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Abstract. In this paper, we obtain a polynomial inequality of degree three in m (the
number of constraints), with coefficients involving the parameters ys;'s, on the existence
of balanced arrays of strength four and with two symbols. Applications of the inequality

to specific balanced arrays for obtaining an upper bound on the number of constraints
are also discussed.

1. Introduction and Preliminaries

A matrix T of size (m x N) with elements from a set S containing s symbols
(say, 0, 1,2, .., s — 1) is called an array T" with m rows (constraints), N columns
(runs or treatment - combinations), and with elements 0, 1, 2, ..., s — 1. The
existence and construction of these arrays under some combinatorial constraint
are very important to the statistical design of experiments and combinatorics. The
next definition of a balanced array (B-array) is given under one such combinatorial
structure:

Definition 1.1, An ammay T of size (m x N) and with s elements (say; 0, 1, ...,
s — 1) is said to be of strengtht (t < m) if in every (t x N') submatrixT* of T,
we have the following condition satisfied:

Ma T = Mp(2); T%)

wherew is any (tx 1) column vector of T*, p( o) is a vector obtained by permuting
the elements of o, and \(a; T*) stands for the frequency of the column vector o
inT*,

In this paper we restrict ourselve to B-arrays with s = 2 (i.e. arrays with el-
ements 0 and 1) and ¢t = 4. The condition of the above definition then reduces
to the fact that every vector o of weight 1 (¢ = 0, 1, 2, 3, 4; the weight of a
is the number of 1’s in it) appears with the same frequency u; (say). The vector
' = (po, p1, B2, B3, pa) is called the index set of the array T', and the B-array is
sometimes denoted by (m, N, t =4, s=2; g'). Itis quite obvious that
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If u; = p for each 1, then the B-array is reduced to an orthogonal array (O-array).
Thus B-arrays include O-arrays as special cases. Also the incidence matrices of
incomplete block designs, BIB designs and doubly balanced designs are certain
kind of B-arrays. Furthermore, B-arrays have been very useful in the construction
of symmetrical and asymmetrical fractional factorial designs of different resolu-
tions. To gain further insight into the importance of B-arrays to statistical design
of experiments and combinatorics, the interested reader may consult the bibliog-
raphy given at the end, and the further references therein.

2. Existence Conditions For Balanced Arrays
The following results are easy to establish.

Lemma 2.1. A B-ammay T with index set ' = (po,p1,p2,p3,p4), and with
m =T = 4 always exists.

Remark: Itis quite obvious that the construction of a B-array T" with ¢ = 4, index
set ', and with m > 4 is non-trivial.

Lemma 2.2. A B-array T of strength four with index set y' is also of strength
t' with0 < t' < 4. Considered as an array of strength t', its index set p¥ =
(Bg, b1, .-, sp) is given by

o

b= (7 e
=0

wherej=0,1,2,...,t, and with thcconventionthat(",.") =lift—t'=1=0.

Remark: In view of the above lemma it is quite clear that the index sets u* for
t' = 3,2, and 1 are respectively given by (po + p1, p1 + p2, B2 + 3, 3 + pa),
(o + 2p1 + p2, gy + 240 + p3, 2 + 23 + pa), and (po + 31 + 3p2 + 3,
p1+3p2 + 3us + pa).

Lemma 2.3. Letz; (0 < j < m) denote the number of columns of weight j in
a B-amayT of strength four and index set y'. Then the following results hold:

E (Dar= (7w
S (o ame = (o

> (é) Tj (T;)B, B being = i C)mm

1=0
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S z;=N, N being = i (‘:)p,

i=0
The above are obviously reduced to the following:

m
E:z:j=N

j=0

m
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7=0
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m(m—-1)B+mC

S Pz =m(m—1)(m -2 A+3m(m-1)B+mC

37455 = m(m — 1)(m— 2 (m — )

+6m(m—-1)(m—2)A+7Tm(m—-1)B+mC

2.1

2.2)

(2.3)
24)

2.5)

Theorem 2.1. Consider a B-array T with index set ' andm >t = 4. Then we

have
am®+bdmi+cem+d>0

(2.6)

where a, b, ¢, and d are polynomials of degree fourinp;’s(G=0, 1,2, 3,and 4).
Proof: The following is quite obvious Y z;(j — 7)* > 0, where j is the mean

of the number of 1’s in the columns of T'.
Expanding the above, we obtain

S itz —47) 3+ 672 2z — 3N >0

Substituting from (2.1) - (2.5) and simplifying it further, we obtain am? + bm? +

cm+ d > 0, where

a=ps N> —ANZ(p3 + pa)(p1 + 3p2 + 3ps + pa)
+ 6N (2 + 2p3 + pa) (g1 + 3p2 + 3p3 + pa)?
—3(p1 + 3p2 + 3ps + pa)?,

b=6pu3 N> — 12N%(pa + p3) (1 + 3p2 + 3p3 + pa)
+ 6 N(p1 +2p2 + pa) (1 + 3p2 + 3ps + pa)?,

c= N3(Tpy —4pa) + 4N (p3 — 1) (1 + 3p2 + 3pa + pa),

d= N*(u1 —4p2 + pa)
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The above result is quite useful in obtaining an upper bound on the number
of constraints m for a B-array T with a given index set ' and/or discussing the
existence of B-arrays. For the polynomial inequality to satisfy, it is quite obvious
that at least one of a, b, ¢, and d must be such that it is > 0. The following result
is a direct consequence of the above theorem.

Corollary2.1. LetT bea B-array of size(mxN) with indexsety' = (po, ..., pa)
such that uy + p3 = 4 o, then the following result holds:

[Npa — (u2 +2p3 + pa)> 1 m2 + 6 Nps —2p2(pz + 23 + pa)I m
+ [N(Tp2 —4p3) —36p31 >0 @7

Next, we give some examples illustrating the applications of the above results.

Example 1: Consider an array with y' = (3, 3, 2, 5, 3), N = 50. The param-
eters »' ’s satisfy the condition in Corollary 2.1, therefore using (2.7) above, we
obtain

~25m? +380m —~ 148 > 0

It can be easily checked that m must lie between % and 14 . Thus m = 14 isan
upper bound for the above array.

Remark: Itis interesting to note that results given by Chopra (1982) do not work
for the above example.

A computer program was prepared to obtain the zeros of the polynomial f(m) =
am® + bm? + cm + d and to determine the intervals over which f(m) > 0 with
m>4.

Example 2: Consider an array with y' = (4,4,4,4,3), N = 63. That such an
array exists with m = 8 is shown in Chopra (1975). Here a = —16,644, b =
1,512, ¢ = 3000564, and d = —2000376. It was observed that f(13) >
0, f(14) < 0. Thus one zero is in the interval (13, 14). The other two zeros
were found in the intervals (-14, -13), and (0, 1) which are of no consequence in
obtaining an upper bound for m. Thus the largest value of m for this array = 13. It
can be easily checked that m < 63, m < 32 by using the results given in Chopra
(1982), while those of Chopra (1985) do not give us any upper bound. Hence, we
have a significant improvement over the results available in literature.

Example 3: Consider y' = (3,4,5,4,1), N = 66. We finda = 30984, b =
—855360, c = 5462424, and d = —3449952. The zeros are in the intervals (0,
1), (8, 9), and (18, 19). For this array m < 8 since f(m) < 0 in (9, 18), and
f(19) > 0. The results of Chopra (1982, 1985) give us m > 8.

Finally we give a table of some selected values of 4’ along with an upper bound
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for m in each case.

u' N upper bound
43234 44 12
34,443 62 09
44,540 66 06
1,5.5,5,0 71 04
1,5,5,5.1 72 05
2,5,5.5.2 74 05
3,5,5.5.3 76 07
455,54 78 10
1,6,6,6,0 85 04
1,6,6,6.1 86 04
2,6,6,6.2 88 05
3,6,6,6.3 90 06
4,6,6.6.4 92 08
466,65 93 09
56,6.6,5 94 11
6,6,6.6,5 95 16

Remark: The above results can be generalized to B-arrays of strength 21, but the
notation may become cumbersome and messy.
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