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Abstract

If n is an integer, n > 2 and u and v are vertices of a graph G, then
u and v are said to be Kn-adjacent vertices of G if there is a subgraph
of G, isomorphic to K,, containing u and v. A total K,-dominating
set of G is a set D of vertices such that every vertex of G is K-
adjacent to a vertex of D. The total K,-domination number ~}_(G)
of G is the minimum cardinality among the total K,-dominating sets
of vertices of G. It is shown that, for n € {3,4,5}, if G is a graph
with no Kp-isolated vertex, then v}, (G) < (2p)/n. Further, K,-
connectivity is defined and it is shown that, for n € {3,4},if G is a
Kp-connected graph of order > n + 1, then % _(G) < (2p)/(n + 1).
We establish that the upper bounds obtained are best possible.

The terminology and notation of [2] will be used throughout. In particular,
G will denote a graph with vertex set V', edge set E, order p and size ¢.
If n is an integer, n > 2 and u and v are distinct vertices of a graph G,
then u and v are said to be K,-adjacent vertices of G if there is a sub-
graph of G, isomorphic to K,,, containing v and v. Therefore, u and v are
K,-adjacent vertices of G if and only if u and v are adjacent vertices of G.
The set of all vertices K,-adjacent to a vertex v in G is denoted by N¥=(v)
and [N¥~(v)| by K, — degv. Furthermore, 8k, (G) = min{K, — degv|v €
V(G)} and Ag, (G) = max{K, — degv|v € V(G)}. A vertex that is con-
tained in no subgraph of G, isomorphic to K,, is called a K,-isolated vertex
of G.

This definition of K,-adjacency suggests a generalization of the con-
cept of connectedness in graphs. Let u and v be vertices of a graph G. A
u — v K, path of G is a finite, alternating sequence of vertices and sub-
graphs of G, isomorphic to K,,, beginning with u and ending with v, such
that the vertices of the sequence are distinct, the subgraphs of the sequence
are distinct and every subgraph of the sequence is immediately preceded
and succeeded by a vertex that is contained in that subgraph. The vertex
u is said to be K,-connected to the vertex v in G if there exists a u — v
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K,-path in G. A graph G is K,-connected if every two of its vertices are
K,-connected. A graph that is not K,-connected is K,-disconnected. A
K,-component of a graph G is a maximal K,,-connected subgraph of G.

We are now in a position to generalize the concept of total domination
in graphs. Cockayne, Dawes and Hedetniemi [4] initiated a study of total
dominating sets in graphs. Our definition of K,,-adjacency suggests a gener-
alization of total domination in a graph. For n > 2, a total K,-dominating
set of G is a set D of vertices such that every vertex of G is K,-adjacent
to a vertex of D. The total K,-domination number vk, (G) of G is the
minimum cardinality among the total K,-dominating sets of vertices of G.
We note that this parameter is defined only for graphs with no K, -isolated
vertex.

It is our purpose to show that, for n € {3,4,5}, if G is a graph with
no Kp-isolated vertex, then vk _(G) < (2p)/n. Further, we show that,
for n € {3,4}, if G is a K,-connected graph of order > n + 1, then
7. (G) < (2p)/(n + 1). We establish that the upper bounds obtained
are best possible.

These concepts find application in many situations and structures which
give rise to graphs. Consider, for instance, the following example. Given
that each member of a population serves on some committee of n members,
find a smallest representative subcommittee in the population such that the
following two conditions are satisfied: Firstly, every non-member serves on
a committee (of n members) with at least one member of the subcommittee
to enhance communication, and, secondly, every member serves on a com-
mittee (of n members) with at least one other member of the subcommittee
to foster co-operation among the members of the subcommittee itself. It is
then of interest to determine an upper bound on the minimum size of the
subcommittee in terms of n and the size of the population. This situation
may be represented in graph theoretic terms as follows: We associate the
members in the population with the vertices of a graph G, two vertices of
G being adjacent if and only if there is some committee (of n members)
on which they both serve. Hence for each such committee in our popula-
tion, there is an associated subgraph of G, isomorphic to K,, the vertices
of which correspond to the members of the committee. In graph theoretic
terms, the problem is to find a minimum total K,- dominating set of G or
to determine bounds on its cardinality.

144




We begin our investigation of total K,-dominating sets in graphs with
the following elementary characterization of minimal such sets. This result
is analogous to a generalization of the authors [5] to a classical result of
Ore (6] concerning minimal dominating sets in graphs.

Lemma 1

For n > 2, let D be a total K,-dominating set of a graph G. Then D is a
minimal total K,-dominating set of G if and only if each vertex d €D has
at least one of the following two properties:

P(1,n): there ezists a vertez v € V-D such that N¥~(v)n D = {d};
P(2,n): there ezists a vertez z € D-{d} such that N¥~(z) n D = {d}.

The following two results relate the total K,-domination number and
the maximum K,-degree Ak, (G) of a graph G. These results generalize
those of Cockayne, Hawes and Hedetniemi [4].

Theorem 1.1

For n > 2, if G is a graph with no K,-isolated vertex, then vk (G)
P - AKn (G) + 1.

IA

PROOF

Let v be a vertex of G such that K,- deg v = Ak, (G) and let X =
V - (N¥(v)u{v}). f X =0, then Ak, (G) =p—1and 7k (G) =2 =
p — Ak, .(G) + 1. Suppose then that X # @ and let S be the set of all
K,-isolated vertices of (X).

IS =9, then D = X U {v,w}, where w € N¥~(v), is a total K-
dominating set of G with |D| = p— Ak, (G) + 1. If S # 0, then, since G
contains no K,-isolated vertex, each vertex s of S is K,-adjacent to some
vertex in N¥»(v); let M(S) be a subset of N¥~(v) of smallest cardinality
such that each vertex s € S is K,-adjacent to some element of M(S). We
note that [M(S)| < |S|. Necessarily D = (X — S) U M(S) U {v} is a total
K,-dominating set of G with |D| = |X| - |S|+ |[M(S)|+1 < |X]|+1 =
p — Ak, (G). This completes the proof of the theorem. a.
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Theorem 1.2

For n > 2, if G is a K,-connected graph with Ag, (G) < p - 1, then
Tkl (G) < p - Lk, (G)-

PROOF

Using the notation introduced in the proof of Theorem 1.1, we note that,
since Ak, (G) < p-1, X # 0. If S # 0, then we proceed in a manner
identical to that used in the proof of Theorem 1.1 to show that v (G) <
p — Ok, (G). Suppose then that S = @. Since G is K,-connected, there
exists a vertex z in X that is K,-adjacent to some vertex y € N¥~(v). Now
let C be the vertex set of the K,,- component of {X) which contains z. For
convenience, let Ay, denote the maximum K,- degree of (C). Further, let
Y be a total K,- dominating set of (C), with [Y| = 4%_((C)). Since (C)
is a graph with no K,-isolated vertex, it follows from Theorem 1.1 that
|Y| £ |C| = A, + 1. We consider two possibilities.

If Ak, =n-—1, then (C) = K,,. Necessarily D = {v,z,y}U(X~-C)isa
total K,-dominating set of G with |D| =3+ |X|—|C| =3+ (p— Ak, (G) -
1) -n=p-— AX..(G) - (n -2) < pP— AK“(G).

If Ak, > n, then D = {v,y} UY U (X — C) is necessarily a total K,-
dominating set of G with |D| < 2+(|C|- A%, +1)+(p~ Ak, (G)-1)—|C| <
P— Ok, (G) — (n—2) < p - Ak, (G).

This completes the proof of the theorem. (m]

For n a given integer, n > 3, let C(1,n),C(2,n),C(3,n),C(4,n) and C(5,n)
denote the following conditions on a graph G:

C(1,n) : G has no K,-isolated vertex.

C(2,n) : For each edge € of G, G — e contains at least
one K,-isolated vertex.

C(3,n) : For each edge ¢ of G, G — ¢ is K,- disconnected.

C(4,n) : There exist two K,-adjacent vertices u and v of G such that
G — {u,v} contains at least n — 1 K,-isolated vertices.

C(5,n) : There exist two K,-adjacent vertices u and v of G such that
G — {u,v} contains at least n — 2 K,,- isolated vertices.

The following lemma will prove to be useful.
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Lemma 2

Let G be a graph satisfying conditions C(1,n) and C(2,n). If there ezists a
vertez of G of degree at least n, then, for n € {3,4}, G satisfies condition
C(4,n) and, for n =5, G satisfies condition C(5,5).

PROOF

Suppose there exists a vertex v of G with degv > n — 1. Since G has no
K,-isolated vertex, there is some subgraph F of G, isomorphic to K, that
contains v. Since degv > n — 1, there exists an edge of G, e,, say, incident
with v and not contained in F. As G satisfies condition C(2,n), G — ¢,
contains some K, -isolated vertex w;, say. Since F C G — e;, w; is distinct
from v. Let F; denote a subgraph of G, isomorphic to K,,, containing w,
and v. Since degv > n — 1, there exists an edge of G, e,, say, incident
with v and not contained in F;. Since G satisfies condition C(2,n), G — e,
contains some K,-isolated vertex w,, say. Since F; C G — 3, w, is distinct
from w; and v. Let F; denote a subgraph of G, isomorphic to K,, contain-
ing w, and v. We consider two cases.

Case 1: Suppose that n = 3. Since degv > 2, there exists a neighbour
of v, u say, distinct from w; and w;. Then G — {u,v} contains at least
two Kjy-isolated vertices, namely, the vertices w, and w;. Hence G satisfies
condition C(4,3).

.Case 2: Suppose that n > 4. Let u be a vertex of G, distinct from w; and
ws, in the closed neighbourhood of v. If there exists an edge es, say, of G
incident with u that is not contained in F; or F;, then, since G satisfies
condition C(2,n), G — es contains some K, - isolated vertex w;, say. Since
F, CG-esand F; C G — ey, wy € V(F1) UV(F;). This implies, however,
that (if u # v) G — {u,v} or (if u = v) G — {u*,v}, where u* is any vertex
in N(v) — {w;, ws, ws}, contains at least three K,-isolated vertices, namely,
the vertices in {w;,w;,ws}. In particular, G satisfies condition C(4,4) if
n = 4 and condition C(5,5) if n = 5.

Suppose then that there is no such edge es of G incident with some
vertex u € N[v] — {wy, w;}. This, together with the observation that every
edge of G incident with w; or w; is contained in a K, C G with v, implies
that every edge of G incident with w; or w; is contained in F; or F;. Hence,
necessarily, (N[v]) = (V(F1) UV (F)) is a Ka-component of the graph G

147



(possibly, G = (N[v])) and each edge of this K,-component is contained
in Fy or F;. This implies, however, that each vertex, distinct from v, in
such a K,-component of G is K,-isolated in G — v. Hence, for any vertex
u € N(v), G — {u,v} contains degv — 1 > n — 1 K,-isolated vertices. In
particular, G satisfies condition C(4,4) if n = 4 and condition C(5, 5) if
n =35,

This completes the proof of the lemma. (m}
Corollary 1

For n € {3,4}, if G is a K,-connected graph with p(G) > n+1 that satisfies
condition C(2,n), then G satisfies condition C(4,n).

PROOF

For n € {3,4}, since G is a K,-connected graph of order > n + 1, there ex-
ists a vertex v of G with degv > n. Hence, by Lemma 2, for n € {3,4}, G
satisfies condition C(4, n). a

Corollary 2

For n € {3,4,5}, if G is a graph with no K,-isolated vertez that satisfies
condition C(2,n), then G satisfies condition C(5,n).

PROOF

If deggv < n — 1 for every vertex v of G, then G = mKn(m > 1). This
implies, however, that for any two K,- adjacent vertices u and v of G,
G — {u,v} contains n — 2 K,-isolated vertices. Hence, in this case, G satis-
fies condition C(5, ) for all values of n > 3 (in particular, for n € {3,4,5}).

Suppose then that there exists a vertex v of G with degv > n. Then,

by Lemma 2, for n € {3,4}, G satisfies condition C(4,n) (hence, certainly,
condition C(5,n)) and, for n = 5, condition C(5,5). o

The next result establishes an upper bound, for n € {3,4,5}, on the total
Kp-domination number of a graph G with no K,-isolated vertex.
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Theorem 2

For n € {3,4,5}, if G is a graph with no K,-isolated vertex, then 7k _(G) <

(2p)/n.
PROOF

We proceed by induction on integers p, where p > n. If G is a graph
of order p = n such that G contains no K,-isolated vertex, then G =

K. and , (G) = (25)/n.

Assume for all graphs H of order less than p (where p > n+ 1 is
an integer) that if H contains no Kp-isolated vertex, then 7k (H) <
(2p(H))/n.Let G be a graph of order p that contains no K,-isolated vertex.
We show that v} (G) < (2p)/n. Let G’ be a graph obtained from G by the
deletion (if necessary) of a set of edges of G such that G’ satisfies conditions
C(1,n) and C(2,n). Then by Corollary 2, for n € {3,4,5}, G' satisfies con-
dition C(5,n). Hence there exist two K,- adjacent vertices u and v of G’
such that G' — {u,v} contains at least n — 2 K,-isolated vertices (where
n € {3,4,5}); let S denote the set of all K,-isolated vertices of G’ — {u,v}
and consider the graph G" = G' — (S U {u,v}), say.

By the manner in which G" is constructed, G" contains no K,-isolated
vertex. Thus, by the inductive hypothesis, v (G") < (2p(G"))/n. Now let
D" be a total K,-dominating set of G” with |D"| = 4%_(G") and consider
the set D = D" U {u,v}. Necessarily D is a total K,-dominating set of G'
with [D| < (2p(G"))/n+2 = (2(p - |S|-2))/n+2< (2(p—n))/n+2=
(2p)/n. However, G' is a spanning subgraph of G, implying necessarily
that, for n € {3,4,5}, 7%.(G) < 1k.(G") < (2p)/n. |

Since there exist graphs (viz. G = mK,(m > 1)) that contain no K,-
isolated vertex and such that v _(G) = (2p)/n, the upper bound (2p)/n
established in the result of Theorem 2 is best possible.

The next result establishes an upper bound, for n € {3,4}, on the total
K,-domination number of a K,,-connected graph G of order > n + 1. This
result generalizes that of Cockayne, Dawes and Hedetniemi [4].
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Theorem 3

For n € {2,3,4}, if G is a K,-connected graph of order > n + 1, then
k. (G) < (2p)/(n +1).

PROOF

We may assume n = 3 or 4 since the case n = 2 is the result of Cockayne,
Dawes and Hedetniemi. We proceed by induction on p, wherep > n+1. If G
is a K,-connected graph of order p =n+1,then G = K41 0r G = Kpyy—e
and, in each case, G has total K,-domination number 2 = (2p)/(n + 1).

Assume for all K,-connected graphs H with n + 1 < p(H) < p that
vk, (H) < 2p(H)/(n +1). Let G be a Kp-connected graph of order p. We
show that 7k, (G) < (2p)/(n + 1).

Let G' be the K,-connected graph obtained from G by the deletion (if
necessary) of a set of edges of G such that G’ satisfies condition C(3, n).

Before proceeding further with the proof of Theorem 3, we prove the
following lemmata.

Lemma 3
If G' satisfies condition C(4,n), then v _(G') < (2p)/(n +1).
PROOF

Suppose G’ satisfies condition C(4,n). Then there exist two K,-adjacent
vertices u and v of G’ such that G'—{u, v} contains at least n—1 K,,-isolated
vertices; let S denote the set of all K,-isolated vertices of G' — {u,v} and
consider the graph G" = G' — (S U {u,v}), say.

By the manner in which G" is constructed, G" contains no K,-isolated
vertex. Hence each K,-component of G" is of order at least n. Let
G1,...,Gy denote the K,- components (if any) of G” of order n and let
Gi+1s 00y Gm(m 2 k+1) denote the remaining K,- components of G”. Since
G' is Kp-connected and since each vertex of S is Ky-isolated in G' — {u, v},
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there is necessarily for each f with 1 < ¢ < k, a vertex of G; that is K,-
adjacent to u or v; let w; denote such a vertex of G;.

By the inductive hypothesis, vk,_(G:) < (2p(G:))/(n +1) for each ¢ with
k +1 <1 < m;let D; denote a total K,-dominating set of Gi(k+ 1< ¢ <
m) with |D;| = +k_(G:) and consider the set D = {u,v} U (UL, {w;}) U
(Um441Di). Necessarily, D is a total K,-dominating set of G' with

ID| £ 2+k+ X4 2P(Gi)/(n +1)
2+k+(2(p—2—|S| - kn))/(n +1)

Z 2+k+(2(p—-(n+1)—kn))/(n+1)

= (2p)/(n+1)—2(kn)/(n+1) +k

< (2p)/(n +1);
consequently, 7k, (G') < |D| < (2p)/(n +1). This completes the proof of
Lemma 3. ]

Lemma 4
If G' does not satisfy condition C(2,n), then vk (G') < (2p)/(n +1).
PROOF

Since G' does not satisfy condition C(2, n), there exists an edge e of G' such
that G' —e contains no K,-isolated vertex; let ¢ = uv denote such an edge of
G'. However G' satisfies condition C(3,n) and so G' —e is Kp-disconnected.
We consider two cases.

Case 1: Suppose that there exists a K,-component of G' — ¢ of order n.
We show that G’ satisfies condition C(4,n). If an end vertex of e = uv is
contained in some K,-component of order n of G' — e, then each vertex,
distinct from u or v, of such a K,-component is K,- isolated in G' — {u,v}.
This would imply, however, that G’ satisfies condition C(4,n).

Suppose then that no K,-component of order n of G' — e contains an
end vertex of e. The K,-connectivity of G’ implies, necessarily, that there
is a vertex in each K,- component of order n of G' — e that is contained in
a subgraph of G', isomorphic to K,, that contains the edge e (and hence
each of u and v); let w denote such a vertex in some K,-component of
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order n of G' — e. Then, necessarily, each vertex, distinct from w, of the
K,-component of G' — e containing w, is K,-isolated in G' — {w,v} (and in
G'-{w,u}). This would imply, however, that G' satisfies condition C(4, n).

Hence G' satisfies condition C(4,n). Thus, by Lemma 3, 7k _(G') <
(2p)/(n +1).

Case 2: Suppose that each K,-component of G’ —e is of order at least n+1.
Let Gy,G3,...,Gm(m > 2) denote the K,-components of G' — e. By the in-
ductive hypothesis, vk, (Gi) < 2p(G;)/(n + 1) for each 1 with 1 < ¢ < m;
let D; denote a total K,-dominating set of G; with |D;| = 4% (G;) and
consider the set D = U%, D;. Necessarily, D is a total K,- dominating set
of G' with |D| = X2, |Di| £ T2,(2p(G:))/(n + 1) = (2p)/(n + 1). Hence
Tk.(G') < |D| < (2p)/(n +1). m]

We now continue with our proof of Theorem 3. For n € (3,4}, if
G’ satisfies condition C(2,n), then Corollary 1 and Lemma 3 imply that
7%.(G'") < (2p)/(n + 1). If, however, G' does not satisfy condition C(2,n)
(with n € {3,4}), then, by Lemma 4, % _(G') < (2p)/(n + 1). Hence in
both cases ~j, (G') < (2p)/(n + 1). However G' is a spanning subgraph
of G, implying, necessarily, that v%_(G) < %, (G") < (2p)/(n + 1) where
n € {3,4}. This completes the proof of Theorem 3 O

For m > n > 3, let H be a graph obtained by the removal of a single
edge uv from K, and let Gy, Gy, ..., G, be m disjoint copies of H and u;
the vertex in G; corresponding to u(s = 1,2,...,m). Let G be the graph
obtained from UZ,;G; by inserting an edge between every pair of vertices
u;,u; with ¢ # j(i,57 = 1,...,m). (The graph G is shown in Figure 1.) Then
G is a K,-connected graph with p(G) > n + 1 and 7} _(G) = (2p)/(n + 1).

Figure 1 A K,-connected graph G with p(G) > n+1
and v, (G) = (2p)/(n + 1).
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Hence, for every integer n > 3, there exist K,-connected graphs G with
p(G) 2 n +1 and %, (G) = (2p)/(r + 1); consequently, the upper bound
established in the result of Theorem 3 is best possible.

In view of the results of Theorem 2 and Theorem 3, we pose the fol-
lowing two questions: Firstly, is it true for all values of n > 3, that if G
is a graph with no K,-isolated vertex, then Yk, (G) < (2p)/n? Secondly, is
it true for all values of n > 3, that if G is a K,-connected graph of order
2 n+1, then 7k, (G) < (2p)/(n + 1)? It is perhaps relevant to note that, if
k. (G) denotes the K,-domination number of G, defined to be the cardi-
nality of a smallest set D of vertices of G such that every vertex in V — D
is K,-adjacent to a vertex in D, then V%, (G) < p/n for n = 2, 3,4, but not
for n > 5 (cf. [5]).
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