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Abstract. For positive integers d and m, let Py, ( G) denote the property that between
each pair of vertices of the graph G, there are m openly disjoint paths of length at most
d. A collection of such paths is called a Menger path system. Minimal conditions
involving various combinations of the connectivity, minimal degree, sum of degrees,
and unions of neighborhoods of pairs of nonadjacent vertices that insure the existence
of Menger path systems are investigated. For example, if for fixed positive integers
d > 2 and m, a graph G has order n, connectivity k¥ > m, and minimal degree § >
(n—(k—m+ 1)(d—2))/2+ m — 2, then G has property Py,,(G) for n. Also,
if a graph G of order n satisfies NC(G) > Sn/(d + 2) + 2m, then Pyn(G) is
satisfied. (A graph G satisfies NC(G) > t if the union of the neighborhoods of each
pair of nonadjacent vertices is at least ¢.) Other extremal results related to Menger path
systems are considered.

1. INTRODUCTION

Consider a graph GG that models a computer network with each vertex representing

a processor and each edge representing a two-way communication link. To insure
that the network is fault-tolerant with respect to processor failures, it is necessary
that the number of openly disjoint paths between each pair of vertices of G exceed
the number of possible failures. Connectivity is clearly the crucial graph concept.
However, the length of time for the information to arrive is also important, so it is
desirable that the openly disjoint paths be short. This requires that between each
pair of the vertices of the graph G there is a specified number of paths, each with
a bound on the number of vertices.

For positive integers d and m, let Py,,,(G) denote the property that between
each pair of vertices of the graph G there are at least m openly disjoint paths
each of length at most d. The graph G representing a computer network prone to
processor failures should satisfy Py ,,(G) for appropriate values of d and m. This
is one motiviation for studying graphs with property Py ,(G).

Menger’s classical result [M] connectivity solves the problem of the existence
of a system of such paths, if there is no concern for the length of the paths in
the system. Although Menger’s theorem gives no information about the length
of the paths, the “length problem” has been studied. For example, in [BP] Bond
and Peyrat studied the effect of adding or deleting edges of the diameter of a net-
work, and Chung and Garey considered diameter bounds for altered graphs in
[CG]. Menger type results for paths of bounded length were proved by Lovasz,
Neumann-Lara, and Plummer in [LNP] and by Pyber and Tuza in [PT], and Men-
gerian theorems for long paths were given by Montejanao and Neumann-Lara in
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[MN], and by Hager in (H]. In [O] property Py, and its application to computer
networks and distributed processing was introduced. Extremal results for Py,
were investigated in [FJOST!].

We will extend the results in [FJOST] by mvesugatmg various combinations
of connectivity, minimum degree, degree properties and neighborhood conditions
of a graph G that imply P, ,,(G). In particular, the following six results will be
proved.

A graph G of order n with various minimum degree and connectivity conditions
will be considered in the following theorems. These conditions will obviously
place restrictions on the order n of G, but these restrictions will not be explicitly
listed in the statement of the theorems. Also, all of the theorems are either sharp
or have the correct order of magnitude for » sufficiently large. Examples to verify
this will be described in section 2.

THEOREM 1, Let d > 2 and m be positive integers, and let G be a k-
connected graph of order n. Then, G satisfies Pyp,(G) if the minimal degree
8( Q) satisfies:

> |52 ifk<m
n—m+2 -2
nd BT ; "y
8(G) >mm{ -(k—m+1)(d—2)+m=2 Fm<kL 2 +m—1
2
>k k>R em—1.

Some times a condition on §(G) in a theorem can be replaced by a condition
on the sum of the degrees of nonadjacent vertices to obtain a stronger result. This
is true in the case of Theorem 1. In the remaining theorems, DC(G) > t means
that the sum of the degrees of each pair of nonadjacent vertices of G is at least
t. Different results can also be obtained by using a condition on the union of the
neighborhoods of nonadjacent vertices instead of a minimal degree condition or a
sum of degrees condition. In the following theorems, NC(G) > t means that the
union of the neighborhoods of each pair of nonadjacent vertices of G is at least ¢.

THEOREM 2. Let d > 3 and m be positive integers, and let G be an m-
connected graph of order n. Then, G satisfies Pym(G) if

NC(G) >(5n—-m—d—4)/(d+2)+2m —2.

For a graph G of order n, the neighborhood condition NC(G) > tfort < n—1
is not strong enough to imply any connectivity in G. That is the reason that it was
necessary to assume that G was m-connected in Theorem 2. If the connectivity
of G is k > m, and k is sufficiently larger then a weaker neighborhood suffices to
insure that Py,,(G) is satisfied. This follows from the next theorem, which also
deals with the degree condition DC(G).

10



THEOREM 3. Letd > 3,m, and k > (d — 1)(m — 1) be positive integers
and let G be a k-connected graph of order n. Then, G satisfies property Py, if
either

NC(G)>n—-2—-(d-3N(k—-(d-D(m-1)), or
DC(G)>n—-2—-(d-3)k—(d—1)(m—-1)) + m.
The results of Theorem 2 and Theorem 3, along with some of the theorems from

[FJOST], form the basis for summary results involving degree and neighborhood
conditions that are similar to Theorem 1. They are stated next.

THEOREM 4. Let d > 3 and m be positive integers, and let G be a k-
connected graph of order n. Then, G satisfies Py m(G) if the degree condition
DC(Q) satisfies:

>n+m-—2 ifk<m
2 2 +m—2
DO(®) >min{ (g +m-2) fm<k<=r+em—1
n—{(d=3)k-(m-=1)(d-1))+m
> 2k k>t +m—1,

THEOREM 5. Let d > 3 and m be positive integers, and let G be a k-
connected graph of order n. Then, G satisfies Pym(G) iIf the neighborhood con-
dition NC(QG) satisfies:

Ne . {5;:"5;‘-1+2m—2 <k =n4 1
min -
(@4 > n—2—(d-Hh—(m-Dd-1) = & "

The d = 2 case is special for degree and neighborhood conditions for nonadja-
cent pairs of vertices, and does not fit the same pattern as the d > 2 cases. Thus,
it was not part of either Theorem 4 or Theorem 5. The next theorem deals with
this special case.

THEOREM 6. For any positive integer m, a graph G of order n and connec-
tivity k satisfies P, ;,( G) if at least one of the following inequalities are satisfied:
n+m
e 1

n+m

8(G) > 3 1

DC(G) > 3"; m_3

NC(G) >n—-2.
Also, each of the inequalities is sharp.

k>

11



2. EXAMPLES AND PRELIMINARY RESULTS

Notation and standard definitions in the paper will generally follow that found
in [CL]. Any special notation will be described as needed. We start with some
results that will be used in the proofs of the main theorems, and we describe some
examples that indicate the sharpness of these results.

The first result gives the minimal degree required to imply Py, and can be
found in [FJOST].

THEOREM A. Let d > 2 and m be positive integers. If G is a graph of order
n with §(G) > |(n+ m) /2], then G satisfies Py,,(G). Further, the condition
is sharp.

The following result does not appear in [FJOST], but it can easily be derived
with the same type of elementary counting proof.

THEOREM B. Let d > 3 and m be positive integers. If G is a graph of order
n with DC(G) > n+ m — 2 then G satisfies Py,,(G). Further, the condition
is sharp.

PROQOF: Suppose that the result is not true, and that z and y are a pair of vertices
of G that do not have m paths of length at most d between them. If z and y are
nonadjacent, then then have at most m— 1 common adjacencies, so d(z) +d(y) <
n—2+m~—1 < n+m—2 acontradiction. This verifies that nonadjacent pairs of
vertices have m disjoint paths between then of length 2. If z and y are adjacent,
then with no loss of generality we can select a vertex z that is adjacent to z but
not to y. By the previous case, there exists m paths of length 2 from y to =z, and
one of these paths contains z. This gives immediately m paths of length at most
3 from z to y.

The graph H = Kmp-1 + ([ Kager| U [Kapu]) has connectivity m — 1,
DC(H) = n+ m — 3, and does not satisfy Py,,( H). This verifies the sharpness
of Theorem B, and completes the proof of Theorem B. |

Before stating the next preliminary results, we will describe a family of exam-
ples related to these results. This family of graphs also plays an important role
in general for graphs with Menger path systems. Graphs with the same connec-
tivity, and even the same minimal degree, can have vastly different Menger path
systems. Consider the generalized wheel graph Wy, _3 o, mi2 = Koz + Coppe2
which has order 7, and connectivity and minimal degree m. It is easy to see that
this graph does not satisfy Pp_mm, Since any m internally openly disjoint paths
between a pair of adjacent vertices of the rim of the wheel will have one path that
contains all of the vertices of the rim of the wheel. On the other hand, the m-cube
Qm has order n = 2™, connectivity and minimal degree m, and it satisfies P+ 1 m.-
This last assertion is easy to verify by an induction argument on the index m of
the m-cube.
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“Wheel type” graphs give important information on the extremal properties re-
lated to P, ,,. We start with the wheel graph W, = K, + C, that has r spokes and »
vertices on the rim. Replace each vertex of W, with a complete graph, and make
each vertex of the corresponding complete graph adjacent to the vertices in the
neighborhood of the replaced vertex. The graphs obtained by this expansion of
vertices of a wheel form a family of “generalized wheels". More precisely, order
the vertices of W, starting with the center and followed by the vertices of the rim
in a natural order around the cycle. For positive integers p(3) (0 < i < r), the
generalized wheel obtained from W, by replacing the i** vertex with a complete
graph Ky(;) will be denoted by W(p(0), p(1),--- ,p(r)).

In many of the cases of interest to us, most of the p(£) 's in the generalized wheel
will be the same, so we will adopt the more compact notation of representing the
sequence (p(j), - ,p(k)) by (k—j+1;p) whenp = p(j) = --- = p(k). Thus,
W, )=W,andW(m—-2,n—m+2;1) = K,,_3 + Cp_ps+2 , Which is the
generalized wheel considered earlier in this section. For the following families
of generalized wheels, it will be assumed that & > 2 and m are fixed positive
integers.

Select any integer n such that n — m is divisible by d, and consider the gener-
alized wheel

W(m—2,d;(n—m)/d, 1,1).

Let z and y denote the two vertices of the rim of the generalized wheel that are
associated with the complete graphs that are a single vertex. This graph has order
n, connectivity m — 1+ (n— m)/d > m, and m — 1 internally disjoint paths of
length at most 2 between z and y. However, any path from z to y not using any
of the m — 2 vertices in the center of the generalized wheel or the edge zy has
length at least d + 1. Therefore, W(m — 2,d; (n— m)/d, 1,1) does not satisfy
Pym. The following theorem (Theorem C from [FJOST]) gives that any graph
with connectivity exceeding (n— m)/d + m — 1 does satisfy Py,.

THEOREM C. Let d > 2 and m be positive integers, and let G be a graph of
order n. If G has connectivity exceeding (n—m)/d+ m — 1, then Pi(G) is
satisfied. This resultis the best possible in that there is a graph that has connectivity
(n—m)/d+ m — 1 that does not satisfy Pym(G).

Select any positive integer p, let n = (d + 4)p + m — 4, and consider the
generalized wheel graph
W(m—2,3p—-2,d—2p,3p—2,1,1).

Again, let z and y be the vertices of the rim of the generalized wheel associated
with the complete graphs with a single vertex. This graph has order n, minimum
degree 3p+m—3 = 3(n—m+4) /(d+4)+m—3, and connectivity p+m—1 > m.
Just as before, any path between z and y that does not contain the edge xy or
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any of the m — 2 vertices in the center of the wheel has length at least d + 1.
Thus, this graph does not satisfy Py, but has minimum degree of the same order
of magnitude as the degree condition in the hypothesis of the following theorem
(Theorem D of [FJOSTI).

THEOREM D. Let m and d be positive integers, and let G be an m-connected
graph of order n. If G has minimum degree exceeding [(n— m + 2)/|(d +
4)/3]] + m — 2, then G satisfies Pym(G).

It should be noted that the proof of Theorem D in [FJOST] can be modified in
a completely straightforward way to verify that if the sum of the degrees of each
pair of nonadjacent vertices is ay least 2(|(n— m + 2) /|(d+ 4) /3] + m — 2,
then G has property Py, for d > 3. Also, the generalized wheel described prior
to Theorem D shows that the sum of degrees condition cannot be significantly
lowered. We state this result for use later.

THEOREM E. Let m and d > 3 be positive integers, and let G be an m-
connected graph of order n. If G satisfies the degree condition DC(G) >
2([(n—m+2)/|(d+4)/3]]m — 2), then G satisfies Pym(G).

The next counting result, which can be found in [FJOST), will be used in the
proof of the main results.

LEMMAF. Let P and Q be openly disjoint paths from z to y in a graph G,
such that the sum of their lengths is a minimum. If A and B are subsets of vertices
of P and Q respectively, such that A does not contain any pair of consecutive
vertices on P, then the number of edges between A and B is atmost |A|+|B|—1.

3. PROOFS

We begin with the proof of Theorem 1, which depends heavily on the results in
[FJOSTI.

THEOREM 1. Let d > 2 and m be positive integers, and let G be a k-
connected graph of order n. Then, G satisfies Pym(G) if the minimal degree
6(Q) satisfies:

> |75 ifk<m
n—m+2 -2
i Ee ot i =m —
S(G) > min { n—{ k—=m+1)(d=2)+m-2 if m S k S d +m—1
2

>k ifk>%Pr+m-—1.
PROOF: For k < m, Theorem A implies the result. Also, if k > (n—m)/d+

m — 1, then G satisfies Py, by Theorem C. Note that in general § > &, and
Theorem 1 is true for k > (n— m)/d + m — 1. We are left to consider only
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the following range for k : m < k < (n— m)/d+ m — 1. By Theorem D,
8(G) > ((n—m+2)/|(d+4)/3] + m — 2 implies that Py, is satisfied, so to
complete the proof of Theorem 1 it is sufficient to verify that §(G) > (n— (k —
m+ 1)(d — 2) + m — 2) /2 implies Py n(G).

Suppose that G is a graph of order n that does not satisfy Py m. Select vertices
z and y for which there does not exists m openly disjoint paths between the two
vertices, each of length at most d. Since G is k > m connected, there are k openly
disjoint paths between z and y. Select k such paths with the sum of the lengths a
minimum. Denote the paths by Py, Py, -« , P, andletry < < -+« < e by
the number of interior vertices (one less than the length of the path) of each of the
paths. Then by assumption, r; > 1 forj > 2,and r; > d for j > m. If rp is the
number of vertices not on any of these paths, then

k
n=2+ ZT;.

=0

Therefore,

k
ro+n—2-% r<n—2-(m-2) —(k—m+1d.

i=1

By assumption, z and y have no common adjacencies off the paths, and each
of = and y have precisely one adjacency on each of the & paths. Therefore, if
d(z) < d(y), then

n—-m—(k—m+ 1d+2k
3 .

dz) < T +k<

This contradicts the assumption on §( G) and completes the proof of Theorem 1. |

Note that each of Theorem A and Theorem C is sharp, so no improvement is
possible in Theorem 1 for k < mor k > (n—m) /d+ m— 1. Although the result
in Theorem D is not sharp, it has the correct order of magnitude as exhibited by the
example that preceded Theorem D. We now describe an example to illustrate that
the inequality §(G) > (n— (k—m+ 1}(d—2) + m — 2) /2 also has the correct
order of magnitude. For (n+(d+3)(m—1))/(d+4) < k< (n—m)/d+m-1,
and the appropriate divisibility conditions for n, consider the graph

W(m-—l,d-—Z;Z,"—(d—z)z_m_l n—(d—2)£—m—l),

2 llll’ 2

where £ = k — m + 1. The graph L obtained from this graph by deleting the edge
between the two complete graphs on the rim with a single vertex has connectivity
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k,8(L) = (n—(d—2)(k—m+ 1) + m — 3) /2, and does not satisfy Py(L).
Thus, the results of Theorem 1 cannot be substantially improved.

Both Theorem 4 and Theorem 5 will follow from some of the preliminary re-
sults already stated in section 2 and the following theorems. These next results
give some relationships between degree and neighborhood conditions on all non-
adjacent pairs of vertices and property Py,.

THEOREM 2. Let d > 3 and m be positive integers, and let G be an m-
connected graph of order n. Then, G satisfies Py p,(G) if

NC(G) > (Sn—m—-d—-4)/(d+2)+2m -2.

PROOF: Lett = (Sn—m —d—4)/(d+ 2) + 2m — 2. Suppose that G is
an m-connected graph with NC(G) > t that does not satisfy Py ,(G). We will
show that this leads to a contradiction.

Let z and y be a pair of vertices for which there does not exist m openly disjoint
paths between them, each of length at most d. Select m openly disjoint paths
between z and y such that the sum of their lengths is a minimum. Denote these
pathsbe P, B, - - - , Pp,and assume that the lengths of these pathsare 1 + 1, r +
1,--.,rm+ 1 respectively withr; < r; < --- < 7. Let R by the vertices in this
system of paths, and let S be the remaining vertices. Thus, the number of vertices

in R is
m
r=2+ E T3y
i=1
and S has n — r vertices. Note that by assumption r; > 1 for 1 < { < m, and
Tm > d. Hence,r > m + d.

Consider the subgraph L of G induced by the vertices in the paths P; and P,,,
and note that the sum of the lengths of these paths cannot be shortened in L.
Lemma F applied twice (to the graph L) implies that the number of edges be-
tween the ry, interior vertices of P,, and the r; interior vertices of P; is at most
™m + 27; — 2 foreach (1 < 1 < m). Since P, has r,, edges and z and y each
have degree m relative to R, the sum of the degrees of the vertices of P, relative
to R is at most

m-1
E(rm+2r,~—2)+2m+2r,,.= (m—=1Drp+2r—2.

i=1
LC[Pm= (z= Zo,T), " 1 Trpy Trp+l = y). For 0 Si(].s Tm + l,let
N,'j = N(z;) UN(zj):
R;; = RN Ny;, and
S,'; = SﬂN,'j.
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Hence, Nj; is the disjoint union of R;j and S;;, and if z; and x; are nonadjacent,
then

|Rij| + |Si5] = INgj| > t.
Therefore,

=1

(rm+ 2t < 3 ([Rigez |+ [Si502 )+ [ Rora |+ 150 |+ 1B s [+ 11 gt |- (1)
$=0
Note that no z € S can be adjacent to both z; and z; for any |j — i| > 3, so
each vertex of S will be in at most five of the Sij’s in (1). Also, the neighborhood
of a vertex in P,, will contribute to precisely two of the R;;’s in (1). Thus, a
consequence of (1) is the following:

(tn+ 2Dt <S(n—1)+2(Mm—Drp+2r-2).
<Sn—r—4+2(m—-1rg,.
Hence,
t<(Sn—1—4+2(m—Drp)/(rn+2)
<(Sn-m-d-4)/(@+2)+2(m-1)

This contradicts the restriction on ¢, and completes the proof of Theorem 2. i

Lett beevenand n= (d + 4)t + m — 1. Consider the graph H obtained from
the generalized wheel

W(m—-1,2,2t,d;t)

by deleting all of the edges between the two complete graphs on the rim with
2t vertices. This graph has order n, connectivity ¢ + m — 1, satisfies NC(H) >
St+m-—3, but does not have property Py, ( H). Thus the condition in Theorem 3
is the correct order of magnitude for d and m fixed and n sufficiently large.

The next theorem involves both degree and neighborhood conditions for pairs
of nonadjacent vertices. The graph L derived from the generalized wheel

n—(d—2)8—m—1 n—(d—2)f—m—1
2 2 )'

W(m—Ld—m& 1,1,

(where £ = k—m— 1) which was described after the proof of Theorem 1 indicates
that the conditions of this next result cannot be lowered significantly.

THEOREM 3. Letd >3, m,and k > (d— 1)(m — 1) be positive integers
and let G be a k-connected graph of order n. Then, G satisfies property Pyy if
either '

NC(G)>n-2~-(d-3(k—-(d-1)(m-1)), or
DC(G) >n—-2—-(d-3)k—(d—1D)(m-1)) +m.
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PROOF: We will deal with neighborhood condition and the degree condition at
the same time. Lett = n—2 — (d — 3)(k — (d — 1)(m — 1)), and suppose
that G is an k-connected graph (k > (d — 1)(m — 1)) with NC(G) > t (or
respectively DC(G) > t + m) that does not satisfy Py ,,(G). We will show that
this leads to a contradiction. We can assume that G is edge maximal with respect
to not satisfying Py m(G), so the addition of any edge will generate a graph that
satisfies Pym(G).

Let z and y be a pair of vertices for which there does not exist m openly disjoint
paths between them, each of length at most d. By the edge maximality of G we
can assume that m — 1 paths of length at most d do exist, and we will denote the
vertices in the interior of these paths by C. There are at most (m — 1)(d — 1)
vertices in C.

Select k—(d—1) (m—1) openly disjoint paths between z and y that are disjoint
from C, and such that the sum of their lengths is a minimum. Denote these paths
by P, P, Py_(m-1)(a~1). Each of these paths has at least d + 2 vertices. Let
z' be a vertex on one of these paths that is adjacent to z. Then, clearly z’ and y
are nonadjacent vertices. The minimality of the sum of the lengths of these paths
and the fact that P,,,(G) is not satisfied implies that neither z’ nor y is adjacent
to the d — 3 vertices on each of these paths that precede the predecessor of y for
each of these paths. Thus, there are atleast ¥ = (d — 3)(k — (d — 1)(m — 1))
vertices that are not adjacent to either z' or y. For the neighborhood condition this
gives the following inequality:

t<IN(Z)UN(y)|<n—-n"—-2=1t.
For the degree condition this gives the inequality:
t+m<d(z')+d(y) <n-2 —(@=-3)k—-@=-1D(m=-1))+m=t+m.

In either case this gives a contradiction that completes the proof of Theorem 3. J

Theorem 4 is a survey result that is not a direct consequence of Theorem B,
Theorem E, Theorem 3 and Theorem C. For a graph G of order n, the neigh-
borhood condition NC(G) > n— 1 implies that G is a complete graph, while
NC(G) > n—2 implies no connectivity in G (i.e. there are disconnected graphs
that satisfy NC(G) > n— 2). This observation along with Theorem 2, Theo-
rem 3, and Theorem C verifies Theorem 5. The fact that the conditions in Theo-
rems 2, 4 and 5 cannot be lowered significantly follows from the fact that this is
true for each of the results used to verify these theorems.

We now deal with the special case d = 2.

THEOREM 6. For any positive integer m, a graph G of order n and connec-
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tivity k satisfies P m(G) if at least one of the following inequalities are satisfied:

n+m
2 -1

+
a(c;)>"2'"—1

DCG) > 3"; m_3

NC(G) >n-2.

k>

Also, each of the inequalities is sharp.

PROOF: The sharpness of the inequalities can be observed by considering the
graph H obtained froma K, by adding two adjacent vertices that have precisely
m — 2 common adjacencies in the K,,_» and whose neighborhoods equally share
(as much as is possible, the remaining vertices of the K, . Thus H has order n,
connectivity |(n+ m)/2]| — 1,8(H) = [(n+m)/2] —1,DC(H) = |(3n+
m) /2| — 3,and NC(H) = n— 2, but H does not satisfy P> m( H).

Assume the result is not true, and that = and y is a pair of vertices in a graph
G satisfying the hypothesis of Theorem 6 that does not have m paths of length
at most 2 between them. By Theorem C we know that the connectivity of G
does not exceed (n+ m) /2 — 1. We can assume with no loss of generality that
d(z) < d(y).

First, consider the case when z and y are nonadjacent. Thus, by assumption,
IN(z) AN (y)| £ m~1. Thus, [IN(z) UN(9) |+ |{z,y}| > 2|N(z)|-IN(z)N
N(p)|+2 > n,ifd(z) > (n+ m — 3), and so clearly

d(z) < (n+m-13)/2
d(z) + d(y) < n+m -3, and
IN(z) UN(9)| < n-2.

All of these inequalities contradict the assumptions, so we can assume that z and

y are adjacent. Then, also by assumption, |N(z) N N(y)| < m — 2. Any vertex
z of G that is not adjacent to z has degree at most n — 2, so we have

d(z) < (n+m)/2 -1
d(z) + d(z) < (3n+ m)/2 -3, and
IN(z) UN(2)| < n—2.

This also contradicts the inequalities, and completes the proof of Theorem 6. §
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4. PROBLEMS

There are several interesting questions and natural extensions related to the results
presented. In Theorems 2 and 3 the relationship between neighborhood conditions
on nonadjacent pairs of vertices and property P, ,, was investigated. One need not
consider only nonadjacent pairs of vertices, but adjacent pairs or all pairs of ver-
tices could be considered in neighborhood conditions implying Py . In addition,
one need not restrict consideration to just the union of the neighborhoods of pairs
of vertices. For any fixed integer ¢ > 2, the number of vertices in the union of
the neighborhoods of any set of ¢ (nonadjacent) vertices can be considered in the
neighborhood condition. Examples of results of this nature can be found in [AFF],
(F] and [FGJL2]. Also, the relationship between property Py, and degree clo-
sure conditions of the type considered in [BC] or neighborhood closure conditions
considered in [FGJL1] should be investigated. For all of these possibilities of a
neighborhood condition or a closure condition, the generalized wheel and the cube
have significantly different properties, so many interesting problems of this type
remain,

A natural question which is a basic extremal problem at the opposite end of the
spectrum is to determine the minimum number of edges in a graph that satisfies
property Pym.
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