INDEPENDENCE AND RELATED PROPERTIES FOR INTEGER-INTERVAL GRAPHS AND THEIR COMPLEMENTS

Ralph P. Grimaldi

Department of Mathematics Rose-Hulman Institute of Technology Terre Haute, IN 47803

1. Introduction.

For any positive integer n, let $I_n = [0, n]$. We define the integer-interval graph G_n on I_n as follows:

(Vertices) If $0 \le m , with <math>m, p$ integers, then there is a vertex v in G corresponding to the closed interval [m, p].

(Edges) For integers i, j, m, p, with $0 \le i < j \le n$ and $0 \le m , there is an edge joining the vertices determined by <math>[i, j]$ and [m, p] if these closed intervals have a nonempty intersection.

Throughout this discussion we use [m, p], $0 \le m , to represent either the closed interval or the vertex that corresponds to it. The context will indicate the appropriate meaning.$

If $m, n \in \mathbb{Z}$, with n > 0, the integer-interval graph for [m, m + n] is isomorphic to the graph determined by [0, n]. Consequently, we restrict our attention to closed intervals with left endpoint 0.

For any undefined terms the reader should see [1] or [5].

2. Independence in G_n .

In an undirected graph G = (V, E), a subset W of V is called *independent* if for any $x, y \in W$ there is no edge $\{x, y\}$ in E. Given $a, b, c, d \in \mathbb{Z}$ with $0 \le a < b < c < d \le n$, $\{[a, b], [c, d]\}$ is an independent set of size 2 for the graph G_n .

In the graph G_n there are $\binom{n+1}{2} = v$ vertices. Let e denote the number of edges in G_n . Our first result determines e in terms of n.

Theorem 1. In the integer-interval graph G_n , the number of edges, e, is given by e = (1/12)(n-1)(n)(n+1)(n+4).

Proof: In any undirected graph G = (V, E) with |V| = v and |E| = e, the number of independent subsets of V of size 2 is $\binom{v}{2} - e$. Applying this idea to G_n , there are $\binom{n+1}{4}$ independent subsets of two vertices, so the number of edges in G_n satisfies $\binom{v}{2} - e = \binom{n+1}{4}$, where $v = \binom{n+1}{2}$. It follows that $e = (\frac{1}{12})(n-1)(n)(n+1)(n+4)$.

[This formula for the number of edges in G_n was derived by recursion in Theorem 1 of [6].]

Consequently, in \overline{G}_n , the complement of G_n , there are $\binom{n+1}{2}$ vertices and $\binom{n+1}{4}$ edges.

We now use the result of Theorem 1 to establish a certain property for G_n . In [6] it was observed that for all $n \ge 1$, G_n is a Hamiltonian graph. The following extends this property.

An undirected graph G = (V, E) is called *pancyclic* if G contains a cycle of length ℓ for all $3 \le \ell \le |V|$. In addition, we have the following result due to J.A. Bondy [3]: Let G = (V, E) be an undirected Hamiltonian graph where |V| = v and |E| = e, and $e \ge (1/4)v^2$. Then either G is pancyclic, or v is even and G is isomorphic to the bipartite graph K(v/2, v/2).

These concepts lead to the following result.

Theorem 2. For $n \ge 1$, the integer-interval graph G_n is pancyclic.

Proof: For n = 1, G_1 is an isolated vertex and the result is immediate, so let $n \ge 2$.

Since G_2 is isomorphic to K_3 , an odd cycle, and G_2 is a subgraph of G_n for all $n \ge 3$, G_n is not bipartite for $n \ge 2$. Hence G_n will be pancyclic for $n \ge 2$ if $e \ge (1/4)v^2$, and this follows easily from Theorem 1.

Returning now to the property of independence in G_n we make the following observations:

- (1) Let $k, n \in \mathbb{Z}$, n > 0, and $0 \le 2k \le n+1$. If $0 \le a_1 < a_2 < \ldots < a_{2k} \le n+1$, with $a_i \in \mathbb{Z}$, $1 \le i \le 2k$, then $\{[a_1, a_2], [a_3, a_4], \ldots, [a_{2k-1}, a_{2k}]\}$ is an independent set of k vertices in G_n . There are $\binom{n+1}{2k}$ such independent subsets.
- (2) For $n \in \mathbb{Z}^+$, n odd, there is a unique maximal independent set $\{[0,1],[2,3],[4,5],\ldots,[n-1,n]\}$ in G_n and the independence number $\beta(G_n)$ is $(\frac{1}{2})(n+1)$.

When n is even there are $\binom{n+1}{n} = n+1$ maximal independent sets of size $n/2 = \beta(G_n)$. These n+1 sets are determined as follows:

(i) There are (n/2)+1 sets containing (n/2) vertices corresponding to intervals of length 1. (ii) The remaining (n/2) sets each contain exactly one vertex determined by an interval of length 2; the other (n/2)-1 vertices correspond to intervals of unit length. [For each odd number $m, 1 \le m \le n-1$, the subset $\{0, 1, 2, \ldots, n-1, n\} - \{m\}$ results in the independent set $\{[0, 1], [2, 3], \ldots, [m-1, m+1], [m+2, m+3], \ldots, [n-1, n]\}$.]

In general, $\beta(G_n) = \lceil \frac{n}{2} \rceil$, $n \in \mathbb{Z}^+$.

(3) For an undirected graph G = (V, E), the Fibonacci number of G counts the total number of independent subsets of V, including the empty set. Here the total number of independent subsets is $\binom{n+1}{0} + \binom{n+1}{2} + \binom{n+1}{4} + \ldots + \binom{n+1}{n+1} = 2^n$, for G_n , when n is odd.

When n is even the total number of independent sets in G_n is $\binom{n+1}{0} + \binom{n+1}{2} + \binom{n+1}{4} + \ldots + \binom{n+1}{n} = 2^n$.

So the Fibonacci number of G_n is 2^n for all $n \in \mathbb{Z}^+$.

(4) Given an undirected graph G = (V, E), the vertex covering number of G, denoted $\alpha(G)$, is the size of a smallest subset S of V where each edge of G is incident with at least one vertex of S. The following result, due to T. Gallai [4]. now determines $\alpha(G_n)$ for the integer-interval graph G_n .

For any undirected graph G = (V, E) with no isolated vertices.

$$\alpha(G)+\beta(G)=|V|.$$

From the result in observation (2) it follows that

$$\alpha(G_n) = \binom{n+1}{2} - \left\lceil \frac{n}{2} \right\rceil = \left\lceil \frac{n^2 - 1}{2} \right\rceil = \left\{ \begin{array}{l} n^2/2, & n \text{ even} \\ (n^2 - 1)/2, & n \text{ odd.} \end{array} \right.$$

(5) Related to the invariants in (4) one finds the following for an undirected graph G = (V, E). A set F of edges in G is called (edge) independent if for any $e_1, e_2 \in F$ there is no common vertex. The size of a largest such set F is called the edge independence number of G and is denoted $\beta_1(G)$. When G has no isolated vertices we define an edge cover of G as a subset H of E such that for all $v \in V$, v is a vertex on at least one edge in H. The size of a smallest edge cover is the edge covering number of G, denoted $\alpha_1(G)$.

A second result due to T. Gallai [4] yields $\alpha_1(G) + \beta_1(G) = |V|$.

Since G_n is Hamiltonian, $\alpha_1(G_n) = [(1/2)\binom{n+1}{2}]$, and consequently $\beta_1(G_n) = \binom{n+1}{2} - \lceil (1/2) \binom{n+1}{2} \rceil.$

3. Triangles in G_n .

In this section we derive a formula for t_n , the number of triangles (subgraphs isomorphic to K_3) in G_n . We first observe that a triangle in G_n is determined by three vertices (intervals) of the form $[a_i, b_i]$ where i = 1, 2, 3, and $a_i, b_i \in$ $\{0,1,2,\ldots,n\}$. Let $k=b_1$ and assume that $b_1\leq b_2\leq b_3$, so that $k\in$ $\{1,2,\ldots,n\}$. These intervals are pairwise distinct but intersecting, and we find that there are

- (i) $\binom{k}{3}$ triples of intervals where $b_1 = b_2 = b_3$; (ii) $\binom{k}{2}(k+1)(n-k)$ triples when $b_1 = b_2 < b_3$; and, (iii) $k[2\binom{k+1}{2}\binom{n-k}{2} + \binom{k+1}{2}(n-k) + (k+1)\binom{n-k}{2}]$ such triples where $b_1 < b_2 < b_3$

Of the terms in brackets in (iii), the first arises from the subcase $a_2 \neq a_3$, $b_2 < b_3$; the second accounts for the subcase where $a_2 \neq a_3$, but $b_2 = b_3$; and the third arises for $a_2 = a_3$, $b_2 < b_3$. In all three subcases, a_1 may be chosen in k ways.

Consequently

$$\begin{split} t_n &= \sum_{k=1}^n \left\{ \binom{k}{3} + \binom{k}{2} (k+1)(n-k) + k \left[2 \binom{k+1}{2} \binom{n-k}{2} \right. \right. \\ &\left. + \binom{k+1}{2} (n-k) + (k+1) \binom{n-k}{2} \right] \right\}. \end{split}$$

Theorem 3. For $n \ge 1$, the number of triangles t_n that occur in G_n is given by

$$t_n = \binom{n+1}{3} + 12 \binom{n+1}{4} + 16 \binom{n+1}{5} + 6 \binom{n+1}{6}.$$

Proof: Both this sum and the preceding summation are polynomials in n of degree 6. Using the summation formulas for $\sum_{k=1}^{n} k^{i}$, where i = 1, 2, 3, 4, 5, one may show (in a tedious way) that these two formulas for t_{n} are identical.

The formula for t_n in the statement of Theorem 3 was originally derived by considering the number of distinct values, namely, 3, 4, 5, or 6, among the a_i 's and b_i 's in the intervals $[a_i, b_i]$, i = 1, 2, 3.

4. The Complement of G_n .

In this final section we shall make several observations involving \overline{G}_n , the complement of G_n .

(1) For n = 1, $G_n = \overline{G}_n$ and each graph consists of an isolated vertex. When n = 2, G_n is isomorphic to K_3 and \overline{G}_n contains three isolated vertices.

For $n \ge 3$, we claim that \overline{G}_n consists of five components: The four isolated vertices [0, n-1], [0, n], [1, n-1], and [1, n], and a component C_n that contains the other $\binom{n+1}{2} - 4$ vertices.

To show that C_n is connected, let [a, b], [c, d] be any two vertices in \overline{G}_n , excluding [0, n-1], [0, n], [1, n-1], and [1, n]. If $[a, b] \cap [c, d] = \emptyset$, then $\{[a, b], [c, d]\}$ is an edge in \overline{G}_n .

If $[a,b]\cap [c,d]\neq\emptyset$, let a be minimal, $a\leq c$. When a>1, then $[a,b]\cap [0,1]=\emptyset=[c,d]\cap [0,1]$ and the edges $\{[a,b],[0,1]\},\{[0,1],[c,d]\}$ in \overline{G}_n provide a path (in \overline{G}_n) of length two. If a=0 or 1, then $b\leq n-2$. For $d\leq n-2$, we have $[a,b]\cap [n-1,n]=\emptyset=[c,d]\cap [n-1,n]$, and the edges $\{[a,b],[n-1,n]\},\{[n-1,n],[c,d]\}$ connect the vertices [a,b] and [c,d]. Otherwise, d=n-1 or n, and 10 or 11 or 12 or 13 or 14 or 15 or 15 or 16 or 17 or 18 or 19 or 19 or 11 or 11 or 12 or 13 or 13 or 14 or 15 or 15 or 15 or 16 or 17 or 18 or 19 or 19 or 19 or 19 or 19 or 11 or 11 or 12 or 13 or 13 or 14 or 15 or 15 or 15 or 16 or 17 or 18 or 19 or 19 or 19 or 19 or 11 or 11 or 12 or 13 or 13 or 14 or 15 or 15 or 15 or 15 or 16 or 17 or 17 or 18 or 19 or 19 or 19 or 11 or 11 or 12 or 13 or 13 or 14 or 15 or 16 or 17 or 18 or 18 or 19 or 19 or 11 or 12 or 13 or 13 or 14 or 15 or 1

(2) Following M. Golumbic [5], an undirected graph G is called *chordal* if every cycle in G of length greater than three possesses a chord, that is, an edge

that joins two nonconsecutive vertices of the cycle. The graphs G_n , $n \ge 1$, are chordal graphs. Since \overline{G}_1 and \overline{G}_2 each consist of just isolated vertices, they are chordal. The graph \overline{G}_3 consists of four isolated vertices and one edge; there is no cycle found among the five edges of \overline{G}_4 . So \overline{G}_n is chordal for $1 \le n \le 4$.

When $n \ge 5$, the four vertices [0,1], [3,5], [0,2], and [3,4] form a cycle in \overline{G}_n with no chord joining [3,4] and [3,5], or [0,1] and [0,2]. Hence \overline{G}_n is not chordal for n > 5.

(3) From [5] an undirected graph G is called *perfect* if $\omega(H) = \mathcal{X}(H)$, for all induced subgraphs H of G. Here $\omega(H)$ = the clique number of H, $\mathcal{X}(H)$ = the chromatic number of H.

From the results of C. Berge [2] and A. Hajnal and J. Surányi [7], every chordal graph is perfect. Hence G_n is perfect for all $n \ge 1$. In addition, in [8] L. Lovász shows that an undirected graph G is perfect if and only if \overline{G} is perfect. Hence each of G_n and \overline{G}_n is perfect for any $n \ge 1$. From observation (2) above we find that the family of graphs, \overline{G}_n , $n \ge 5$, is such that each graph is perfect, though not chordal.

(4) For any undirected graph G, $\omega(G) = \beta(\overline{G})$ and $\beta(G) = \omega(\overline{G})$. For the graphs G_n , \overline{G}_n , we also have $\omega(G_n) = \mathcal{X}(G_n)$ and $\omega(\overline{G}_n) = \mathcal{X}(\overline{G}_n)$, so $\mathcal{X}(G_n) = \beta(\overline{G}_n)$ and $\beta(G_n) = \mathcal{X}(\overline{G}_n)$.

From the second observation in Section 2 it follows that $\omega(\overline{G}_n) = \mathcal{X}(\overline{G}_n) = \begin{bmatrix} \frac{n}{2} \end{bmatrix} = \beta(G_n)$. Theorem 2 of [6] leads to $\beta(\overline{G}_n) = \omega(G_n) = (1/4)n^2 + n + (1/8)(-1)^n - (1/8)$.

Also, the number of triangles in \overline{G}_n is the number of independent subsets of three vertices in G_n , namely $\binom{n+1}{6}$. And from Theorem 3 it follows that \overline{G}_n contains $\binom{n+1}{3} + 12 \binom{n+1}{4} + 16 \binom{n+1}{5} + 6 \binom{n+1}{6}$ independent subsets of size 3.

Acknowledgement.

The author wishes to thank Professor Roger Entringer, of the editorial board, for his suggestions on improving this paper.

References

- Mehdi Behzad, Gary Chartrand, and Linda Lesniak-Foster, "Graphs and Digraphs", Wadsworth International Group, Belmont, California, 1979.
- 2. Claude Berge, Les problèmes de coloration en théorie des graphs, Publ. Inst. Statist. Univ. Paris 9 (1960), 123-160.
- 3. John A. Bondy, *Pancyclic Graphs. I*, Journal of Combinatorial Theory IIB (1971), 80–84.
- 4. Tibor Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959), 133–138.
- 5. Martin C. Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Academic Press, New York, 1980.
- 6. Ralph P. Grimaldi, *Properties of Integer-Interval Graphs*, Congr. Numer. 48 (1985), 145–151.
- 7. András Hajnal and Janos Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 113–121.
- 8. László Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), 253–267.