every even positive integer m, F,(K{™) = %

Proof. If m = 2 the result is trivial. Let m > 4 and let f be the semi-H-
cordial labeling for Ké"') as described in Lemma 9. It is easy to see that
T = {(uwsw;,1) | -Tg- +1 < i < m} is a forcing subset for Sy. So we have

F(K{™) < -722 Now we show that F,(K{™) > 1;— Let E be a subset of

edges with |E| < ? Without loss of generality we can assume E does not

intersect the first and the second copies of K3. Let a. € {1, —1} be the label
of e € E. Define S = {(e,a.) | e € E}, S; = SU {(vaw1,1), (ugws, —1)}

and S = S U {(wqwi, —1), (uaws, 1)}. Since |S| < -1;1 it is easy to extend

S: (and S3) to a semi-H-cordial labeling of Ké"'). This implies that S is
not a forcing subset for any semi-H-cordial labeling of K:E"'). Therefore,
F,(K§™) > %‘4 This completes the proof. m

Lemma 11 For each n > 3, W, is a semi-H-cordial graph.

Proof. If n is even define a labeling f of W, as follows:

fle) = 1 if e=vpv;,%viq1, 1 £i < nandiis odd;
-] -1 otherwise.

Obviously, f is a semi-H-cordial labeling of W,,. If n is odd define a labeling
g of W,, as follows:

(€) = 1 if e=wov,vov;,v%vit1, 1 < i< n andiiseven;
ne)r=3 11 otherwise.

Obviously g is a semi-H-cordial labeling of W,,. So the result follows. m
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Theorem 12  For each n > 3, F,(W;) < [n—}-%J

Proof. If n is even we define T} = {(v1v2,1), (vov2i-1,1) | 1 £ ¢ < E}.
Obviously T} has a unique extension to a semi-H-cordial labeling for W,.
It is odd we define T = { (v601, 1), (Va—19m, 1), (vov2s, 1) | 1 < i < 21},
Obviously T3 has a unique extension to a semi-H-cordial labeling for W,.

Since [T3] = |To| = |5 it follows that F(Wa) < [1‘-:;—3 |.m

4 Grids and cylinders

In this section we find upper bounds for the forcing semi- H-cordial numbers
of grids and cylinders. Throughout this section we assume m,n > 2 and
the vertices of the i-th copy of P, in grid P, X Py, (cylinder P, x Cy,) are
ub, ub,u,...,uf fori=1,2,...,m (see Figure 1).

3 4 5 &
u, u, u, u, 7
& © & & QU

u) u‘ u5 us
7

2 2 2 2
S— P ? u,

4 4 4
S S oU,

~7 7

q

Figure 1: Py X Py

Theorem 13 P, x P,, is a semi-H-cordial graph if and only if m +n is
even.

Proof. Let P, x P, be a semi-H-cordial graph. By lemma 2 we see that
[2mn — (m + n)), the number of edges of P, x Py, is even. This implies
that m + n is even.
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Conversely, let m + n be even. We show that P, x P,, admits a semi-H-
cordial labeling. Define f : E(P, x P,) — {-1,1} by:

f(u"u"“)—( 1P =1
Fldul™) = (-1 i i>
(u2u1+1)—(—1) if j=1;
flduly,)=(-1)"% i j>2

It is easy to see that f is a semi-H-cordial labeling for P, x Py,. ®
Lemma 14 F,(P2 x Pyp) < m — 1 for each even positive integer m.

Proof. Let f be the semi-H-cordial labeling for P, x P,, as in Theorem
13. Define

T ={(ufud, (-1)*) [2< 5 S m -1} U{(u] " up, 1)}

We show that T is a forcing semi-H-cordial for Sy. Let g : E(P2 x Pp) —
{—1,1} be a function such that S, is an extension of T to a semi-H-cordial
labeling for P, x P,,. We prove g = f. Note that, by Lemma 2, g(v) =

if deg('v) is even and, by definition, g(v) = +1 if deg(v) is odd. This forces
o(wdul™) = g(ufu™) = (<1)’ for j = m,m—1,...,2 and g(u},u}) =

Thus g = f. Therefore F,,(P; x Pp) < F,(Sf) <m—1. m

Lemma 15 Let m,n > 3 and let m + n be even. Then F, (P, x Pp) <
n+m-—3.

Proof. Let n < m (the case m < n is similar). Let f be the semi-H-cordial
labeling for P, x P,, as in Theorem 13. Define

= {(u}ad, D}U{@PH M 1) [3 < S mju
{(ud, (- 1¥) |2 < § < m—n+2JU
{(wlul4y,1)|3<i<n—landj=m-—n+i}.

Now let g : E(P, X Pn) — {-1,1} be a function such that S, is an
extension of T to a semi-H-cordial labeling for P, x P,,. By Lemma 2,
g(v) = 0 if deg(v) is even. This forces a unique labeling for all edges
which are incident with at least one vertex of degree four. On the other
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hand, g(v) = +1 if deg(v) is odd. This implies g(u*ul",) = (—1)™*+!
fori =nn-—1,...,2 and g(u’u{‘l) (=1) for j = m,m — 1,...,2,
respectively. Now we must have g(uwiui™!) = (-1)*H forj=m—1,...,2
and g(ulul_,) = (—1)*~*! for i = n,n —1,...,2, respectively. Thus g = f
Therefore F,(Pp, X Pn) < Fy(f) <n+m— 3 ]

By Lemmas 14 and 15 we obtain the following result.

Theorem 16 Let m,n > 2 and let m+n be even. Then F,(P, X Pp,) <
n+m-—3.

Now we find an upper bound for Fy (P, x P, X P;). We assume that the
vertices of the k-th copy of P, X P; in P, X P, X P, are

k k k k k k k k k
ul,l, Uy,2y--- ,ul's,'llq‘l, ua,z, ceryUP gyeee ,'u,.,l, Up2y.-- ,u,.'a

fork=1,2.

Lemma 17 Let G = P, x P, X P;. Then G is a semi-H-cordial graph if
and only if either r or s is even.

Proof. Let G be a semi-H-cordial graph. Then 5rs — 2r — 2s, the number
of edges of G, must be even by Theorem 2. This forces either r or s to be
even.

Conversely, let s be even (the case r even is similar). Define the mapping
f:E(G) — {-1,1} by:

fuf Ui g wfh) = (F) i 1<i<r-1,1<j<s k=12
f(u ukd'l'l) = (—1)i+j if 1<i<n1<j<s-1,k=12
e t.J ) = (-1 1<i<r-1,1<j<s—15

£ (uy Yr.j m) = (1) if 2<j<s

f( Ui, U, 3) = (_1)‘-{-8 if 1<i<rn;

and f(ul,u2;) = (—1)". It is straightforward to see that f is a semi-H-
cordial labeling for G. m

Theorem 18 Let r or s be even. Then F (P x Py x P) < (r—1)(s—1)+7.

161



Proof. Without loss of generality we can assume s is even. Consider the
semi-H-cordial labeling f as described in Lemma 17. Define

T = F:’f»l:'f.?}{ (':ff’ll"f’f))ﬁ’,ﬁ“":'l"g’;’f (uf1u5,1)),
“1,a‘“2 89 ul,suz‘a = 1,2 U
{(ul, 0,00 f(ud yu,)), (udsedy, f(udsudy)) |2 S i < U
{(“}.j“iz.jvf(“ij“?,j)) |1<i<r-1, 2<j<s-1}.

Obviously |T| = (r — 1)(s — 1) + 7. It is easy to see that Sy is the unique
extension of T to a semi- H-cordial labeling for G. This completes the proof.
=

Now we find an upper bound for F. (P, x Cp). In what follows we

assume u[**! is the same as u} for all 1.

Theorem 19 Let n > 2 and m > 3. Then P, x C,, is a semi-H-cordial
graph if and only if m is even.

Proof. Let P, x C,, be a semi-H-cordial graph. By lemma 2 we see that
[(n — 1)m + mn], the number of edges of P, x Cp,, is even. This implies
that m is even.

Conversely, let m be even. We show that P, x C,, admits a semi-H-cordial
labeling. Define f : E(P, x Cp) — {—1,1} by:

fdut)=(-1)"*  if 1<i<n, 1<j<m;
fldul )= (-1 if 1<i<n-1, 1<j<m.

It is easy to see that f is a semi-H-cordial labeling for P, x C,,. m

Theorem 20 Let n > 2, m > 3 and let m be even. Then
n+m if n<m;

Fy(PaxCpr)<4 2n if n=m;
2n-1 if n>m.

Proof. Let f be the semi-H-cordial labeling for P, x C,, as described in
Theorem 19. We consider three cases.
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Case 1. n < m. Define
T = {(ulu},-D}U{(uiy*',1)|1<i<n}y
(i) 1) | 1<i<n—1}U
(@, (-1)"H) [n+ 1< j <m}.

Note that |T| =n +m.

Case 2. n =m. Define

T = {(ulul,—1),(ulul,1)}U{(uiuj*!,1)|1<i<n-1}U
{wHuif ) 1<i<n-1}

Note that |T| =

Case 3. n > m. Let n=km +r, where k > 0 and 0 < r < m. Define

T = {(Wpptiiiys1)|0Ss<k—~1,1<i<m-1}U

{( ;:;L, ;*,;,},H,l) |10<s<k-1, 1<i<m-1}u
{(ukm+,ukm+,+1,l) |1<i<r-1}U

{("km+.“km+v 1<i<riy

{(um,ut,,,1) | 1< s Sk}U{(uh,u0041,1) |1 S 8 < K}

Note that |[T'| = 2n — 1.

Now let g : E(P, x Cp) — {-1,1} be a function such that S is an
extension of T to a semi-H-cordial labeling for P, x C,,. By Lemma 2,
g(v) = 0 if deg(v) is even. This forces a unique labeling for all edges which

are incident with at least one vertex of degree four. On the other hand,
g(v) = +1 if deg(v) is odd. This implies g(uiui*') = (-1)"* fori=1,n
and 1 < j < m. Thus g = f and the result follows. m
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