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1. Introduction.

For any positive integer n, let I, = [0, n]. We define the integer-interval graph
G, on I, as follows:

(Vertices) If0 < m < p < n, with m, p integers, then there is a vertex v in G
corresponding to the closed interval [m, p].

(Edges) For integers s, j,m,p, with0 < i< j<nand0 < m < p < n, there
is an edge joining the vertices determined by [4, 7] and [m, p] if these closed
intervals have a nonempty intersection.

Throughout this discussion we use [m, p],0 < m < p < n, torepresent either
the closed interval or the vertex that corresponds to it. The context will indicate
the appropriate meaning.

If m,n € Z, with n > 0, the integer-interval graph for [m, m + n] is isomor-
phic to the graph determined by [0, n]. Consequently, we restrict our attention to
closed intervals with left endpoint 0.

For any undefined terms the reader should see [1] or [5).

2. Independence in G,,.

In an undirected graph G = (V, E), a subset W of V is called independent
if for any z,y € W there is no edge {z,y} in E. Given a,b,c,d € Z with
0 <a<b<c<dg n{la,bllc,dl} is an independent set of size 2 for the
graph G,,.

In the graph G, there are (";') = v vertices. Let e denote the number of edges
in Gy. Our first result determines e in terms of n.

Theorem 1. In the integer-interval graph G,, the number of edges, e, is given
bye=(1/12)(n— 1)(n)(n+ D(n+4).
Proof: In any undirected graph G = (V, E) with |[V| = v and |E| = e, the number
of independent subsets of V of size 2 is (3) —e. Applying this idea to G, there are
(":!) independent subsets of two vertices, so the number of edges in G, satisfies
(3) —e= (%), where v = (™'). It follows that e = () (n— D)(n)(n+
D(n+4).
[This formula for the number of edges in G,, was derived by recursion in The-

orem 1 of [6].]
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Consequently, in Gy, the complement of G, there are (') vertices and (™)
edges.

We now use the result of Theorem 1 to establish a certain property for G,. In
[6] it was observed that for all n > 1, G,, is a Hamiltonian graph. The following
extends this property.

An undirected graph G = (V, E) is called pancyclic if G contains a cycle of
length £ for all 3 < £ < |V|. In addition, we have the following result due
to J.A. Bondy [3]: Let G = (V, E) be an undirected Hamiltonian graph where
|[V|=vand|E| = e,and e > (1/4)v?. Then either G is pancyclic, or v is even
and G is isomorphic to the bipartite graph K(v/2,v/2).

These concepts lead to the following result.

Theorem 2. For n > 1, the integer-interval graph G, is pancyclic.

Proof: For n = 1, G is an isolated vertex and the result is immediate, so let
n>2.

Since G, is isomorphic to K3, an odd cycle, and G; is a subgraph of G, for
all n > 3, Gy is not bipartite for n > 2. Hence G, will be pancyclic for n > 2
if e > (1/4)v?, and this follows easily from Theorem 1.

Returning now to the property of independence in G,, we make the following
observations:
(1) Letk,n€eZ,n>0,and0 <2k <n+1.f0<a1 <2 <...< a3 <
n+ 1, witha; €Z,1 < 1< 2k, then {[a1,82],[03,a4],... ,[82-1,02¢1} is

an independent set of k vertices in G.. There are (%, ) such independent subsets.

(2)Forn € Z*, nodd, there is a unique maximal independent set {[0,1),[2, 3],
[4,5),...,[n—1,n]} in G, and the independence number A(G) is (+) (n+1).

When n is even there are (™') = n+ 1 maximal independent sets of size
n/2 = B(GY). These n+ 1 sets are determined as follows:

(i) There are (n/2) + 1 sets containing ( n/2) vertices corresponding to intervals of
length 1. (ii) The remaining (n/2) sets each contain exactly one vertex determined
by an interval of length 2; the other (n/2) — 1 vertices correspond to intervals of
unitlength. [For each odd numberm, 1 < m < n—1,thesubset{0,1,2,... ,n—
1,n} — {m} results in the independent set {[0,1],[2,3],... ,[m — 1,m +
1],[m+2,m+3],... ,[n—1,n]}.]

In general, 8(G,) = [3].n€ Z".
(3) For an undirected graph G = (V, E), the Fibonacci number of G counts the
total number of independent subsets of V, including the empty set. Here the total
number of independent subsets is (') + (') + (') + ...+ (%)) = 27, for
G., when n is odd.

When n is even the total number of independent sets in Gy, is ("5') + ("3!) +

)+ () =2m



So the Fibonacci number of G, is 2" forallne Z*.

(4) Given an undirected graph G = (V, E), the vertex covering number of G,
denoted a(G), is the size of a smallest subset S of V' where each edge of G is
incident with at least one vertex of S. The following result, due to T. Gallai [4],
now determines a(Gy) for the integer-interval graph G,,.

For any undirected graph G = (V, E) with no isolated vertices,

a(G) + A(G) = |V|.

From the result in observation (2) it follows that

_(n+1 ny_|®=-1(_[n/2, neven
“(G“)‘( 2 )“['2‘]‘[ 2 ]‘{(nz_l)/z, nodd.

(5) Related to the invariants in (4) one finds the following for an undirected graph
G = (V,E). A set F of edges in G is called (edge) independent if for any
ey, ez € F there is no common vertex. The size of a largest such set F is called
the edge independence number of G and is denoted 8, (G). When G has no iso-
lated vertices we define an edge cover of G as a subset H of E such that for all
v € V, v is a vertex on at least one edge in H. The size of a smallest edge cover
is the edge covering number of G, denoted o (G).
A second result due to T. Gallai [4] yields a; (G) + 8;(G) = |[V|.

Since G, is Hamiltonian, &y(G,) = [(1/2)(";')], and consequently
Bi(Gn) = (%51) = T(1/2 (5.

3. Triangles in G,,.

In this section we derive a formula for t,, the number of triangles (subgraphs
isomorphic to K3) in G,. We first observe that a triangle in G, is determined
by three vertices (intervals) of the form [a;, b;] where § = 1,2,3, and a;, b; €
{0,1,2,... ,n}. Letk = b and assume that b; < b, < b3, so that k €
{1,2,... ,n}. These intervals are pairwise distinct but intersecting, and we find
that there are

@) (%) triples of intervals where by = by = bs;
@) (¢)(k+ 1)(n— k) triples when b, = by < bs; and,
dii) k2 (51 (%55) + (51 (n— k) + (k + 1) (*;*)] such triples where b; <
< b3.
Of the terms in brackets in (iii), the first arises from the subcase a; # a3, b2 < b3;

the second accounts for the subcase where a3 ¥ a3, but b, = bs; and the third
arises for az = a3, b < b3. In all three subcases, a; may be chosen in k ways.



Consequently

'E{( )* (:)(“l)("—k)+k[2(k‘;l)(";")
(5 emewen(5)])

Theorem 3. For n > 1, the number of triangles t,, that occur in Gy, is given by

tn = (";1) +12(”;l)+ 16(";l)+6(n;l).

Proof: Both this sum and the preceding summation are polynomials in n of de-
gree 6. Using the summation formulas for ) ;_; ki, wherei = 1,2,3,4,5, 0one
may show (in a tedious way) that these two formulas for ¢, are identical.

The formula for ¢, in the statement of Theorem 3 was originally derived by
considering the number of distinct values, namely, 3, 4, S, or 6, among the a;’s
and b;’s in the intervals [a;, 51,1 = 1,2, 3.

4. The Complement of G,,.

In this final section we shall make several observations involving G,, the com-
plement of Gy,.

(1) Forn = 1, G. = G, and each graph consists of an isolated vertex. When
n= 2, Gy, is isomorphic to K3 and G- contains three isolated vertices.

For n > 3, we claim that G,, consists of five components: The four isolated ver-
tices [0, n— l] [0,n],[1,n—1],and [1, n], and a component C,, that contains
the other (') — 4 vertices.

To show that C,, is connected, let [a, b], [c, d] be any two vertices in G,., ex-
cluding [0,n— 1], [0,n], [1,n—1],and [1,7]. If [a,b] N [c,d] = @, then
{(a,b],c,d]} is an edge in G..

If [a,b] N [c,d] # @, let a be minimal, a < c. Whena > 1, then [a,b] N
[0,1] = @ = [c,d] N[0, 1] and the edges {[a,5],[0,11}, {[0,1],[c,d]} in
G. provide a path (in G,) of length two. Ifa = 0 or 1, thenb < n— 2. For
d < n—2,wehave [a,b]N[n—1,n] =@ = [¢c,d]N[n— 1,q], and the
edges {[a,b],[n— 1,n]}, {[n— 1,7],[c,d]} connect the vertices [a,}] and
[c,d]. Otherwise,d=n—1orn,and2 < c. Here [a,blN[n—1,7] =@ =
[n—1,m10[0,1]1 =[0,1] N[c,d], and the edges {[a,b],[n— 1,n]},
{ln—1,7],{0,11},and {[0,1], [c,d]} provide a path (in G) of length 3 con-
necting [a, 3] and (¢, d].

(2) Following M. Golumbic [5], an undirected graph G is called chordal if
every cycle in G of length greater than three possesses a chord, that is, an edge



that joins two nonconsecutive vertices of the cycle. The graphs G,,n > 1, are
chordal graphs. Since G, and G each consist of just isolated vertices, they are
chordal. The graph G5 consists of four isolated vertices and one edge; there is no
cycle found among the five edges of G4. So G, is chordal for1 < n< 4.

When n > 5, the four vertices [0,1],[3,5],[0,2], and [3,4] form a cycle
in G, with no chord joining [3,4] and [3,5], or [0, 1] and [0, 2). Hence G, is
not chordal forn > 5.

(3) From [5] an undirected graph G is called perfect if w( H) = X( H), for all
induced subgraphs H of G. Here w( H) = the clique number of H, X( H) = the
chromatic number of H.

From the results of C. Berge [2] and A. Hajnal and J. Sur4nyi [7], every chordal
graph is perfect. Hence G,, is perfect for all n > 1. In addition, in [8] L. Lov4sz
shows that an undirected graph G is perfect if and only if G is perfect. Hence each
of G, and G, is perfect for any n > 1. From observation (2) above we find that
the family of graphs, G, n > 5, is such that each graph is perfect, though not
chordal.

(4)For any undirected graph G, w(G) = A(G) and B(G) = w(G). For the graphs
Gr, Gn, we also have w(G,) = X(G,) and w(G,) = X(Gh), 50 X(G,) =
B(Gy) and B(Gp) = X(Gh). _ _

From the second observation in Section 2 it follows that w(G,) = X(G,) =
2] = B(Gy). Theorem 2 of [6] leads to B(G,) = w(Gy) = (1/4)7 + n+
(1/8)(~=1)" - (1/8). _

Also, the number of triangles in G,, is the number of independent subsets of
three vertices in Gy, namely (*'). And from Theorem 3 it follows that G, con-
tains (") + 12 (') + 16 (") + 6 (*¢') independent subsets of size 3.
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