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Abstract. We investigate the labellings of sum graphs, necessary conditions for a
graph to be a sum graph, and the range of edge numbers of sum graphs.

1. Introduction

Definition 1. A simple graph G with vertex set V(G) = {1, V2,..., Va}isa
sum graph if we can find a finite set S = {X;, X3,...,X,} C N* and assign X;
to V; such that V; and V; are adjacent iff (X; + X;) € §. We call S a labelling for
G.

F. Harary introduced this concept in 1988 (sce [4]) and left the characterization
of sum graphs as a problem. The first version of this paper came out as preprint [3]
in May, 1988. Recently I received the papers [1], [2], [4] and made some changes.

Besides the sum graphs themselves, I was interested in their manipulation on
computers and their possible application to improved graph storage and edge search-
ing. This does not turn out to be promising, however: as we will see later, the
labels of some simple sum graphs grow exponentially.

For convenience, throughout this paper we reserve Nz for the empty graph on
n vertices. Also, we assign to each edge e = (V;, V;) a weightof (X; + X;), and
say that ( X; + X;) contributes the edge to V;, V;.

The following are some simple facts about sum graphs.

Facts:

1.1 (3], Theorem 1) Let G be a graph with e edges. The graph H = G+ Ne s
a sum graph.

(The same statement for connected graphs is given in [4).)

1.2 ([4]) A sum graph has at least one isolated vertex: the one assigned the
largest integer.

1.3([4) If S = {X;,X2,...,Xn} is a labelling for a sum graph G, then so is
k-S= {le,kxz,...,kX,.}.

1.4 If G and H are sum graphs, then so is (G + H). In particular, if G is a sum
graph, then so iseach (G + Nk),k=1,2....
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2. Best labellings, and labellings for some simple sum graphs

Although a sum graph can be given many different labellings, there is a unique
and natural labelling for each sum graph.

Definition 2. Let G be a sum graph and let § = {X;,X>,...,X,}and &' =
{n1,Ya,...,Y,} be two labellings in ascending order. We say S is better than S’
if the non-zero element ( X; — ¥;) with the largest 1 is negative. We say that S is
the best labelling if it is better than any other labelling for G.

The integers of a best labelling are obviously relatively prime. It seems to be
much easier to label a sum graph than to best label it.

Facts:
2.1 Pn+ N, is a sum graph with the labelling:

0——0— _0—.,.-0—0 ° X,=b a<banda,be N*
X1 X2 X3 Xo Xen Xez U X;=Xiq+Xi2 (3<i<n+2)

A better labelling for P, + N is given in [3].
2.2 A star + N, is a sum graph with the labelling:

V1

Label V; with X;
Xi=a
va Vaey
o Xa=b a<banda,be N*
o Xa=X1+ X,
... 0 .
Vi Ve vs Va Xi=Xia+Xa (4<i<n+)

Moreover, it can be shown that the choice a = 1 and b = 2 gives the best labelling.
2.3 ((1]) A tree + N is a sum graph.

Generalized Fibonacci sequences such as those above are often used for la-
belling sum graphs (see [1],(3],[4]). Unfortunately, these sequences increase ex-
ponentially, and so are not suitable for computer storage and manipulation. We
have not determined the best labelling for any class of sum graphs except a star
+ Nj; in particular, we do not know how to best label P, + N; for all n. The
following, found by computer search, are the best labellings of (P, + N;) for
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w
N
3

IA
Y

1 2 3 4

1 2 3 4 6

1 2 4 5 6 8

12 4 5 7 9 10

1 2 4 6 7 9 12 13

1 357 9 11 12 13 16

13 5 7 9 11 12 13 17 20

1 357 9 11 13 15 16 17 2

1 357 9 11 13 15 16 17 19 24
135 7 9 11 13 15 17 19 20 21 24

3. Isolation numbers and degree sequences

From Facts 1.1 and 1.4, we know that for any graph G there is a least integer
k = in(G) such that (G + Np) is a sum graph. In [4], for connected graphs, the
number in(G) is termed the isolation number. We extend the term to arbitrary
graphs.

Definition 3. For any graph G (not necessarily connected), the isolation number
is the smallest integer k = in(G) (possibly negative) such that (G'+ N;) is a sum
graph. Here if k is negative (G+ Ny) is interpreted as deleting (rather than adding)
k isolated vertices.

In fact 1.1, we provided an upper bound on in( G). Now we give alower bound.

Theorem 1. Let G be an arbitrary graph with degree sequence Dy < Dy <
<.+ & Dy. Then i(G) > 1n(laé( (D; — 1) ifG is non-empty and i(G) = —n+ 1
<icn

Daﬁ)
otherwise.

To facilitate our proof, we use the following two lemmas.

Lemma 3.1. (3], Theorem 2) Let G be a sum graph with V(G) = {W1,V,
..., Vu}andalabelling X, < Xz < -+ < Xa. Thendegg(V;) < n—i foralls.
Furthermore each X; contributes at most | 5! | edges.

Lemma 3.2. (3], Lemma3.2)LetD) < Dy < D3 < --- < D, be integers and
(L1,Lz,Ls,...,Ly) beany permutation of (Dy,D,, Ds,...,D,), then

f‘g‘?g"u(f“ —1) 2 ,'2?;‘,,(1)‘ —1).
Proof of Theorem 1: If G is empty, the result is obvious. Let G be non-empty.

First suppose G has no isolated vertex. Define D = lrga(x (D;—t)and k = in(G).
sSisn
By definition, H = G + N is a sum graph.
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Let X < X2 < -+ < X, be the labels on V(G) = {n,va,...,Va}
obtained from a labelling for H. By Lemma 3.1, degg(V;) = degy(V) <
n+ k — i as X; is no less than the i-th element in the labelling for H. So k >
llr<lasx {degg(V;) —(n—19)}. Letj = = — i+ 1. By lemma 3.2,
<ign

. " _ = 1
k> lnsajaéﬂ{degc(V.,_,n) J}+1 2> lrgjaén{D; j}+ 1= D+ 1 because

(degg(Vaejs1): 1 < j < m) is a permutation of (DyD3...D,).
If G has isolated vertices, let G’ be the graph obtained by deleting them. Apply
the above result to G'. The inequality follows immediately. ]

Corollary 3.1. Let G be a graph with minimum vertex degree § = §(G) > 0.
Then G + N, is not a sum graph.

Example: (C, + N) is not a sum graph forn > 3 since § = 2.

We conclude this section with some easily verified facts about the degree se-
quences of sum graphs. Suppose G is asum graph with V(G) = {V1,V4,...,V;.}
and labelling X; < X3 < -+ < Xy,

Facts:

3.1deg(V;) < n—2.Ifdeg(Vi) = n— 2 and X, /X, is specified then G is
determined. In particular, if X /X is not an integer, then G is a star +Ni.

3.2If deg(V3) = n— 2 then G is a star + N.

3.3 There is no sum graph with at least two vertices of degree (n—2) forn > 4.

4, Edge numbers of sum graphs

For convenience, we denote a sum graph G with labelling X; < X3 < -+ <
Xa by G(X1,X2,...,X,). Wecall a vertex by the name of its label for the time
being.

Lemma 4.1. /3], Lemma 3.3) In the sum graph G(1,2,...,N,X), X con-
tributes | 225X*L| edges for N+ 1 < X < 2N — 1 and O forall X > 2N.
Hence|E(G(1,2,...,N,X))| - |E(G(1,2,...,N, X+ 1))|=10r0.
Theorem 2. IfG is a sum graph, then|E(G)| £ %lil— Furthermore, for any
0<eL -GL;L*—I- there is at least one sum graph G with|E(G)| = e.

Prpof: LetG = G(X;,X3,...,X,). By Lemma 3.1, X; can contribute at most
| 5% | edges. Hence

ifn=2k, then |[E(G)|<0+0+ 1+ 1+ .-+ (k—D+(k—-1)=k(k-1);
ifn=2k+1,then |E(G)| <0+ 0+ 1+ 1+ -+ (k=1 +(k=1)+k= k%

Thus |E(G)| < (—;)—}Iil for any sum graph G.
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Suppose now that0 < e < %L?J_ By Lemma 4.1, sum graphs G(1,2,...,
n—1,X) forn < X < 2™ have edge numbers ranging from

|E(G(1,2,...,n—2,n—1,n)| 10|B(G(1,2,...,5— 2,n—1,2%))|.

Similarly, sum graphs G(1,2,...,n—2,X,2™) forn—1 < X < 2™! have
edge numbers from

|B(G(1,2,...,n-2,n~1,2™)| 0 |B(G(1,2,...,n— 2,2 27)).
Therefore there are sum graphs on n vertices with edge numbers from
|E(G(1,2,...,n—1,m))| 0 |[B(G(2},22,...,2™1,2%)).
Sothere is at least one sum graph G with |[E(G) | = e, because |[E(G(1,2,...,n—

l.n))l=(;L;m-and|E(G(21,22,...,2"-',2'*))|=o. 1
Furthermore we can prove the following.
Facts:

4.1 ([3]) Let H be a sum graph with n vertices and e = GL;Lﬂedges.
Ifn=1,2,3,4,then H ¥ G(1,2,...,n);
If n> 5 is odd, then H must have labelling M - {1,2,...,n};
If n > 6 is even, then H must have labelling either M - {1,2,...,n} or
M-{1,2,...,n—1,n+1}.
421f X; < X3 < --- < X, is the best labelling for a sum graph then X; <
2Xiforn—2 <i<n

431If G and (G + N;) are two sum graphs. Then G has e = %‘-ﬂ edges
where [V(G)| = n

We note that in the constructive proof of Theorem 2, vertex X; is labelled with
X; < 2°. This leads to the following question.

Question 1. For a sum graph G, does G have alabelling X; < X2 < --- < X,
such that X, < 2™ (or, more strongly, X; < 2°for1 < i < n)?

Suprisingly, no upper bound on X,, has been given so far.

5. Additional questions

Question 2. Suppose (G + Ni) and (G2 + N) are sum graphs. Is (G +
G2 + Ny) asum graph ?

Question 3. Can we always find a labelling for a sum graph so that the smallest
label is 1?

It is not difficult to see that a positive answer to Question 3 implies a positive
answer to Question 2.
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