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Abstract. Let D and 5“ be two designs such that there is a joint embedding D’ and
D' of D and D in a finite projective plane 7 of order n such that the points of D' and
the lines of D’ are mutually all of the exterior clements of each other. We show that
there is a tactical decomposition T of 1, two of the tactical configurations of which are
D' and T, and determine combinatorial restrictions on n and the parameters of D and

D", We also determine the entries of the incidence matrices of T'.

1. Introduction.

In this paper we continue the study, begun in [4], of certain types of joint embed-
dings of a design and a dual design in a finite projcctive plane. We start with a
brief recapitulation of the terminology introduced in [4].

Let w be a finite projective plane and D a design (dual design). We say that D is
a subdesign (subdualdesign) of m if m has a substructure D' which is isomorphic
to D. We also say that D is embeddable in w, that D' is embedded in 7 and that
D' is an embedding of D in w. If there is an embedding D' of a design D and an
embedding D ofadual design D in a finite projective plane m, we say that D and
D are jointly embeddable in 7 and that D' and D' constitute a Joint embedding of
Dand Din.

For the purposes of this paper a design will be an incidence structure with v
points and b blocks such that each block is incident with k > 0 points, each pair
of distinct points are jointly incident with A > O blocks and v > k+ 1. Asis well-
known any design is a tactical configuration (and likewise for any dual design).
Thus each point of a design will be incident with thc same number, r say, of blocks
of the design. We shall refer to a design with parameters v, b, r, k, A, as introduced
above, as a “(v, b, r, k, \)-design”. For such a design to bec embedded in a finite
projective plane clearly we must have A = 1.

Let P be a set of points of a projective plane . A line £ of « is said to be a
P-tangent, a P-secant or a P-exterior ling if £ is incident with one, more than
one or no point of P, respectively. Dual terms which cover the corresponding
situations for a line set are defined analogously.

Now let D be a design and D be adual design. Note first that it is not necessarily

assumed that D and D° (the dual of D) have thc same parameters. Suppose D’
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and D area joint embedding of D and D in a finite projective plane 7 with P’ the
point set of D’ and T’ the line set of D' and consider the following three cases:
Type 1: P' and T are mutually all of the tangents of each other.

Type 2: P' and T’ are mutually all of the secants of each other.

Type 3: P' and I are mutually all of the exterior elements of each other.

As pointed out in [4], for the case of Type 2 joint embeddings, D’ = D and so
# = D' =D is a projective subplane of «, whence the sets of P'-tangents, P'-
secants and P'-exterior lines (if there are any of the latter) and their T counterparts
form a tactical decomposition of m, the entries in the incidence matrices of which
are readily determinable in terms of the orders of w and #’'. In [4] we established
analogous results to these for Type 1 joint embeddings. In this paper we wish to
do the same for Type 3 joint embeddings.

A maximal arc (with parameter s) of a finite projective plane « of order n is
a set P; of points of s such that a line of 7 meets P; in no points or in a fixed
number s + 1 of points, where 1 < s < n—2. For a maximal arc with parameter
s in a plane  of order n, simple counting yields |Ps| = s(n+ 1) + 1. Letting
L, be the set of Ps-secant lines, L the set of P;-exterior lines and P, the set of
L -secant points, we have that P; and L, form an embedded design D' of = with
parameters v = s(n+ 1) + 1, b= (s+ 1)~ (n+ D(s(n+ ) + 1), r=n+1,
k=s+1,)=1,and P, and L3 form an embedded dual design D' such that
(D)? has parameters v = (s+ 1)~ n(n—s),b=(n—s)(n+ 1), r=n+1,
k= (s+ 1)~n, ) = 1. These combinatorial results are contained in Wallis [5],
but note that, where Wallis uses “n” we use “s + 1” and where he uses “s” we
use “n”,

Also it is not difficult to verify that P», P, L2, L3, form a tactical decomposi-
tion of 7 with incidence matrices

[n—s n+l] d [n+l—(s+l)‘1n 'n+l]

s+1 0 (s+ 1 'n 0 :
(Here the ij entry in the first matrix gives the number of P;, points on an L4
line, and for the second matrix, it gives the number of L;,, lines on a P;,; point.)
Clearly, the existence of a maximal arc with parameter s in a plane of order n
implies the well-known condition that s + 1 is a divisor of n. Also note that the
pointset Py of D' and the line set L3 of D' are mutually all of the exterior elements
of each other, and so D' and D are a joint embedding of Type 3. It would thus
not be unreasonable to refer to the design D' in a joint embedding of Type 3 as an
“embedding of maximal arc type”.

2. Tactical decompositions.
Basic definitions and facts concerning tactical decompositions of finite incidence
structures can be found in [1] (pp. 4-8 and p. 60). Of particular importance is
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the fact that the number of point classes and the number of block classes in a
tactical decomposition of a symmetric design, such as a finite projective plane,
are equal ([1], p. 60). If P; and L; are a point class and a line class of a tactical
decomposition T of a finite incidence structure 5, we denote the constant number
of P; points incident with an L; line by (P;L;), and the constant number of L;
lines incident with a P; point by ( L;P;) . We also denote the incidence matrix of T
with (P;Ly) in the sthrow and jth column by M (P/L), and the incidence matrix
of T with (L;Pj) in the ith row and jth column by M(L/P).

A tactical decomposition T" of a finite projective plane « with point classes P;

and line classes L;, where 1 = 1,2,...,m, is said to be symmetric if there is
a permutation (;l Jz; ;:) such that, upon relabelling L; by Lj, for each ¢ from

1to m, |P| = |Lg| for k = 1,2,... ,m. A tactical decomposition T" of a finite
projective plane 7 with point classes P; and line classes L;, wherei = 1,2,... ,m,
is said to be strongly symmetric if there is a permutation (;l jzz"'; J':) such that,
upon relabelling L; by Lj, for each i from 1 to m, the incidence matrices of T
come out to be equal. '

Now suppose that T is a tactical decomposition of a finite projective plane =
ofordernand P;, i =1,2,... ,m,and L;, j = 1,2,...,m, are the point and
line classes of T', respectively. We shall make use of the following fundamental
counting equations later.

m
S IPl=rt+n+1, (P1)
t=1
m
MLl =n +n+1, (L1)
i=]
m
SUBL)=n+1, j=1,2,...,m, (A7)
i=1
‘m
SLiP) =n+1, j=1,2,...,m, (Bj)
s=1
(PtLJ)|L]| = (L)R)|P3I)‘! ] = 1)2)“' ym, (C‘])

m
ST(PLO(LLP) = |Bi| + &m, 4, j=1,2,...,m,  (Dij)
k=1

m
S (LiPO(PiLy) = |Lil + 8my 6, 7=1,2,...,m,  (Eij)
k=1

where §;; = 0 or 1 accordingly as i ¥ j ori =j.
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Equations ( Cij) hold since P;, L; form a tactical configuration for all 1, .
Equations (.D¢j) are obtained by counting incidences of P; points with the lines
on a P; point in two ways, and Equations ( E{j) by a counting argument that is
the dual of this. Note that, if T is a tactical decomposition with M(P/L) =
M(L/P), then |P;| = |Lg|, forall i = 1,2,...,m, from Equations (Cii),
i=1,2,...,m. Consequently, a strongly symmetric tactical decomposition is
necessarily symmetric. It is not true, however, that a symmetric tactical decompo-
sition is necessarily strongly symmetric. For example, the tactical decomposition
of any finite non-self-polar projective plane with each point and line class of order
one is symmetric, but not strongly symmetric.

We now show, for a Type 3 joint embedding, that the sets of P’-tangents, P’-
secants and P'-exterior lines and their T’ counterparts form a tactical decomposi-
tion. This will enable us to employ Equations (P1) to (Emm), withm =3, t0
sort out the combinatorics of Type 3 joint embeddings in the next section.

Theorem 1. Let D and D° be designs, and let D' and D' be a Jjoint embedding
of Type 3 of D and D in a finite projective plane » of ordern. Let P,, P,, P3
be the sets of T -tangents, T’ -secants, T -exterior points, respectively, and Ly, L»
and L3 be the sets of P'-tangents, P'-secants and P'-exterior lines, respectively,
where P' is the point set of D' and T’ is the line set of D . Then

(@) Py = P', Ly = the block setof D', L3 = A and P, = thepointsetofﬁ',

(b) P, = ¢ ifandonly if L, = ¢,

(c) if P, = ¢ = L, then P,, P3, L3, L3, form a tactical decomposition of %,
and

(@) if Py # ¢ # L, then P,, P2, Ps, L1, La, L3, form a tactical decomposi-
tion of %,

Proof:

(@) Clearly B = P'and L3 = A since, by assumption, P’ is the complete set
of T -exterior points and T is the complete set of P'-exterior lines. Also,
every line of s which is a block of D' is a P; -secant, and conversely, every
P -secant is easily shown to be a block of D'. So L, is the set of blocks
of D'. Dually we can obtain that P; is the set of points of D'.

(b) Suppose L, = ¢. Then, P; is a maximal arc with, say, parameter s, where
1 < s < n— 2, since D’ is a design. But then each non-P; point is on
(s+ 1)~n > 1 L; lines. So there are no P; points. A dual argument
establishes the converse.

(c) Suppose P, = ¢ = L. Then P; is a maximal arc and so this part follows.

(d) Suppose Py # ¢ # L,. Clearly, there are a constant number of lines of
each type on a P; point, and dually for points on each L3 line.
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Let P be a P, point, and suppose that there are o L; lines on P and 8 L lines.
Then o + B = msince P is an L3-tangent. Also « + kB = |P;|, where & is the
blocksize of D’. Since k > 1 we can solve these equations uniquely for « and 8.
Clearly, o and g are independent of P in P;. A dual argument suffices for the L,
lines.

Let Q be a P> point, and suppose that there are y L lines on Q and § L lines on
Q. Theny+ 8 = n+ 1 —k, where k is the blocksize of (D')¢. Also~y+ k6 = | P3|.
By similar reasoning to that employed for the P, points we have that -y and & are
independent of Q. A dual argument suffices for the L, lines.

3. Combinatorics of embeddings of maximal arc type.

Having established that a Type 3 joint embedding in a finite projective plane =
yields a tactical decomposition of 7 in the manner described in Theorem 1 we
turn to the problem of determining the entries in the incidence matrices of the
tactical decomposition in terms of as few of the relevant parameters as possible,
and of finding whatever combinatorial restrictions apply to these parameters. We
summarize our results in the following theorem.

Theorem 2. LetD and D" be designs, and let D' and D' be a joint embedding of
Type 3 ot‘ D and D in a finite prq;ecu ve plane w of ordern. Let Py, P,, P; be the

sets of T -tangents, L T’ -secants and T -exterior points, respectively, and Ly, L3,

L3 be the sets of P'-tangents, P'-secants, P'-exterior lines, respectively, where
P' is the point set of D' and T' is the line set of D .

(@) IfP, = ¢ = L, then P is a maximal arc, D is an ((s + l)(sp+ 1),

(su+ D((s+ Du+1),(s+ Dp+1,s+ 1,1)-design andD is an
((3+ 1)(3p+1),Ga+ D)((3+)p+ 1) (s+ 1),u+ 1,5+ 1,1)-design,
wherefi = s+ 1 ands=p—1, forsomes > 1 andpu 2 2, n=(s+1yp
and the incidence matrices M(P/L) and M(L/P), where ( Pis1Lj+1)
is in the ij position of M(P/L) and dually for M(L/P), of the tactical
decomposition formed by P», Ps, L2, L3 are given by

M(P/L):[(s”'slzl‘;—s (s+lgu+l] ) [5&;1 (5+1gn+1]

and

M(L/P)=[su:1 (3+13p+1] - [(s+312;{—3 (s+13;1.+1]

Also, the tactical decomposition is symmetric if and only ify = s+ 1, in
which case it is strongly symmetric.
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(b) IfP, # ¢ # Ly, then D andﬁd have the same blocksize (s+ 1, say, where
8 > 1), s| n—1 and the incidence matrices of the tactical decomposition

formed by P\, Py, P3, Ly, L and L3 are given by

n—7+p n—r+p—(s+1) n-—-r+1
M(P/L)=[ F—p r—p+1 7 ] )
1 s+1 0
and
n—r+p n—r+p—(s+1) n—r+1
M(L/P)=[ T—p r—p+1 T }. 2
1 s+ 1 0

wherer = (L2 P3), 7 = (PyL3) and p = L. Furthermore, n > r >
s+ 1andn> ¥ > s+ 1 and also either
(i) r =7, whence

n—r+p n—r+p—(s+1) n—7r+1
M(P/L>=M<L/P)=[ r—p re o1 . }
1 s+ 1 0
(n=38)(s+1) >rs+ 1(=|P|=|L3]) > n, 3)
12— ((n+2)(s+1) = Dsr+(s+ 1)(nt —1) =0 @)

and |Py| = |Ih]| = (n+ I)(n—r1+p) —r(s+ 1), |P2| = |Ly|

(n+ D(r—p)+r,0r
(ii) 7+ 7 = n+ p, where p = %=L as before,

T r—(s+1) n—-7+1
M(P/L) = [n—r n—r+1 7 }, 5)
1 s+1 0
T r—(s+1) n—-7r+1
M(L/P)y=|n—-% n-7+1 r }, 6)
1 s+ 1 0
T and 7 are the solutions of the quadratic equation
$2z — ((s+ 1) — sz + (s+ Dn{n—(s+1)) =0 )

and |Pi| = r(n—3s),|[\|=T7(n=35),|P|=n(n—7+1) and |L,| =
n—-7+1).
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The tactical decomposition in Part (b)(ii) is symmetric if and only ifn = r =
P +s+landi=s+1orn=7=3%+3+1andr=s+ 1. Ineither of these
cases the tactical decomposition is strongly symmetric.

Proof:
(a) In this case the result follows from those concemning maximal arcs men-
tioned in the introductory section of this paper upon putting = (s+1) "'n.
(b) We have (P3L1) = (L3P) = 1 and (P;L3) = (L1 P3) = 0, by defini-
tion of the P; and L;. Also,let (PsL2) = s+1,(La2B) =r,(P,L3) =7
and (L3 P;) = v.

From Equation (A3) listed earlier we have (P, L3) = n— 7+ 1 and from
(B3) (L1P3) = n—r+ 1. Next (B1) and (D31) yield (L, P) = Bl=,
(LiP) = n— 1BI=® and (B2) and (D32) give (L2 P) = l—'ﬂi and
(I1Py) = n+ 1 —p — [BEROD | Then, from (A1) and (E3l) we have
(PyLy) = 202 and (P L) = n— 2022 and from (A2) and ( E32) follows
(P1Lp) = 2122 and (P Ly) =n—s— A lare

Now, from the expression for (L3 P), we have s | |P;| — n, and then, from
that for (L, P,) we have s | v — 1. Also, from the expression for (P, L), we
have v — 1 | |L3| — nand then, from that for (P, L,) we have v — 1 | s. Clearly,
we must have v—1=sandso(L3P2) = s+ 1. We note that (L3 P,) is the
blocksize of D"

From ( D33) wereadily have | P;| = rs+ 1, and from ( E33), that|L3| = Fs+1.
Now, since s | |P3| — 1 we have from the expression for (L; P,) thats | n— 1.
Also, replacing |P3| by rs + 1 and |L3| by #s + 1 in the expressions for (P, L,),
(P1L2), (P,L1) and (P, L), and also in their (L;P;) counterparts, yields the
incidence matrices given by (1) and (2).

Clearly, nmust be greater thanorequaltor and7,and r > s+ 1and7 > s+ 1
are simply Fisher’s Inequality for D and .

Next, let z = |Ps| and 2 = |L3|. Then, from (C11), (C13) and (C31) we
have

(z—n+3{n+1)s)(z—1«n+1)s) z = (z—n+ s{n+ 1)8)(Z-1<(n+1)s)z (8)
and, from (C22), (C23) and (C32), we have
(Z-—n+8)(z=-Dz=(z-n+3)(z- 1Dz ©
Using (9) we can simplify (8) down to the equation

(z=2)(z+z2-(n(s+ 1D +1))=0

137



whencez=zorz+z=n(s+ 1)+ 1. Butthen,usingz=rs+landz=rs+1,
wehaver=Forr+ 7 =n+ p, where p= =L,

Obviously, when r = # we have M( P/ L) and M (L/P) equal to the matrix
on the right side of Equation (2). Fori = 1,2, (Dil) to ( Di3) each yield |P;| as
given in the statement of Part (b)(i). Similarly (E11) to (E23) yield | L | and | L2 |
as given. Equations (Cii) are identities and Equations (Cij), where i # 7, all
reduce (after some algebra) to Equation (4). Equations ( P1) and ( L1) are clearly
satisfied and, since the entries in the incidence matrices must be non-negative, we
have that r > pand n— r + p > s+ 1 which readily yield (3).

Turning to the case where r+ 7 = n+ p we clearly have M(P/L) and M(L/P)
given by (5) and (6). Fori = 1,2, ( Dil) to (Di3) eachyield |P;| as given in Part
(b)(ii). Dually Equations ( E11) to ( E23) yield |L; | and | L, | as given. Equations
(Ci#i) are identities and Equations (Cij), where 1 # j, each reduce to Equation
(7) with z = r upon eliminating 7, or with z = 7 upon eliminating ». (P1)
and (L1) are obviously satisfied and the inequalities concerning n, r, ¥ and s
we have already mentioned ensure that the entries of the incidence matrices are
non-negative.

Finally, we examine the possibility of the tactical decomposition being sym-
metric in the case where r + 7 = n+ p.

We first note that r = 7 is impossible since then r = # = ==L which is
readily shown to be impossible using (7). So |F;| # |L;| fori = 1,2,3. So, for
a symmetric tactical decomposition, we must have |Py| = |La|, |P;| = |L3| and
|Bs| = |L1| or |Pi| = |Ls|, |P2| = | L1} and | P3| = |L2]. Usmg the expressions
for |F;| and |L;| in terms of n, r, 7 and s and r + # = n+ =L readily yields
n=r=s>+3+1,7=3s+1inthefirstcase,andn=7= sz+s+ 1, r=38+1
in the second. That these cases yield strongly symmetric tactical decompositions
is then easily verified.

Remarks:

(a) Notethatan ((3+1)(sp+1),(sp+1)((s+ 1) p+1),(s+Du+1,s+1,1)-
design is simply a (v, b, r, k, \)-design with k a divisorof vand ) = 1,
and conversely. We have stated Part (a) of Theorem 2 as above in order to
avoid quotients in the expressions for the parameters of D and -ﬁd, and in
order to bring out the symmetry of the situation.

(b) For a Type 3 joint embedding as described in Part (b)(ii) of Theorem 2
there is a Type 3 joint embedding in the dual plane which can be described
by interchanging the roles of r and 7.

4. Concluding remarks.

Equations (4) and (7) in the statement of Theorem 2 give some further information
about the various parameters beyond that explicitly given there. In Part (b)(i) it is
straightforward to show, using (4), that s is a divisor of 2(r — p). In Part (b)(ii)
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we can readily show, using (7), that s is a divisor of p — 1 and 50 n= 732+ s+1

forsome T > 1.

Fors > 2 thecasen=r = s>+ s+ 1 and# = s+ 1 corresponds to D' an
((s+ (2 +1),(s>+ 1)(s®+3+1),s% +3+1,s+ 1,1)-design (that is, a
generalized unital with o = 1 — see [4]), and Da projective subplane of order
s, in a plane of order s> + s+ 1. Alsofors > 2 thecasen=7 = s> + s+ 1
and r = s+ 1 corresponds to D' a projective subplane of order s and D' a dual
of a generalized unital with o = 1, in a plane of order s2 + s + 1. A projective
subplane ' of order s in a plane of order s? + s + 1 will always give rise to
Type 3 joint embeddings of both these sorts since the exterior points of the line
set of »’ and the tangent lines of the point set of 7’ form a generalized unital with
o = 1, and the tangent points of the line set of #’ and the exterior lines of the point
set of 7’ form the dual of a generalized unital with o = 1, and these structures
are embedded relative to ' in the requisite ways. (This generalized unital/dual
generalized unital pair will also form a Type 1 joint embedding.) However, there
are no examples of such subplanes known, and indeed the s = 2 case has been
shown to be impossible in [3]. Furthermore, the Bruck-Ryser Theorem eliminates
some instances (for example, s = 6,n=43 ands=7,n= 57).

Whenn=r=32+s+1,7=3s+1ands=1inther+ 7 = n+ pcase we
have D' is an affine subplane of order two in a plane of order three and Disa
(3,3,2,2,1)-design. That a quadrangle and its diagonal triangle are embedded
in PG1(2,3) in this way is easily verified. This example and the corresponding
onewheren=7= s +s+1andr = s+ 1 with s = 1, in PG1(2,3), are
the only examples known to the author of Type 3 joint embeddings as described
in Theorem 2 (b)(ii).

The equations n = 38> — 332 — 25+ 1,7 = 352 — 2, where s > 3, yield
an infinite class of values of n and r satisfying the restrictions which apply in
Theorem 2 (b)(i). Some of these values can be eliminated by applying the Bruck-
Ryser Theorem (for example, s = 7, n= 869 and s = 10, n = 2681).

The only example known to the author of a Type 3 joint embedding as described
in Theorem 2 (b)(i) occurs in PG1(2,7). PG1(2,7) possesses affine subplanes
of order three (see [2]). The exterior line set of the point set of such an affine
subplane « of PG1(2,7), and the set of secant points of this line set, is an em-
bedded dual of an affine plane of order three which, along with «, constitutes a
joint embedding of Type 3 in PG,(2,7).

The author has a list of all values of n, s and r satisfying the restrictions in
each of the two cases in Theorem 2(b) for n up to 104. For Part (b)(i) there are
102 solutions for n, s and r of which 19 can be eliminated by the Bruck-Ryser
Theorem. (For example,n= 94,r = 76, s = 3 can be so eliminated.) For Part
(b)(ii) there are 145 pairs of solutions of which 67 pairs can be so eliminated. (For
example,n = 213, »r =195, s=4 andn= 213, r = 71,8 =4 issucha
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pair.) Of course, the solutions for Part (b)(ii) always occur in pairs since, if », s,
r is a solution, then n, s, 7 is also a solution with # = n+ p — r # r. The first
eighteen sets of values of n, s and r in each case (ignoring values excluded by the
Bruck-Ryser Theorem) are given in the tables below.

Tablel (r=7)

n 3 T n s r n s T
7 2 4 79 3 65 235 3 177
9 2 6 137 4 46 291 5 73

11 2 9 160 3 92 364 3 220

11 2 10 181 3 105 373 4 341

49 3 25 211 3 160 439 3 320

61 3 32 221 4 75 529 6 106

Table2 (r+7=n+p)

n s T n 8 T n 3 r
3 1 2 31 5 6 85 3 45
3 1 3 31 5 31 85 3 68
7 2 3 58 3 29 91 9 10
7 2 7 58 3 48 91 9 91

13 3 4 73 8 9 111 10 11

13 3 13 73 8 73 111 10 111

None of the sets of n, s, r values listed in Table 1 can be eliminated using Result
12 on p. 62 of {1).

Using the discriminants of the quadratic expressions on the left side of (4) and
(7) it is easy to show that s = 1 never occurs when » = 7 and that s = 1 only
occurs whenn = 3 in the r + 7 = n+ p case. Also, in this way, we can show that
n< 1l whens=2inther = Fcase,andn< 7 whens=2 inther+r=n+p
case. The values of n and r given in Table 1 and Table 2 withs = 1 ors = 2
are thus the only possible ones with s taking either of these values. This sort of
argument fails for larger values of s. Indeed s = 3 occurs many times in the list
the author has of 5, s, r values, and right up to near n= 104,
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