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Abstract. We derive a first order recurrence for a,(t) = k 0 —I%';i k) (t fixed,

t# -—. m € N). The first order recurrence yields an altemative proof for Riordan’s
theorem: a,(t) = (l/ "") (=1)" and also yields the ordinary generating function
En:b an(t)z" fort € N. From the latter, one easily computes 2 au(t) which

o (—D)"

tms out to be the well-known Y >0 =4 = In2 fort = 1. Fort—2,weget

ZM( —1r (3:) |n(\/z'u;

In the present paper we investigate the sums a, () = 2 k0 % (}) (@ fixed,

t # —%, m € N). Riordan proved a,(t) = (”""‘) (—1)™ by the first order
two-variable recurrence (—1)"an(t) = a1 () — sy a1 ( #+7) in[2), Chapter 1,
Problems 4-5. Our aim is to derive a first order one-variable recurrence for a,(t),
which will give an alternative proof for Riordan’s theorem and make it possible
to compute the ordinary generating function of a,(t). The ordinary generating
function yields a number of numerical identities including the well-known

The exponential generating function for a,(t) is also of some importance. As
we learned from Raji Sinha, in plasma physics the solution E(2) of E'(z) =
1-22E(z) is the Conte function, which is closely related to the plasma dispersion
function [1], p. 79. The explicit solution of the differential equation is

el ZZH
E(z)=ce™ 45 I —roe(2).
£=0

Lemma 1. The recurrence formula (tn+ 1)a,(t) = —tna,_| (t) holds.

Proof: We have an(t) = [ (2t - )"dz = [ (z¢ — 1)™' (z* — 1) dz. Leuing
u’= z' — 1 and integrating by parts yields a, () = — &=Lt fl(zt_1)n-15t-15 4y

t+1
+5”t;+'f‘— fo (z'-1)"2 z*~1z dz. Letting u' = (z'~1)*! z*-1, resp. (:1;—1)"‘ t-1
in the above integrals and again integrating by parts yields a,(t) = n(m) —=—<a,(t)

—fTn-1(2). Hence a,(8) = F%-a,1 (1). |
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Theorem 1 (Riordan).
1 -1
an(t) = ( fix ") (~1)".

Proof: We have fromLemmal a,(t) = "M =a, () =(- 1)"(1‘[ g+|/:>“°(t)
_ 1/teny 1

= (-7 .
For y(z) = Y oop an(t)z™ the recurrence implies the differential equation

1+izx ' 1

+y =
yz(t +tx) y z(t + tx)
with y(0) = ao(t) = 1. As is well-known,

w(z) = e~ J 55 </-

It is easy to check that L 1t (z + 1)¢-D/t and

1 oy _/_d“_
/z(t-i-ta:)x (z+ 1D dz= | G DI

with the substitution z = u!. The latter is equal to ~ [ -

ul = %;, and from now on we needt € N to split the integrand into partial

fractions. For even ¢t we have from [3], p. 61,

of S 4z + c(t))

z(t + tz)

=1
dz__ 1,22t lL2:‘-ﬂcos In(22-2zcos —+1
2-1 t |z+1| t &
=1
2 ) z — cos 2z
-3 sin arc 2,“
P sin £3%
and analogously for odd ¢
L)
dz 1 2kw 2 2kw
zt———ln|z—1|+—Zcos (z —2zcosT+l)
=
2\ 2k z —cos 24z
- = Z sin arc =
t sin =%

After this point it is easy to get the general solution of the differential equation:
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Theorem 2. Fort € N we have

y(z) = —z~ (g + 1)(1-0/ [A( )

+ — lgj[cos Zk” g 231/ cos 2kn +1
t (z+ D2t (z+ 1)t t
[‘i""] Zl/t 2kx
2 = — cos =2
-— sin &arclan (z+1)7 I tl ()],
t t sin =5%
k=1
i/t i -1
where A(z)=11n ﬁﬂf - ll for oddt and A(z)=}In T “” forevent.
@it

With y(0) = 1, we have c(t) = lim,_o[—y(z)z't(z + 1)Vt — G(z)],
where G(z) is the function in the brackets in Theorem 2 without c(t). Hence,

c(t) Z lz‘rl sin ﬂc— arctan cot 2ﬂ
= )

k=1 t
noting with arctan an odd function, the above sum is zero for ¢ even; consequently
t even
o= { 2L El 4k —t)sin 282 ¢ oad,

|
Lettingt = 1 and t = 2, evaluating y(1) we get

X _1yn

o n+ 1
and

i( 1y 2!l In(v2+1)

Qa+ D!t T 2

where

" { s(s—2)(s—4)---2, seven
S.. =
s(s—~2)(s—4)---1, sodd.
We remark, that y( —z) is the generating function for the sequence

R0

which was the original problem of Riordan.
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