On Sum Graphs

Tianbao Hao

Department of Mathematics & Statistics
Queen's University
Kingston, Ontario
Canada K7L 3N6

Abstract. We investigate the labellings of sum graphs, necessary conditions for a graph to be a sum graph, and the range of edge numbers of sum graphs.

1. Introduction

Definition 1. A simple graph G with vertex set $V(G) = \{V_1, V_2, \ldots, V_n\}$ is a sum graph if we can find a finite set $S = \{X_1, X_2, \ldots, X_n\} \subset N^+$ and assign X_i to V_i such that V_i and V_j are adjacent iff $(X_i + X_j) \in S$. We call S a labelling for G.

F. Harary introduced this concept in 1988 (see [4]) and left the characterization of sum graphs as a problem. The first version of this paper came out as preprint [3] in May, 1988. Recently I received the papers [1], [2], [4] and made some changes.

Besides the sum graphs themselves, I was interested in their manipulation on computers and their possible application to improved graph storage and edge searching. This does not turn out to be promising, however: as we will see later, the labels of some simple sum graphs grow exponentially.

For convenience, throughout this paper we reserve Nn for the empty graph on n vertices. Also, we assign to each edge $e = (V_i, V_j)$ a weight of $(X_i + X_j)$, and say that $(X_i + X_j)$ contributes the edge to V_i, V_j .

The following are some simple facts about sum graphs.

Facts:

1.1 ([3], Theorem 1) Let G be a graph with e edges. The graph H = G + Ne is a sum graph.

(The same statement for connected graphs is given in [4].)

- 1.2 ([4]) A sum graph has at least one isolated vertex: the one assigned the largest integer.
- 1.3 ([4]) If $S = \{X_1, X_2, \dots, X_n\}$ is a labelling for a sum graph G, then so is $k \cdot S = \{kX_1, kX_2, \dots, kX_n\}$.
- 1.4 If G and H are sum graphs, then so is (G + H). In particular, if G is a sum graph, then so is each (G + Nk), $k = 1, 2 \dots$

2. Best labellings, and labellings for some simple sum graphs

Although a sum graph can be given many different labellings, there is a unique and natural labelling for each sum graph.

Definition 2. Let G be a sum graph and let $S = \{X_1, X_2, \ldots, X_n\}$ and $S' = \{Y_1, Y_2, \ldots, Y_n\}$ be two labellings in ascending order. We say S is better than S' if the non-zero element $(X_i - Y_i)$ with the largest i is negative. We say that S is the best labelling if it is better than any other labelling for G.

The integers of a best labelling are obviously relatively prime. It seems to be much easier to label a sum graph than to best label it.

Facts:

2.1 $Pn + N_1$ is a sum graph with the labelling:

A better labelling for $P_n + N_1$ is given in [3].

2.2 A star + N_1 is a sum graph with the labelling:

Moreover, it can be shown that the choice a = 1 and b = 2 gives the best labelling. 2.3 ([1]) A tree + N_1 is a sum graph.

Generalized Fibonacci sequences such as those above are often used for labelling sum graphs (see [1],[3],[4]). Unfortunately, these sequences increase exponentially, and so are not suitable for computer storage and manipulation. We have not determined the best labelling for any class of sum graphs except a star $+N_1$; in particular, we do not know how to best label $P_n + N_1$ for all n. The following, found by computer search, are the best labellings of $(P_n + N_1)$ for

 $3 \leq n \leq 12$.

```
2
     3
      3
        4
  2
            6
  2 4
         5
1
            6
                8
  2 4
        5 7
1
                9
                    10
1
  2 4
        6 7
                9
                    12
                        13
1
  3 5
        79
                11
                   12
                        13
                            16
  3 5
         7 9
1
               11
                            17
                   12
                        13
                                20
  3 5
1
         7
            9
                11
                    13
                        15
                            16
                                17
                                    20
1
                    13
                        15
                                        24
                11
                            16
                                17
                                    19
                11
                    13
                        15
                            17
                                19
                                    20
                                        21
                                             24
```

3. Isolation numbers and degree sequences

From Facts 1.1 and 1.4, we know that for any graph G there is a least integer k = in(G) such that $(G + N_k)$ is a sum graph. In [4], for connected graphs, the number in(G) is termed the isolation number. We extend the term to arbitrary graphs.

Definition 3. For any graph G (not necessarily connected), the isolation number is the smallest integer $k = \operatorname{in}(G)$ (possibly negative) such that $(G + N_k)$ is a sum graph. Here if k is negative $(G + N_k)$ is interpreted as deleting (rather than adding) k isolated vertices.

In fact 1.1, we provided an upper bound on in(G). Now we give a lower bound.

Theorem 1. Let G be an arbitrary graph with degree sequence $D_1 \leq D_2 \leq \cdots \leq D_n$. Then in(G) > $\max_{\substack{1 \leq i \leq n \\ D_i \neq 0}} (D_i - i)$ if G is non-empty and in(G) = -n+1

otherwise.

To facilitate our proof, we use the following two lemmas.

Lemma 3.1. ([3], Theorem 2) Let G be a sum graph with $V(G) = \{V_1, V_2, \ldots, V_n\}$ and a labelling $X_1 < X_2 < \cdots < X_n$. Then $\deg_G(V_i) \le n - i$ for all i. Furthermore each X_i contributes at most $\lfloor \frac{i-1}{2} \rfloor$ edges.

Lemma 3.2. ([3], Lemma 3.2) Let $D_1 \leq D_2 \leq D_3 \leq \cdots \leq D_n$ be integers and $(L_1, L_2, L_3, \ldots, L_n)$ be any permutation of $(D_1, D_2, D_3, \ldots, D_n)$, then

$$\max_{1\leq i\leq n}(L_i-i)\geq \max_{1\leq i\leq n}(D_i-i).$$

Proof of Theorem 1: If G is empty, the result is obvious. Let G be non-empty. First suppose G has no isolated vertex. Define $D = \max_{1 \le i \le n} (D_i - i)$ and $k = \inf(G)$. By definition, $H = G + N_k$ is a sum graph.

Let $X_1 < X_2 < \cdots < X_n$ be the labels on $V(G) = \{V_1, V_2, \dots, V_n\}$ obtained from a labelling for H. By Lemma 3.1, $\deg_G(V_i) = \deg_H(V_i) \le n + k - i$ as X_i is no less than the i-th element in the labelling for H. So $k \ge \max_{1 \le i \le n} \{\deg_G(V_i) - (n-i)\}$. Let j = n - i + 1. By lemma 3.2, $k \ge \max_{1 \le j \le n} \{\deg_G(V_{n-j+1}) - j\} + 1 \ge \max_{1 \le j \le n} \{D_j - j\} + 1 = D + 1$ because $(\deg_G(V_{n-j+1}): 1 \le j \le n)$ is a permutation of $(D_1 D_2 \dots D_n)$.

If G has isolated vertices, let G' be the graph obtained by deleting them. Apply the above result to G'. The inequality follows immediately.

Corollary 3.1. Let G be a graph with minimum vertex degree $\delta = \delta(G) > 0$. Then $G + N_{\delta-1}$ is not a sum graph.

Example: $(C_n + N_1)$ is not a sum graph for $n \ge 3$ since $\delta = 2$.

We conclude this section with some easily verified facts about the degree sequences of sum graphs. Suppose G is a sum graph with $V(G) = \{V_1, V_2, \ldots, V_n\}$ and labelling $X_1 < X_2 < \cdots < X_n$.

Facts:

- $3.1 \deg(V_1) \le n-2$. If $\deg(V_1) = n-2$ and X_2/X_1 is specified then G is determined. In particular, if X_2/X_1 is not an integer, then G is a star $+N_1$.
 - 3.2 If $\deg(V_2) = n 2$ then G is a star + N_1 .
 - 3.3 There is no sum graph with at least two vertices of degree (n-2) for $n \ge 4$.

4. Edge numbers of sum graphs

For convenience, we denote a sum graph G with labelling $X_1 < X_2 < \cdots < X_n$ by $G(X_1, X_2, \ldots, X_n)$. We call a vertex by the name of its label for the time being.

Lemma 4.1. ([3], Lemma 3.3) In the sum graph G(1,2,...,N,X), X contributes $\lfloor \frac{2N-X+1}{2} \rfloor$ edges for $N+1 \le X \le 2N-1$ and 0 for all $X \ge 2N$. Hence |E(G(1,2,...,N,X))| - |E(G(1,2,...,N,X+1))| = 1 or 0.

Theorem 2. If G is a sum graph, then $|E(G)| \le \frac{\binom{n}{2} - \left\lfloor \frac{n}{2} \right\rfloor}{2}$. Furthermore, for any $0 \le e \le \frac{\binom{n}{2} - \left\lfloor \frac{n}{2} \right\rfloor}{2}$, there is at least one sum graph G with |E(G)| = e.

Proof: Let $G = G(X_1, X_2, ..., X_n)$. By Lemma 3.1, X_i can contribute at most $\left|\frac{i-1}{2}\right|$ edges. Hence

if
$$n = 2k$$
, then $|E(G)| \le 0 + 0 + 1 + 1 + \dots + (k-1) + (k-1) = k(k-1)$; if $n = 2k + 1$, then $|E(G)| \le 0 + 0 + 1 + 1 + \dots + (k-1) + (k-1) + k = k^2$.

Thus $|E(G)| \le \frac{\binom{n}{2} - \left\lfloor \frac{n}{2} \right\rfloor}{2}$ for any sum graph G.

Suppose now that $0 \le e \le \frac{{n \choose 2} - {n \choose 2}}{2}$. By Lemma 4.1, sum graphs G(1, 2, ..., n-1, X) for $n \le X \le 2^n$ have edge numbers ranging from

$$|E(G(1,2,\ldots,n-2,n-1,n))|$$
 to $|E(G(1,2,\ldots,n-2,n-1,2^n))|$.

Similarly, sum graphs $G(1,2,\ldots,n-2,X,2^n)$ for $n-1\leq X\leq 2^{n-1}$ have edge numbers from

$$|E(G(1,2,\ldots,n-2,n-1,2^n))|$$
 to $|E(G(1,2,\ldots,n-2,2^{n-1},2^n))|$.

Therefore there are sum graphs on n vertices with edge numbers from

$$|E(G(1,2,\ldots,n-1,n))|$$
 to $|E(G(2^1,2^2,\ldots,2^{n-1},2^n))|$.

So there is at least one sum graph G with |E(G)| = e, because $|E(G(1,2,...,n-1,n))| = \frac{\binom{n}{2} - \lfloor \frac{n}{2} \rfloor}{2}$ and $|E(G(2^1,2^2,...,2^{n-1},2^n))| = 0$.

Facts:

4.1 ([3]) Let H be a sum graph with n vertices and $e = \frac{\binom{n}{2} - \lfloor \frac{n}{2} \rfloor}{2}$ edges. If n = 1, 2, 3, 4, then $H \cong G(1, 2, ..., n)$; If $n \ge 5$ is odd, then H must have labelling $M \cdot \{1, 2, ..., n\}$;

If $n \ge 6$ is even, then H must have labelling either $M \cdot \{1, 2, ..., n\}$ or $M \cdot \{1, 2, ..., n-1, n+1\}$.

4.2 If $X_1 < X_2 < \cdots < X_n$ is the best labelling for a sum graph then $X_i \le 2X_{i-1}$ for $n-2 \le i \le n$.

4.3 If G and $(\overline{G} + N_1)$ are two sum graphs. Then G has $e = \frac{\binom{n}{2} - \lfloor \frac{n}{2} \rfloor}{2}$ edges where |V(G)| = n.

We note that in the constructive proof of Theorem 2, vertex X_i is labelled with $X_i \leq 2^i$. This leads to the following question.

Question 1. For a sum graph G, does G have a labelling $X_1 < X_2 < \cdots < X_n$ such that $X_n \le 2^n$ (or, more strongly, $X_i \le 2^i$ for $1 \le i \le n$)?

Suprisingly, no upper bound on X_n has been given so far.

5. Additional questions

Question 2. Suppose $(G_1 + N_1)$ and $(G_2 + N_1)$ are sum graphs. Is $(G_1 + G_2 + N_1)$ a sum graph?

Question 3. Can we always find a labelling for a sum graph so that the smallest label is 1?

It is not difficult to see that a positive answer to Question 3 implies a positive answer to Question 2.

Acknowledgement

I am grateful to Dr. N.J. Pullman, Dr. D.A. Gregory and Dr. D. de Caen for their generous support and help. I would also like to thank Queen's University for providing computing services.

References

- 1. M.N. Ellingham, Sum Graphs From Trees, preprint.
- R.J. Gould and V. Rödl, "Bounds on the Number of Isolated Vertices in Sum Graphs", Technical Reports No. 77, Dept. of Mathematics and Computer Science, Emory University, 1988.
- 3. Tianbao Hao, *On Sum Graphs*, Mathematical Preprint #1988-7, May 1988, Queen's Univ. at Kingston, Ontario, Can.
- 4. Frank Harary, Sum Graphs and Difference Graphs, Congressus Numerantium (to appear).