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Abstract. Let r(G) denote the rank, over the field of rational numbers, of the adja-
cency matrix of a graph G. Van Nuffelen and Ellingham have obtained several inequali-
ties which relate r(G) to other graph parameters such as chromatic number, clique num-
ber, Dilworth number, and domination number. We obtain additional results of this type.
Our main theorem is that for graphs G having no isolated vertices, OTR(G) < r(G),
where OI R(G) denotes the upper open irredundance number of G.

Introduction.

Throughout the paper G = (V, E) is an undirected graph with no loops or multiple

edges. We let A(G) be an adjacency matrix of G relative to some ordering of the
vertices. Since the rank of this matrix is independent of any particular ordering,
we write simply (G) to denote its rank. We shall also let N(G) be the closed
neighborhood matrix relative to this ordering, that is, N(G) = A(G) + I. Given
avertex v € V, N(v) denotes the set of vertices adjacent to v, and N [v] denotes
N(v) U {v}. Moreover, if S C V is a set of vertices, N(S) and N[S] denote
Uyes N(v) and U,cs N[v], respectively.

In [6] Van Nuffelen states several inequalities relating r(G) to other parameters,
many without proof. For example, if G is a nontrivial graph (that is, contains
edges) and w(G) is its clique number, then w(G) < 7(G). (See Ellingham [4]
for a proof). Without proof, Van Nuffelen states that

(i) For any nontrivial graph G, the Dilworth number of G,A(G), is at most
r(G). Here A(Q) is the maximum size of a set of vertices which are
incomparable under the partial order: z < yif and only if N(z) C N[y].

(ii) For any nontrivial graph G, 7(G) < r(G). Here 4(G) is the size of a
smallest dominating set of vertices. A set D C V is said to be dominating
if each vertex in V — D is adjacent to at least one vertex in D.

In the same paper Van Nuffelen conjectures that:

(iii) For any nontrivial graph G, x(G) < r(G). Here x(G) denotes the
chromatic number of G.
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Recently, Ellingham [4] observed that (i) is actually false and provided a coun-
terexample. Also recently, Alon and Seymour [1] exhibited a counterexample to
(iii) by constructing a graph with chromatic number 32 but rank 29.

In light of these counterexamples, it seems reasonable to ask if (ii) is valid. To
begin, note that (ii) is certainly false if no restriction is placed on G. For example,
take G to be the graph with four vertices but only one edge. Then v(G) = 3 and
r(G) = 2. It seems, therefore, (ii) at least needs to be reformulated. In the next
section we establish the inequality v(G) < »(G) assuming G has no isolated
vertices. In fact, we prove a stronger result.

Main results: For any vertex v € V and subset S C V we define

I{v,8] = N[v] - N[S—{v}]
I(v,8] = N(v) — N[S — {»}],
I(v,8) = N(v) — N(8 - {v}).

A set of vertices S is irredundant if for each v € S we have I[v, S] # 0. We say
S is open irredundant if I(v,S] # @ for each v € S. And we say S is open-open
irredundant if foreachv € S, I(v,S) # 0.

The upper irredundance number IR(G) and the upper open irredundance
number OIR(G) are defined to be the size of a largest irredundant and open
irredundant set, respectively. Similarly, OOIR(G) is the upper open-open irre-
dundance number and is the size of a largest open-open irredundant set.

Note that if a graph has no edges it can have no nonempty open or open-open
irredundant sets and so for such graphs we have OIR(G) = OOIR(G) = 0.

We next define p(G) to be the maximum k for which A(G) containsa k x k
permutation submatrix. Again, note if G has no edges then p(G) = 0.

Lemma 1. Forany graphG, OOIR(G) = p(G).

Proof: Let S be an open-open irredundant set of vertices, say S = {v;,,... ,vi. }.
For each v;; € S there exists a vertex u;; € I(v;, ). Let 8’ = {uy,...,ui, }.
Now consider the submatrix M of A(G) formed by taking the rows corresponding
to S and the columns corresponding to S'. The definition of open-open irredun-
dance guarantees the u;; are distinct, and so M is an m x m submatrix. Also, by
open-open irredundance, we get for each 7,1 < j < m, N(v;) N8’ = {u;;} and
N(u;) NS = {v;;}. Hence M is a permutation matrix and OOIR(G) £ 1 G).

Conversely, let M be an m x m permutation submatrix of A(G). Let S =
{wn,... ,wn} be the vertices of G corresponding to the rows of M. We claim §
is open-open irredundant. For let w; € S, and we must show I(w;, S) # 9. In the
matrix M let u; be the vertex corresponding to the column containing aone in w;’s
row. Then clearly u; € N(w;). However, since M is a permutation matrix this is
the only one in u;’s column. That is u; ¢ N(S — {w;}). Hence, u; € I(w;,S).
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Lemma 2. (Bollobds and Cockayne) LetG be a graph having no isolated vertices.
Then G has a minimum dominating set D such that for alld € D, there exists a

vertex f(d) € I(d, D] — D.

Proof: See [2, p. 247, Prop. 6]. |
Lemma 3. Forasetofvertices D CV,ifd € D thenI(d,D] = I{d,D] — D.
Proof: Straightforward. [ |
Lemmad. LetG be agraph having no isolated vertices. Theny(G) < OIR(G).

Proof: Let D be the set described in Lemma 2 have cardinality v(G). By Lemma
3,foreachd € D, f(d) € I[d, D]— D = I(d, D] and so D is open irredundant.
Hence 4(G) = |D| < OIR(G). ]

The following graph G in Figure 1 shows that there exist graphs for which
v < OIR.

Figure 1
1 2 3 4
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The set consisting of vertices {1,4,7} forms a minimum dominating set, but
the set of vertices {1,2,3,4} is an open-irredundant set, and hence 7(G) <

OIR(G).
We now obtain a strengthening of the Van Nuffelen inequality:

Theorem 1. For any graph G having no isolated vertices
1 G) < OIR(G) < OOIR(G) = p(@) < 7(G).

Proof: The first inequality is Lemma 4. The next inequality holds because open ir-
redundant sets are also open-open irredundant. The equality follows from Lemma
1. The last inequality holds because the rows of a permutation submatrix of A(G)
are lincarly independent and therefore the rows they occur in, within A(G), must
be linearly independent. B

Recall that I" (G), the upper domination number, is the cardinality of a largest
minimal dominating set. Since 7(G) < I'(G) one might ask if ' (G) < (G).
In gencral this is not true: Let G = K,, where n > 3. Then #(G) = 2 and
r(G)=n.
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If we are willing to compute the rank of the closed neighborhood matrix N(G)
thenitis true that I' (@) < r(N(G)). In fact a stronger statement is possible.

Let p'( @) be the largest k for which the matrix N(G) contains a k x k permu-
tation submatrix. The proof of the following lemma is very similar to the proof of
Lemma 1, and is omitted.

Lemma 5. Forany graphG, IR(G) = p'(G).
We now have a closed neighborhood analog to Theorem 1.
Theorem 2. For any graph G,

F'(G) < IR(G) = p(G) < 7(N(Q)).

Proof: The first inequality can be found in [3]. The equality is Lemma 5, and the
last inequality is clear by reasoning similar to that in Theorem 1. [ |
Question: S.M. Hedetniemi [S] has shown OIR(T) = B (T) where T is a tree
and B is its matching number. It follows by Theorem 1 that for trees

Bi(T) = OIR(T) < ~(T).
Does this result (that is, 8 (G) < r(G)) hold for other classes of graphs?
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