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Abstract. Let D denote any balanced temary design with block size three, index two,
and p; = 1 (that is, with each element occurring repeated in just one block). This paper
shows that there exists such a design D on V elements containing exactly k pairs of
repeated blocks if and only if V = 0 (mod 3),

nggty=;-V(V—3), k#ty—=1, and (k,V) #(1,6).

1. Introduction.
For the purposes of this paper, a balanced ternary design or BTD is a pair ( P, B)
where P is a finite set and B is a collection of multisets of size 3 (called blocks)
of the form {z,z,y} or {z,y, 2}, where z ¥ y # z # , such that each pair of
distinct elements occurs exactly twice among the blocks of B, and each element
of P occurs twice in exactly one block. (The pair {z, y} occurs twice in the block
{z,2,y}.) V = |P| s the order of the BTD. (For the more general definition and
a survey of such designs, see [1].)

A necessary and sufficient condition for the existence of such a BTD is that
V =0 (mod 3) (see, for instance, [2]).

Some examples which we use later:

112

|P|=3: |[223

331
112 453 112 245
223 453 223 345
_ . 1331 462 331 246
1Pl=6: |41 a62 | O |aa1 346
552 561 551 256
663 561 661 356

Here is our result:
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Main Theorem. Letk, V be non-negative integers. There is a BTD of order V
with exactly k pairs of repeated blocks if and only ifV =0 (mod 3),0 < k<
tv=tV(V-3), k#ty —1,and(k,V) ¥ (1,6).

Let R(V) = {k | there exists a BTD on V elements with k repeated blocks},
andlet Jy = {k |0 < k < ty, k # ty — 1}. So we must prove R(V) = Jy for
V =0 (mod 3), except 1 ¢ R(6). (The comresponding problem for two-fold
triple systems was settled in [9].)

The number of blocks in a BTD of order V is %-Vz , and V of the blocks are of
the form {z, z,y}, leaving :V(V — 3) of type {z,y,2}. This latter number is
even. Thus, the maximum possible number of repeated blocks is ty = %V( v-=-3).
Obviously, ty — 1 ¢ R(V). The two examples of BTD’s of order 6 given above
are the only two; see [5]. The first has three pairs of repeated blocks, the second
none. So R(6) = {0,3}, and we have shown the conditions given in the main
theorem are necessary.

Before we show they are sufficient, we need one more definition.

A BTD of order W with a hole of size V is a triple (Q, P, B), where Q is a
W-set, P is a V-subset of Q, and B is a collection of blocks of Q such that:

(1) each pair of distinct elements of Q not both in P, occurs exactly twice in
the blocks of B;
(2) each element of Q\ P occurs twice in exactly one block;
(3) each pair of elements of P, distinct or not, occurs in no blocks.
(A BTD with a hole has also been called a frame; see [6].)

For two examples, let Q = {1,2,3,4,5,6}, P = {1,2,3}, and delete the
blocks 112, 223, 331 from either of the two BTD's of order 6 given above.

Naturally, if (Q, P, B) is a BTD of order W with a hole of size V, and if
(P, Bo) is a BTD of order V, then (Q, BU By) is a BTD of order W.

2. The odd case.
In this section, we confine ourselves to the case V = 3 (mod 6).
In [3], the following was established.

Theorem 1. Ifu > 5 is odd, then there is a pair of group divisible designs on the
same u groups of size 3, with block size 3 and index 1, having exactly k blocks in
common, ifand only if0 < k < t3y, k #t3y — 4,1 € {1,2,3,5}.

Corollary 2. If V = 3 (mod 6)and V > 15, then R(V)\{tv —1i |
i=2,3,5}CJy.

Proof: Given the pair of designs in Theorem 1, with V = 3 u, we take their blocks
as blocks of a BTD. On each group, we place a BTD of order 3. |

We need to treat the cases V = 9 and 15 separately:

164




Lemma3. R(9) = Js.
Proof: Elements {1,2,...,9}.

0 € R(9):
1€ R(9:

2 € R(9):

3 € R(9):

4 € R(9):

5 € R(9):

6 € R(9):

7 € R(9):

9 € R(9):
So R(9) = Js.

Cyclicdesign [1,1,2],[1,3,6],[1,3,7] (mod 9).
123,124 134,234,158, 159, 168, 169,
268,269,278,279,358,359,378,379,
567,567,117,225,336,449,554 ,664 ,774 ,884 ,998.
189,189,349,349,
117,227,338,442,553,668,773,882,992
123,125,136, 145, 146,236,256 ,458,467,
478,569,578,579,679.

112,223, 331,445,556,664,778,889,997,
258,258,159, 159,357,357,

147,167,349,369, 247,267,348, 368,

148,168, 249,269.

Repeat 269,347, 389, 579.

119,228,336 ,448,556,664 ,772,885,994,
123,124,135, 145, 235,245,167, 168, 178,678.
Repeat 258,269,359,378,489.

118,227,336 ,447,554,664,779,886,991,
123,124 ,134,234,156,157,167,567 .

Repeat 167,268, 279,369,478, 589 .
118,225,337,449,556,664,775,883,991,
123,124 ,135,145,234,345.

Repeat 158,169, 268,279,359, 378,567.
117,225,336 ,449,554,664 ,774 ,884 , 998,
123,124,134 ,234,
Cyclicdesign[1,1,5],[1,2,4],[1,2,4] (mod 9).

We will need the following result of H.L. Fu [7].

Theorem 4. Ifn > 5, then there are two Latin squares of order n which agree
onexactlyk cells ifand only if0 < k< 7, k#n® —ifori=1,2,3,5.

Lemma 5. R(15) = J;s.

Proof: {0,1,...

,24,26,28,30} C R(15):
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Let P = Zs x {1,2,3}. Take two Latin squares [a;;], [b;;] of order 5 which
have at least one cell in common; without loss of generality let their (1,1) entries
be 1. So these Latin squares agree in a further 0,1,... ,18,20 or 24 places.
Take blocks of type {z, z, y} as follows:
{(1,1,(1,1,(1,2)}, {(1,2,(1,2),(1,3)},
{(1,3),(1,3),(1, 1}

(A) {(2,9,(2,9),(1,9}, {(3,9),(3,9),(1,)},
{(4,9,(4,9,(1,9}, {(5,9,(5,9,(1,9},
{(2,9,(3,9,(4,9}, {(2,9,(3,9,(5,9},
{(2,9,(4,9,(5,9}, {(3,9,(4,9),(5,9} or
{(2,9,(2,9,(3,9}, {(3,9,(3,9,(4,9},

(B) {(4’1)’(4;‘))(5)’)}1 {(Sii)s(sil))(z;')})
{(1,9,(2,9,(4,9}, {(1,9,(2,9),(4,D},
{(1,9,(3,9,(5,9}, {(1,9,(3,),(5,9)}

fori € {1,2,3}. (Note that (A) contains no repeated blocks while (B) contains
two repeated blocks.)
Then take blocks

{(4,1,0(7,2),(ai;, 3}, {(1,1),(4,2),(b;;,3)}, (i,j notboth 1).
According as (A) or (B) above is taken, for each of the three possible values of 1,
the resulting BTD of order 15 contains k repeated blocks where

ke {0,1,...,18,20,24}+{0,2,4,6}, thatis,
ke {0,1,...,24,26,28,30}.
25,27 € R(15):Let P = {0,1,...,9,a,b,c,d,e}.
Blocks: (A) 00c¢, cc7, 778, 88d, dd0, aa5, 550, bb6, 669, e, eel;
(By) or (B;) where
(B)) 1is110,220,330,440,123,124,134,234;
(By) is112,223,334,441,013,013,024,024,
(C) O0ab,0ab,bcd, bce, bde, acd, ace, ade;
(D) 067,089,568,579, twice each;
(E) 15b,16c,17d,18¢,19a,
25¢,26d,27¢e,28a,29b,
35d,36€e,37a,38b,39¢,
45e,46a,47b,48¢,49d, all twice each.
Then (A) (B;) (C) (D) (E) isaBTD of order 15; if i = 1 this has 25 repeated

blocks, and if 1 = 2 this has 27 repeated blocks.
So R(15) = Jis. 1
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Theorem 6. Ift > 2s+ 1, then thereisa BTD(Q, P, B) of order6t+ 3 witha
hole of size 6 s + 3, in which all blocks with three distinct elements are repeated.

Proof: By [4], there is an idempotent commutative quasigroup (T, o) of order
2t + 1 with a subquasigroup S of order 2s + 1.
LetQ=Tx{1,2,3}, P=Sx{1,2,3}. ForeachieT\S, place the blocks

{(,1,6,1D,0,2)}, {(,2),(4,2),(4,3)},
{(1,3),(4,3),(5,D} in B.

For each unordered pair 1, j of distinct elements of T which are not both in S,
place the blocks

{(,D,(,D,(i04,2)}, {(4,2),(5,2),(i07,3)},
{(i!3)a(j) 3)s(i°j, 1)} in B twice.

We now patch the gaps left by Corollary 2.
Theorem 7. IfV =3 (mod 6), then R(V) = Jy.

Proof: This is true for V < 15, so we assume V > 21 and proceed by induction
on V. We need only prove ty — i € R(V) fori € {2,3,5}.

Write V = 122+ 66 + 3, where § € {0,1}. Let (Q, P, B) be the BTD of
order V with a hole of size U = 6+ 66 — 3, given by Theorem 6. By induction,
there is a BTD of order U with exactly ¢y — ¢ repeated blocks to fill the hole. §

3. The even case.

We now proceed with the case V = 0 (mod 6). As in the odd case, we need to
construct a BTD with a hole. We will use difference methods, so a few definitions
are in order.

If d is a positive integer, and z is any integer, we define |z|4 as follows: find the
unique y withy = z (mod d),and —d/2 < y < d/2. Then|z|q = |y|.

If K4 is the complete graph on vertices Z4, and e = zy is an edge, we say
that e is an idge of difference |z — y|q. So the differences are in the set D =
{,2,...,[%]}.

Finally, thzeJ3-set {a,b,c} C D is said to be a difference triple (mod d) if
eithera+b=c,ora+ b+ c=d.

Theorem 8. LetV and W be integers, with0 < 2V < W,V odd, W even,
andV + W = 0 (mod 3). Let k be an integer with0 < k < L (W - V)
(W+V —-3)andk = 0 (mod W — V). Then there is a BTD (Q, P, B) of
order W with a hole of size V' having exactly k pairs of repeated blocks.

Proof: Let W—V =d=2e+ 1,1et Q\P=2Z4,andlet P={o0; | 1<j<V}. It
is well known that D = {1,2,... , e} contains | e/3 | pairwise disjoint difference
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triples. (Thisiseasyife Z 0 (mod 3); see, for example, [9]. Ife = 0 (mod 3),
there is a cyclic Steiner triple system of order 2e + 1 [8].)
The conditions on V, W and k guarantee the existence of integers z, t, y satis-

fying

0<z<t<y/3+t<e/3,
W=4e—-6t+2,
V=2e-6t+1,
k=QRe+ D(z+y).

So we can partition D into sets Ag, A1, A2, Az such that:

1) |Ao| =3z;
@) |A]|=3t-3z;
3) |Az2]=y;

@ |As]l=e-3t-y;
(5) each of Ap and A, can be partitioned into difference triples (mod d).
For each difference triple a < b < c in the partition of Ay, and for each i € Zg4,
take the block {4, i + a, i+ a + b} twice.
For each difference triple a < b < c in the partition of A;, and for each§ € Z;,
take the blocks {3, i + a, i+ a + b} and {4, i + b, i + a + b} each once.
Consider the graph G on vertices Z, and edges with difference in A,. This is
a graph which is regular of degree 2y, and so by Vizing’s theorem [10], it can be
properly 2y + 1 edge coloured with colours 1,2,... ,2y + 1.
Foreach1 < j < 2y + 1, and each edge ab of G coloured j, take the block
{oc0j,a, b} twice.
For each a € Z,, there is exactly one colour 1 that does not occur on an edge of
G incident with a. Take the block {a, a, 00;}.
Partition the set {o0j|2y + 2 < j < V} into e — 3t — y pairs {s;,¢;}, 1 <
j £ e =3t — y. For each such j, let f be the jth difference in A3, and for each
edge ab of difference f, take the blocks {s;,a, b} and {t;, a, b} each one. ]
Before we can use this theorem, we will need some more special cases.
Lemma9. R(12) = J;;.

Proof: Itis easy to find two Latin squares of order 4 which agree in k places where
ke{0,1,2,3,4,6,8,9,12,16}. Take two such Latin squares [a;;] and [b;;]
which agree in at least one place, so that ayy = by Let P=Q x {1,2,3} where
the Latin squares are based on the set Q = {1,2,3,4}, and take blocks in B as
follows:
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M {(1,1,(1,D,(1,2}, {(1,2),(1,2),(1,3)},
{(1,3),(1,3),(1,};
{2,9.,(2,9,(1,9}, {(3,9,(3,9,(1,9)},
{(4,1’),(4,1'),(1,1')}, 1<1<3.
@ {(2,9),(3,i),(4,9)}, twice, 1 < i< 3.
3) {(r,1),(s,2),(ar,3)}, {(r, 1),(s,2),(b4,3)}, 7, s€ Q; r,snotboth 1.

Then if the two Latin squares agree in k > 1 places, there are k — 1 repeated
blocks of type (3).

The BTD ( P, B) thus contains ( k—1)+3 repeated blocks, so {3,4,5,6,8, 10,
11,14,18} C R(12).

0 € R(12): Take base blocks
(0,0,51, 10,1,3], [0,3,4], (0,6, 8] modulo 12.

9,12,15 € R(12): Take a BTD on 6 elements with 3 repeated blocks. Use a
doubling construction where old elements are {z}, new elements are {z} x {1, 2},
and where block {z, y, z} is replaced by four blocks

(A) {(z,1),(y,),(2,D}, {(z,1),(y,2),(2,2)},
{(z,2),(v,1),(2,2}, {(2,2),(y,2),(z,1)} or

(B) {(z,2),(1,2),(2,2}, {(z,2),(y,1),(2,1)},
{(.'E, 1):(!/’ 2):(3) l)}l {(:B, 1),(% 1);(312)}

(Here z may equal y.)

Using (A) for all 3 repeated blocks yields a BTD on 12 elements with 18 re-
peated blocks.

Using (A) twice for two, and (A) once, (B) once for one of the repeated blocks,
shows 15 € R(12); (A) twice for one, and (A) and (B) for two of the repeated
blocks shows 12 € R(12), and (A) and (B) for the 3 repeated blocks shows
9 € R(12). Hence {9,12,15,18} C R(12).
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le R(12): P={1,2,...,9,T\E,W}.
112,223,331,TT3,EE3,WW3;
441,551,661,772,882,992,
(*){ 245,345,246, 346,256,356,
178,378,179,379, 189,389,
\TE,2TE,\TW,2TW,1EW,2 EW,;
47T,47T;
58E,68W,69 E,5S9W;
48W,49W,49 E 48 E;
75E,716 E,76 W,75W;
T58,T59,T69,T68.
7 € R(12): From the above BTD, remove blocks () and replace with:
442 ,553,661,772,883,991,
256,256,346 ,346, 145,145,
289,289,379,379,178,178.
16 € R(12): P={0,1,...,9,T,E}.
004,114,224 ,339,443,559,66T,774,88T,992,TTI, EEOQ;
012,013,023, 123; then the following blocks, each repeated:
056,078,097, 157,169, 18 E, 258,267,2TE,
35E,368,37T,45T,46 E,489 ,79E.
2 € R(12): P ={0,1;,...,5.,08,1R,... ,Sr}
B: Take base blocks, modulo 6:
short block [0y,2;,4.], twice.
[0L,0.,08], [Og,0g, 15]); [Og,2g,4g]once (short);
[0g,1;,28], [0y,1;,4R); [01,32,4R], [31,08,28], [11,08,3g].
13 € R(12): P={1,2,...,9,T,E,W}.
B: 115,559,991,221,331,441,66T,TT1,77E,EE1,8W,WW1;
repeated blocks: 257,26 E,27W, 289,
35E,36W,379,38T,
45W,469,47T,48 E, and 234;
9TE,9TW,9EW,TEW,;
167,168,178,567,568,578.
SoR(12) = {0,1,...,16,18}.
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Lemma 10. J13\{40,43} C R(18).

Proof: Let P = Z x {1,2,3}. Oneach Zg x {i},i = 1,2,3, take a BTD which
may have either 0 or 3 repeated blocks. Then let (a;;] and [b;;] be two Latin
squares of order 6 which agree in k places, k € {0,1,...,30,32,36}. Take
blocks {(4,1),(/,2),(ai;,3)}and {(4,1),(/,2),(b;;,3)}. Thenz+k € R(18),
where z=0, 3, 6 or 9 and k is as above. This shows that {0, 1,...,39,41,42,45}
C R(18). ]

Lemma 11. J24\{79,81,82} C R(24).
Proof: Take P = {{1,2,...,8} x {1,2,3}} and blocks in B as follows:

{(1,1,(1,,(1,2)}, {(1,2),(1,2),(1,3)}, {(1,3),(1,3),(1,1)},
{G.D,GD,(LN} 2LiL8, j=1,2,3

on{(7,9) |2 < j <8} foreachi=1,2,3 takea TTS(7), which may contain
0, 1,3 or7 repeated blocks; then, using two Latin squares [a;;] and [ b;;] of order
8basedon {1,2,...,8} witha); = b;; = 1, and agreeing in k more cells, where
ke {0,1,...,57,59,63}, take blocks

{(iv l),(],Z),(av,S)} and {(il 1):(jt2);(bv:3)})
where ¢, j are not both 1. The result is a BTD containing S repeated blocks where
S€3x{0,1,3,7}+ k, kasabove.

This shows that {0, 1,... ,78,80,84} C R(24). 1
Theorem 12. IfV =0 (mod 6), then R(V) = Jy.

Proof: By Lemma 9, we may assume V > 18. Solet n € Jy; we now show
n € R(V). By Lemma 10, if V = 18, we may assume n € {40,43}, and by
Lemma 11, we may assume n € {79,81,82}if V = 24.

LetV = 122+ 648,56 € {0,1},and writenasn= k+ £, where 0 < k& <
32z + 1)(3z+ 28— 1),k =0 (mod 6z + 3),and 2 € R(6x + 65 — 3)
by Theorem 7. By Theorem 8, there is a BTD of order V with a hole of size
6z + 66 — 3, having exactly k pairs of repeated triples. Now fill the hole with a
BTD of order 6 z + 6 6 — 3 having £ pairs of repeated triples. 1

Of course, Theorem 7 and Theorem 12 prove our Main Theorem.
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