The Number of Repeated Blocks in Balanced Ternary Designs with Block Size Three

Elizabeth J. Billington

Department of Mathematics
University of Queensland
Brisbane, Queensland 4067, AUSTRALIA

and

D.G. Hoffman*

Department of Algebra, Combinatorics and Analysis Auburn University Auburn, Alabama 36849, U. S. A.

Abstract. Let D denote any balanced ternary design with block size three, index two, and $\rho_2 = 1$ (that is, with each element occurring repeated in just one block). This paper shows that there exists such a design D on V elements containing exactly k pairs of repeated blocks if and only if $V \equiv 0 \pmod{3}$,

$$0 \le k \le t_V = \frac{1}{6}V(V-3), \quad k \ne t_V - 1, \text{ and } (k, V) \ne (1, 6).$$

1. Introduction.

For the purposes of this paper, a balanced ternary design or BTD is a pair (P, B) where P is a finite set and B is a collection of multisets of size 3 (called blocks) of the form $\{x, x, y\}$ or $\{x, y, z\}$, where $x \neq y \neq z \neq x$, such that each pair of distinct elements occurs exactly twice among the blocks of B, and each element of P occurs twice in exactly one block. (The pair $\{x, y\}$ occurs twice in the block $\{x, x, y\}$.) V = |P| is the order of the BTD. (For the more general definition and a survey of such designs, see [1].)

A necessary and sufficient condition for the existence of such a BTD is that $V \equiv 0 \pmod{3}$ (see, for instance, [2]).

Some examples which we use later:

$$|P| = 3$$
: $\begin{bmatrix} 112 \\ 223 \\ 331 \end{bmatrix}$
 $|P| = 6$: $\begin{bmatrix} 112 & 453 \\ 223 & 453 \\ 331 & 462 \\ 441 & 462 \\ 552 & 561 \\ 663 & 561 \end{bmatrix}$ or $\begin{bmatrix} 112 & 245 \\ 223 & 345 \\ 331 & 246 \\ 441 & 346 \\ 551 & 256 \\ 661 & 356 \end{bmatrix}$

Here is our result:

^{*}Research supported by NSA grant MDA-904-88-H-2005.

Main Theorem. Let k, V be non-negative integers. There is a BTD of order V with exactly k pairs of repeated blocks if and only if $V \equiv 0 \pmod{3}$, $0 \le k \le t_V = \frac{1}{5}V(V-3)$, $k \ne t_V - 1$, and $(k,V) \ne (1,6)$.

Let $R(V) = \{k \mid \text{there exists a BTD on } V \text{ elements with } k \text{ repeated blocks}\}$, and let $J_V = \{k \mid 0 \le k \le t_V, \ k \ne t_V - 1\}$. So we must prove $R(V) = J_V$ for $V \equiv 0 \pmod{3}$, except $1 \notin R(6)$. (The corresponding problem for two-fold triple systems was settled in [9].)

The number of blocks in a BTD of order V is $\frac{1}{3}V^2$, and V of the blocks are of the form $\{x, x, y\}$, leaving $\frac{1}{3}V(V-3)$ of type $\{x, y, z\}$. This latter number is even. Thus, the maximum possible number of repeated blocks is $t_V = \frac{1}{6}V(V-3)$. Obviously, $t_V - 1 \notin R(V)$. The two examples of BTD's of order 6 given above are the only two; see [5]. The first has three pairs of repeated blocks, the second none. So $R(6) = \{0, 3\}$, and we have shown the conditions given in the main theorem are necessary.

Before we show they are sufficient, we need one more definition.

A BTD of order W with a hole of size V is a triple (Q, P, B), where Q is a W-set, P is a V-subset of Q, and B is a collection of blocks of Q such that:

- (1) each pair of distinct elements of Q not both in P, occurs exactly twice in the blocks of B;
- (2) each element of $Q \setminus P$ occurs twice in exactly one block;
- (3) each pair of elements of P, distinct or not, occurs in no blocks.

(A BTD with a hole has also been called a frame; see [6].)

For two examples, let $Q = \{1, 2, 3, 4, 5, 6\}$, $P = \{1, 2, 3\}$, and delete the blocks 112, 223, 331 from either of the two BTD's of order 6 given above.

Naturally, if (Q, P, B) is a BTD of order W with a hole of size V, and if (P, B_0) is a BTD of order V, then $(Q, B \cup B_0)$ is a BTD of order W.

2. The odd case.

In this section, we confine ourselves to the case $V \equiv 3 \pmod{6}$. In [3], the following was established.

Theorem 1. If $u \ge 5$ is odd, then there is a pair of group divisible designs on the same u groups of size 3, with block size 3 and index 1, having exactly k blocks in common, if and only if $0 \le k \le t_{3u}$, $k \ne t_{3u} - i$, $i \in \{1, 2, 3, 5\}$.

Corollary 2. If $V \equiv 3 \pmod{6}$ and $V \geq 15$, then $R(V) \setminus \{t_V - i \mid i = 2, 3, 5\} \subseteq J_V$.

Proof: Given the pair of designs in Theorem 1, with V = 3u, we take their blocks as blocks of a BTD. On each group, we place a BTD of order 3.

We need to treat the cases V = 9 and 15 separately:

```
Lemma 3. R(9) = J_9.
```

Proof: Elements $\{1, 2, \ldots, 9\}$.

 $0 \in R(9)$: Cyclic design [1,1,2],[1,3,6],[1,3,7] (mod 9).

 $1 \in R(9)$: 123,124,134,234,158,159,168,169, 268,269,278,279,358,359,378,379, 567,567,117,225,336,449,554,664,774,884,998.

 $2 \in R(9)$: 189, 189, 349, 349, 117, 227, 338, 442, 553, 668, 773, 882, 992 123, 125, 136, 145, 146, 236, 256, 458, 467,

478,569,578,579,679.

 $3 \in R(9)$: 112,223,331,445,556,664,778,889,997, 258,258,159,159,357,357, 147,167,349,369,247,267,348,368,148,168,249,269.

 $4 \in R(9)$: Repeat 269, 347, 389, 579. 119, 228, 336, 448, 556, 664, 772, 885, 994,123, 124, 135, 145, 235, 245, 167, 168, 178, 678.

 $5 \in R(9)$: Repeat 258, 269, 359, 378, 489. 118, 227, 336, 447, 554, 664, 779, 886, 991,123, 124, 134, 234, 156, 157, 167, 567.

 $6 \in R(9)$: Repeat 167, 268, 279, 369, 478, 589. 118, 225, 337, 449, 556, 664, 775, 883, 991,123, 124, 135, 145, 234, 345.

 $7 \in R(9)$: Repeat 158, 169, 268, 279, 359, 378, 567. 117, 225, 336, 449, 554, 664, 774, 884, 998,123, 124, 134, 234.

 $9 \in R(9)$: Cyclic design [1,1,5],[1,2,4],[1,2,4] (mod 9).

We will need the following result of H.L. Fu [7].

Theorem 4. If $n \ge 5$, then there are two Latin squares of order n which agree on exactly k cells if and only if $0 \le k \le n^2$, $k \ne n^2 - i$ for i = 1, 2, 3, 5.

Lemma 5. $R(15) = J_{15}$.

So $R(9) = J_9$.

Proof: $\{0,1,\ldots,24,26,28,30\} \subseteq R(15)$:

Let $P = Z_5 \times \{1, 2, 3\}$. Take two Latin squares $[a_{ij}]$, $[b_{ij}]$ of order 5 which have at least one cell in common; without loss of generality let their (1,1) entries be 1. So these Latin squares agree in a further $0, 1, \ldots, 18, 20$ or 24 places.

Take blocks of type $\{x, x, y\}$ as follows:

$$\{(1,1),(1,1),(1,2)\}, \ \{(1,2),(1,2),(1,3)\}, \\ \{(1,3),(1,3),(1,1)\}; \\ \{(2,i),(2,i),(1,i)\}, \ \{(3,i),(3,i),(1,i)\}, \\ \{(4,i),(4,i),(1,i)\}, \ \{(5,i),(5,i),(1,i)\}, \\ \{(2,i),(3,i),(4,i)\}, \ \{(2,i),(3,i),(5,i)\}, \\ \{(2,i),(4,i),(5,i)\}, \ \{(3,i),(4,i),(5,i)\}; \text{ or } \\ \{(2,i),(2,i),(3,i)\}, \ \{(3,i),(3,i),(4,i)\}, \\ \{(4,i),(4,i),(5,i)\}, \ \{(5,i),(5,i),(2,i)\}, \\ \{(1,i),(2,i),(4,i)\}, \ \{(1,i),(2,i),(4,i)\}, \\ \{(1,i),(3,i),(5,i)\}, \ \{(1,i),(3,i),(5,i)\};$$

for $i \in \{1,2,3\}$. (Note that (A) contains no repeated blocks while (B) contains *two* repeated blocks.)

Then take blocks

$$\{(i,1),(j,2),(a_{ij},3)\},\{(i,1),(j,2),(b_{ij},3)\},(i,j \text{ not both } 1).$$

According as (A) or (B) above is taken, for each of the three possible values of i, the resulting BTD of order 15 contains k repeated blocks where

$$k \in \{0, 1, ..., 18, 20, 24\} + \{0, 2, 4, 6\}$$
, that is, $k \in \{0, 1, ..., 24, 26, 28, 30\}$.

25,27 \in R(15): Let $P = \{0, 1, ..., 9, a, b, c, d, e\}$.

Blocks: (A) 00c, cc7, 778, 88d, dd0, aa5, 550, bb6, 669, 99e, ee0; (B_1) or (B_2) where

- (B_1) is 110, 220, 330, 440, 123, 124, 134, 234;
- (B_2) is 112, 223, 334, 441, 013, 013, 024, 024;
 - (C) 0ab, 0ab, bcd, bce, bde, acd, ace, ade;
 - (D) 067,089,568,579, twice each;
 - (E) 15b, 16c, 17d, 18e, 19a, 25c, 26d, 27e, 28a, 29b, 35d, 36e, 37a, 38b, 39c, 45e, 46a, 47b, 48c, 49d, all twice each.

Then (A) (B_i) (C) (D) (E) is a BTD of order 15; if i = 1 this has 25 repeated blocks, and if i = 2 this has 27 repeated blocks.

socks, and if
$$i = 2$$
 this has 27 repeated blocks.
So $R(15) = J_{15}$.

Theorem 6. If $t \ge 2s + 1$, then there is a BTD (Q, P, B) of order 6t + 3 with a hole of size 6s + 3, in which all blocks with three distinct elements are repeated.

Proof: By [4], there is an idempotent commutative quasigroup (T, \circ) of order 2t + 1 with a subquasigroup S of order 2s + 1.

Let $Q = T \times \{1, 2, 3\}$, $P = S \times \{1, 2, 3\}$. For each $i \in T \setminus S$, place the blocks

$$\{(i,1),(i,1),(i,2)\},\{(i,2),(i,2),(i,3)\},$$

 $\{(i,3),(i,3),(i,1)\}$ in B .

For each unordered pair i, j of distinct elements of T which are not both in S, place the blocks

$$\{(i,1),(j,1),(i \circ j,2)\}, \{(i,2),(j,2),(i \circ j,3)\}, \{(i,3),(j,3),(i \circ j,1)\}$$
 in B twice.

We now patch the gaps left by Corollary 2.

Theorem 7. If $V \equiv 3 \pmod{6}$, then $R(V) = J_V$.

Proof: This is true for $V \le 15$, so we assume $V \ge 21$ and proceed by induction on V. We need only prove $t_V - i \in R(V)$ for $i \in \{2, 3, 5\}$.

Write $V = 12x + 6\delta + 3$, where $\delta \in \{0, 1\}$. Let (Q, P, B) be the BTD of order V with a hole of size $U = 6x + 6\delta - 3$, given by Theorem 6. By induction, there is a BTD of order U with exactly $t_U - i$ repeated blocks to fill the hole.

3. The even case.

We now proceed with the case $V \equiv 0 \pmod{6}$. As in the odd case, we need to construct a BTD with a hole. We will use difference methods, so a few definitions are in order.

If d is a positive integer, and x is any integer, we define $|x|_d$ as follows: find the unique y with $y \equiv x \pmod{d}$, and $-d/2 < y \le d/2$. Then $|x|_d = |y|$.

If K_d is the complete graph on vertices Z_d , and e = xy is an edge, we say that e is an edge of difference $|x - y|_d$. So the differences are in the set $D = \{1, 2, \ldots, \lfloor \frac{d}{2} \rfloor \}$.

Finally, the 3-set $\{a, b, c\} \subseteq D$ is said to be a difference triple \pmod{d} if either a + b = c, or a + b + c = d.

Theorem 8. Let V and W be integers, with $0 \le 2V \le W$, V odd, W even, and $V + W \equiv 0 \pmod{3}$. Let k be an integer with $0 \le k \le \frac{1}{6} (W - V)$ (W + V - 3) and $k \equiv 0 \pmod{W - V}$. Then there is a BTD (Q, P, B) of order W with a hole of size V having exactly k pairs of repeated blocks.

Proof: Let W-V=d=2e+1, let $Q\setminus P=Z_d$, and let $P=\{\infty_j\mid 1\leq j\leq V\}$. It is well known that $D=\{1,2,\ldots,e\}$ contains $\lfloor e/3\rfloor$ pairwise disjoint difference

triples. (This is easy if $e \not\equiv 0 \pmod{3}$; see, for example, [9]. If $e \equiv 0 \pmod{3}$, there is a cyclic Steiner triple system of order 2e + 1 [8].)

The conditions on V, W and k guarantee the existence of integers x, t, y satisfying

$$0 \le x \le t \le y/3 + t \le e/3,$$

$$W = 4e - 6t + 2,$$

$$V = 2e - 6t + 1,$$

$$k = (2e + 1)(x + y).$$

So we can partition D into sets A_0 , A_1 , A_2 , A_3 such that:

- (1) $|A_0| = 3x$;
- (2) $|A_1| = 3t 3x$;
- (3) $|A_2| = y$;
- (4) $|A_3| = e 3t y$;
- (5) each of A_0 and A_1 can be partitioned into difference triples (mod d).

For each difference triple a < b < c in the partition of A_0 , and for each $i \in Z_d$, take the block $\{i, i+a, i+a+b\}$ twice.

For each difference triple a < b < c in the partition of A_1 , and for each $i \in Z_d$, take the blocks $\{i, i+a, i+a+b\}$ and $\{i, i+b, i+a+b\}$ each once.

Consider the graph G on vertices Z_d and edges with difference in A_2 . This is a graph which is regular of degree 2y, and so by Vizing's theorem [10], it can be properly 2y + 1 edge coloured with colours $1, 2, \ldots, 2y + 1$.

For each $1 \le j \le 2y + 1$, and each edge ab of G coloured j, take the block $\{\infty_j, a, b\}$ twice.

For each $a \in Z_d$, there is exactly one colour *i* that does not occur on an edge of G incident with a. Take the block $\{a, a, \infty_i\}$.

Partition the set $\{\infty_j | 2y + 2 \le j \le V\}$ into e - 3t - y pairs $\{s_j, t_j\}$, $1 \le j \le e - 3t - y$. For each such j, let f be the jth difference in A_3 , and for each edge ab of difference f, take the blocks $\{s_j, a, b\}$ and $\{t_j, a, b\}$ each one.

Before we can use this theorem, we will need some more special cases.

Lemma 9. $R(12) = J_{12}$.

Proof: It is easy to find two Latin squares of order 4 which agree in k places where $k \in \{0, 1, 2, 3, 4, 6, 8, 9, 12, 16\}$. Take two such Latin squares $[a_{ij}]$ and $[b_{ij}]$ which agree in at least *one* place, so that $a_{11} = b_{11}$. Let $P = Q \times \{1, 2, 3\}$ where the Latin squares are based on the set $Q = \{1, 2, 3, 4\}$, and take blocks in B as follows:

(1)
$$\{(1,1),(1,1),(1,2)\},\{(1,2),(1,2),(1,3)\},$$

 $\{(1,3),(1,3),(1,1)\};$
 $\{(2,i),(2,i),(1,i)\},\{(3,i),(3,i),(1,i)\},$
 $\{(4,i),(4,i),(1,i)\},1 \le i \le 3.$

- (2) $\{(2,i),(3,i),(4,i)\}$, twice, $1 \le i \le 3$.
- (3) $\{(r,1),(s,2),(a_{rs},3)\},\{(r,1),(s,2),(b_{rs},3)\},r,s\in Q;r,s \text{ not both } 1.$

Then if the two Latin squares agree in $k \ge 1$ places, there are k - 1 repeated blocks of type (3).

The BTD (P, B) thus contains (k-1)+3 repeated blocks, so $\{3, 4, 5, 6, 8, 10, 11, 14, 18\} \subseteq R(12)$.

 $0 \in R(12)$: Take base blocks

$$[0,0,5]$$
, $[0,1,3]$, $[0,3,4]$, $[0,6,8]$ modulo 12.

9, 12, 15 \in R(12): Take a BTD on 6 elements with 3 repeated blocks. Use a doubling construction where old elements are $\{x\}$, new elements are $\{x\} \times \{1, 2\}$, and where block $\{x, y, z\}$ is replaced by four blocks

(A)
$$\{(x,1),(y,1),(z,1)\}, \{(x,1),(y,2),(z,2)\}, \{(x,2),(y,1),(z,2)\}, \{(x,2),(y,2),(z,1)\}$$
 or

$$(B) \begin{cases} \{(x,2),(y,2),(z,2)\}, & \{(x,2),(y,1),(z,1)\}, \\ \{(x,1),(y,2),(z,1)\}, & \{(x,1),(y,1),(z,2)\}. \end{cases}$$

(Here x may equal y.)

Using (A) for all 3 repeated blocks yields a BTD on 12 elements with 18 repeated blocks.

Using (A) twice for two, and (A) once, (B) once for one of the repeated blocks, shows $15 \in R(12)$; (A) twice for one, and (A) and (B) for two of the repeated blocks shows $12 \in R(12)$, and (A) and (B) for the 3 repeated blocks shows $9 \in R(12)$. Hence $\{9, 12, 15, 18\} \subseteq R(12)$.

```
1 \in R(12); P = \{1, 2, \dots, 9, T, E, W\}.
       112,223,331,TT3,EE3,WW3;
                 1TE, 2TE, 1TW, 2TW, 1EW, 2EW;
       47T,47T;
       58E, 68W, 69E, 59W;
       48 W, 49 W, 49 E, 48 E;
       75E,76E,76W,75W;
       T58, T59, T69, T68.
7 \in R(12): From the above BTD, remove blocks (\star) and replace with:
                       442,553,661,772,883,991,
                       256, 256, 346, 346, 145, 145,
                       289, 289, 379, 379, 178, 178.
16 \in R(12): P = \{0, 1, ..., 9, T, E\}.
       004 . 114 . 224 . 339 . 443 . 559 . 66 T . 774 . 88 T . 992 . TTI, EE0;
       012,013,023,123; then the following blocks, each repeated:
       056, 078, 09 T, 157, 169, 18 E, 258, 267, 2 TE,
       35 E, 368, 37 T, 45 T, 46 E, 489, 79 E.
2 \in R(12): P = \{0_L, 1_L, \ldots, 5_L, 0_R, 1_R, \ldots, 5_R\}.
B: Take base blocks, modulo 6:
     short block [0_L, 2_L, 4_L], twice.
     [0_L, 0_L, 0_R], [0_R, 0_R, 1_R]; [0_R, 2_R, 4_R] once (short);
     [0_L, 1_L, 2_R], [0_L, 1_L, 4_R]; [0_L, 3_L, 4_R], [3_L, 0_R, 2_R], [1_L, 0_R, 3_R].
13 \in R(12): P = \{1, 2, ..., 9, T, E, W\}.
B: 115, 559, 991, 221, 331, 441, 66T, TT1, 77E, EE1, 88W, WW1;
             repeated blocks: 25T, 26E, 27W, 289,
                               35E.36W.379.38T.
                               45W, 469, 47T, 48E, and 234;
  9TE, 9TW, 9EW, TEW;
  167, 168, 178, 567, 568, 578.
So R(12) = \{0, 1, \dots, 16, 18\}.
```

Lemma 10. $J_{18} \setminus \{40,43\} \subseteq R(18)$.

Proof: Let $P = Z_6 \times \{1, 2, 3\}$. On each $Z_6 \times \{i\}$, i = 1, 2, 3, take a BTD which may have either 0 or 3 repeated blocks. Then let $[a_{ij}]$ and $[b_{ij}]$ be two Latin squares of order 6 which agree in k places, $k \in \{0, 1, \ldots, 30, 32, 36\}$. Take blocks $\{(i, 1), (j, 2), (a_{ij}, 3)\}$ and $\{(i, 1), (j, 2), (b_{ij}, 3)\}$. Then $x + k \in R(18)$, where x = 0, 3, 6 or 9 and k is as above. This shows that $\{0, 1, \ldots, 39, 41, 42, 45\}$ $\subseteq R(18)$.

Lemma 11. $J_{24} \setminus \{79, 81, 82\} \subseteq R(24)$.

Proof: Take $P = \{\{1, 2, \dots, 8\} \times \{1, 2, 3\}\}$ and blocks in B as follows:

$$\{(1,1),(1,1),(1,2)\}, \{(1,2),(1,2),(1,3)\}, \{(1,3),(1,3),(1,1)\}, \{(i,j),(i,j),(1,j)\}, 2 \le i \le 8, j = 1,2,3;$$

on $\{(j,i) \mid 2 \le j \le 8\}$, for each i = 1,2,3 take a TTS(7), which may contain 0,1,3 or 7 repeated blocks; then, using two Latin squares $[a_{ij}]$ and $[b_{ij}]$ of order 8 based on $\{1,2,\ldots,8\}$ with $a_{11}=b_{11}=1$, and agreeing in k more cells, where $k \in \{0,1,\ldots,57,59,63\}$, take blocks

$$\{(i,1),(j,2),(a_{ij},3)\}\$$
 and $\{(i,1),(j,2),(b_{ij},3)\},$

where i, j are not both 1. The result is a BTD containing S repeated blocks where

$$S \in 3 \times \{0, 1, 3, 7\} + k$$
, k as above.

This shows that $\{0, 1, ..., 78, 80, 84\} \subseteq R(24)$.

Theorem 12. If $V \equiv 0 \pmod{6}$, then $R(V) = J_V$.

Proof: By Lemma 9, we may assume $V \ge 18$. So let $n \in J_V$; we now show $n \in R(V)$. By Lemma 10, if V = 18, we may assume $n \in \{40, 43\}$, and by Lemma 11, we may assume $n \in \{79, 81, 82\}$ if V = 24.

Let $V = 12x + 6\delta$, $\delta \in \{0, 1\}$, and write n as $n = k + \ell$, where $0 \le k \le 3(2x + 1)(3x + 2\delta - 1)$, $k \equiv 0 \pmod{6x + 3}$, and $\ell \in R(6x + 6\delta - 3)$ by Theorem 7. By Theorem 8, there is a BTD of order ℓ with a hole of size ℓ by ℓ and ℓ consider ℓ with a hole of size ℓ by Theorem 8, there is a BTD of order ℓ with a hole with a BTD of order ℓ and ℓ by Pairs of repeated triples.

Of course, Theorem 7 and Theorem 12 prove our Main Theorem.

Acknowledgement.

The first author wishes to thank the Department of Algebra, Combinatorics and Analysis at Auburn University for its splendid hospitality, and stimulating discussions during the writing of this paper.

References

- 1. Elizabeth J. Billington, Balanced n-ary designs: a combinatorial survey and some new results, Ars Combinatoria 17A (1984), 37-72.
- 2. Elizabeth J. Billington, Balanced ternary designs with block size three, any A and any R, Aequationes Math. 29 (1985), 244-289.
- 3. R.A.R. Butler and D.G. Hoffman, *Intersections of group divisible triple systems*. (to appear).
- 4. A.B. Cruse, On embedding incomplete symmetric Latin squares, J. Combinatorial Theory, Series A 16 (1974), 18-22.
- 5. Diane Donovan, The quiddity of the isomorphism classes of some balanced ternary designs: including some anomalies, Ars Combinatoria 17A (1984), 133-144.
- 6. Diane Donovan, Balanced ternary designs with block size four, Ars Combinatoria 21A (1986), 81-88.
- 7. Hung-Lin Fu, On the construction of certain types of Latin squares having prescribed intersections, Ph.D. thesis (1980), Auburn University.
- 8. R. Peltesohn, Eine Losung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939), 251-257.
- 9. Alexander Rosa and Dean Hoffman, The number of repeated blocks in twofold triple systems, J. Combinatorial Theory Series A 41 (1986), 61-88.
- 10. V.G. Vizing, On an estimate of the chromatic class of a p-graph, (Russian), Diskret, Analiz. 3 (1964), 25-30.