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Abstract. By a refinement of a rank argument used to prove a directed version of the
Graham-Pollak theorem, we show that nbicliques are needed to partition the arc-set of
the complement of a directed cycle.

1. Introduction.

LetGbea simple directed graph (no loops or multiple arcs) on = labelled ver-
tices. A directed complete bipartite subgraph or biclique of Gisa subgraph
K (X,,Y1) consisting of two disjoint subsets X, Y7 of the vertex set together
with all arcs ¢ — y where € X,y € Y. The biclique partition number or bi-
content bep( G) of G is the minimum number of bicliques whose arc-sets partition
the arc-set of G.

To each partition of the arc-set of G into k bicliques K (X;,Y;), i=1,2,... ,k
we may associate a factorization

k
A=XY'=) XY} )

i=1

of its adjacency matrix A into » x k (0, 1)-matrices X and Y. Here the sub-
sets X;, Y; of the vertex set are identified with the ith (0, 1)-column vectors of
X,Y, respectively, and X;Y} is the adjacency matrix of K (X;,Y;). For a more
detailed discussion of these notions, including variations appropriate for (undi-
rected) graphs and bipartite graphs, see Orlin [9]. For recent work on matrix fac-
torizations, see [3, 5, 6, 8, 11].

Since the (real) rank r( A) of A is a lower bound on k in (1), and since the
n out-claws (or the n in-claws) at the vertices partition the arc-set, we have the
following bounds [9; 6.5, 7.1]:

(A) < bep(G) < n. 0)

For example, let I = I, be the n x nidentity matrix and J = J, thenx n
all 1’s matrix. Then J — I is the adjacency matrix of K », the complete directed
graph which has one arc in each direction between cach pair of n distinct vertices.
When n > 2, J — I has rank n. Thus (2) implies the following directed version
of the Graham-Pollak theorem [7, 13]:
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Theorem 1. [2,10] The arc-setof Ky, n>2 can be partitioned by n bicliques,
and no fewer.

Let D, be the complement in the complete directed graph Knofa spanning
directed cycle. Using a refinement of the rank argument above, we will prove the
following theorem. This resolves a previous conjecture [4, p.141].

Theorem 2. The arc-set of D,,n 2> 3, can be partitioned into n bicliques, and
o fewer,

2. Proof of Theorem 2.

If § = §, is the n x n upward-shift permutation matrix, we may label the
vertices of D,, sothat D = D, = J — I — § is its adjacency matrix. By (1), it is
sufficient to prove the following matrix version of Theorem 2.

Theorem 3. If D, = XY* where X and Y are n x k (0,1)-matrices and
n>3,thenk > n
The next lemma implies that D,, has full rank if n is odd, and rank n— 1 if nis

even. Consequently, Theorem 3 is immediate if nis odd. Also, k > n— 1 if nis
even.

Lemma 1. Ifn > 3 is odd, D, is nonsingular. Ifn > 4 is even, then the
nullspace of D is spanned by the vectoru = [1,-1,1,-1,...,1,—1]t,
Proof: If Dz = o,then JDz = (n—2)Jz=0 s0 Jx=o. Thus, ([ + S)z =
(J — D)z = 0. Therefore, xy = -z, and z; = -z, 2 < i < n,s0
zy = (=1)"z;. |

To prove Theorem 3 in the singular case, it is sufficient to show that whenever
D, = XY* where XY are n x k (0, 1)-matrices, then D, — zy* has rank
at least n — 1 for some columns z = X;andy = Y; of X and Y. For then
D—X;Y} = ZX;Y} where the sum is taken overall j such thatj # i, 1 < j < k.
This implies thatk — 1 > n— 1 and so k > n. We need the following lemma and
propositions.
Lemma 2. [12] IfA and B aren x k matrices, then

det(I, + AB') = det(I; + B'A).

Ifzandyare nx 1 (0, 1)-matrices, we let |z|, |y| denote the number of 1°s
in z, y respectively. Thus, |z| |y| is the number of 1°s in zy*.
Proposition 1. Lefz andy ben x 1 (0,1)-matrices. Then the characteristic
polynomial of D,, — zy* is
A+ D" — (="
(\+2)2

—A=2
(] vl - (=X = 2)(A+2)) — (—nm_z))y‘S(A)z
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where

n—-1
S\ = E(—l)j()\+ H~i-igr.

j=0

Proof: Let C()\) = (\+ 1)+ 8,1=[1,1,...,1]*. The characteristic polyno-
mial of D — zyt is

del(M] — D + zyt) = det(C()) — 11 + z¢)
= det C()) det(I, + C(N\)~'[-1,7][1,9]")
= det C()\) det( Lz + [1,y1'C(N)~'[-1,z]),

by Lemma 2. Now C(M\)1 = (A + 2)1,50 C(\)~'1 = (—‘\%2-)- 1. Thus, the
expression above equals

- [d/0+2)
detC(}) det ( |y|/(; 42- 2) 1+ y‘C(X)'lx)
_ detC())

= Orgpz = (=2 =2 0+ D1+ 40N )

Since det C()) involves only two elementary products, it equals (A + 1)® —
(=1)*. Since C(X) S()) = ((A+1)"—(-1)") I, the above expression simplifies
to that given in the statement of the proposition. 1

Proposition 2. Letz andy benx 1 (0, 1) -matrices. If D,, — zy* has rank less
thann— 1, then |z| |y| is divisible by 2(n— 2).

Proof: By Lemma 1, nis even and D — zy* has rank n — 2. Since the nullspace
of D — zy' has dimension 2, we may choose an n x 1 matrix u ¥ o so that
(D - zy*)u = oand y*u = 0. Thus, Du = o and so, by Lemma 1, we may take
u=[1,-1,1,-1,...,1,—1]% A similar lemma and argument for D* implies
that z'u = O as well. Thus, z and y satisfy the following balanced subscript
property:

The number of odd subscripts at which an entry is 1 is equal to the number of
even subscripts at which an entry is 1.

Since D — zy* has rank n — 2, the constant coefficient and the coefficient of
A in the characteristic polynomial must be 0. Putting A = O in the characteristic
polynomial gives y*S(0) z = 0. (We already know this since S(0) = uut). Since
the coefficient of X is 0, taking the derivative of the characteristic polynomial and
letting A\ approach O gives:

(ig—z—)y's'(on =0

2=l Iyl - 2n-2)) -
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where S'(0) is the circulant matrix with first row equal to ((n— 1), ~(n— 2},
(n-3),...,-2,1,0]. Thus, |z| Jy| = 2(n—2)(1+ a/n) where a = y*S'(0) z.

To complete the proof, it is sufficient to show thatae = 0 (mod 7). Because
of the balanced property of the odd and even subscripts of the 1 entries of z and
y, we need only show that for0 < 1,7,7,5 < n/2,

(e3; + e‘2j+1)S’(0)(ez,+ e2+1) =0 (mod n).

Here e; denotes the ith standard basis vector. Since the 4, j entry of S'(0) is
(—1)"-7(i—j — 1) modulo n, the expression above is congruent to (2i—27—1)
—(21=28-1-1)—(2j+1-2r-1D)+(2j+1-25-1-1) =0 (mod =) .
1

Proposition 2 implies that if = and y are n x 1 (0, 1) -matrices, then D, — zy!
must have rank at least n — 1 whenever zy* has less than 2(n ~ 2) ones. Since
D, has n(n— 2) ones, this must be the case for some columns z = X;andy = Y;
of any matrix factorization D, = XY*. Thus, by the remark following Lemma 1,
Theorem 3 is proved.

Remarks.

1. Wenote that D,—zy* canhave rankn-2: ifz=[1,1,1,1,0,0,0,0,0,0]
andy =[0,0,0,0,0,0,1,1,1,1] then Dyp — zy* has rank 8.

2. A result of Bridges and Ryser [1, Theorem 1.2] (sec also [4]) implies that
ifnisoddand D = XY* where X and Y are n x n (0, 1)-matrices, then
X andY each have constant line sums. The following example shows that
this need not be the case if n is even.

001 111 001 010 1 100 00
1 00 11 1 010 0 10 1 0 01 0O
11001 1] 100010 0 01100
11100 1/ |1 0O0T1O0O0 0 01 0 0 1
1 11100 1 010 00 0 00 0 1 1
011110 0 01 0 01 010 0 10
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