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Abstract. In this paper we deal with recursive constructions for incomplete
group divisible designs (IGDDs). Denoting GD[k,1,v; uv]-GD[k,1,n; un] by
(u,k)-IGD[v,n], we will prove, as an application, that a (7.4)-IGD[v,n] exists if
and only if v23nand v - n =0 (mod 2).

1. Preliminaries.

We assume that the concepts of PBDs, BIBDs, GDDs, Latin squares and their
orthogonality, are known. A GD[k,1,v; kv] is called a transversal design and
denoted by TD[k,v]. By N(v) we mean the number of mutually orthogonal
Latin squares of order v. It is well known that N(v) 2 k - 2 is equivalent to a
TD[k,v]. A TD[k,v] whose block-family can be partitioned into parallels is
called a resolvable TD[k,v] and denoted by RT(k,v]. It is also well known that
the existence of a RT(k,v] is equivalent to N(v) 2k - 1.

Definition 1.1 A GD{k,1,v;uv]-GD[k,1,n;un] is a quadruple (X,G,H,A)
satisfying the conditions:

(1) Xis a set of uv elements;

(2) G={G;:IGjl=v,1 si<u}isa partition of X;

(3) H={H;: G;oH;, Hjl=n,1Si<u);

(4) A is a collection of k-subsets (called blocks) of X and satisfies the
condition: if xe G; and ye Gj , then {x, y} occurs in one and only one block if

i=#j and at least one of {x, y} occurs in Ur<i<uG\H; ).

G is called the group family; A is called the block family. (X,G,H,A) is
denoted by (u,k)-IGD[v,n].

By simple calculation, we obtain the following result.

Theorem 1.2 The necessary conditions for the existence of a (u,k)-IGD[v,n]
are:

(v-n)u-1)=0(modk-1);

viu-1)=0(modk-1);

u(u - 1)(v2 - n2) = 0 (mod k(k - 1));

v 2 n(k-1).
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When v = (k - 1)n, a (uk)-IGD[v,n] is equivalent to a k-frame (cf. [6]). And a
(k,k)-IGD[v,n] is nothing but k-2 mutually orthogonal Latin squares of order
v with missing subsquares of order n (cf. [4]).

2. Recursive Constructions

Construction I to Construction VI are commonly used techniques; so we omit
proofs.

Construction I. If both a (u,k)-IGD[v,m] and a (u,k)-IGD[m,n] exist, then a
(u,k)-IGD[v,n] exists.

Construction IL If a (uj,k)-IGD[v,n] exists fori=1,2, ..,t and ifa
(u,{uy,...u;},1)-PBD exists, then a (uk)-IGD[v,n] exists.

Construction III. If a (uk)-IGD[v,n] exists and if N(t) 2 k - 2, then a
(u,k)-IGD[tv,tn] exists.

Construction IV. If a GD[k,1,n;un] exists and if N(t) 2 k - 2, then a
(u,k)-IGD[nt,n] exists.

Construction V. If (1) N(t) 2 u - 1, and (2) a (u,k)-IGD[m+];, L] exists for
alliin 1<i<t, then(l) a (uk)-IGD[mt+ <i<eli L1 <ictli] exists; (2) a
(uk)-IGD[mt+X <j<fl;;m+1;] exists, provided that a (u.k)-IGD[Z <i<tliolf]
exists.

Construction VI. If we have the conditions (1) N(t)2u+s-2 fors20;
(2) a (uk)-IGD[m+L;, I;] exists for 1 <i <s; (3) a GD{k,1,m; um] exists; then

a (uk)-IGD[Mt+Z | ci<cki, M+ <icqli] exists.

We now develop four further constructions.

Construction VIL. If (1) a (u,k)-IGD[v',n'] exists, (2) a (k,k)-IGD{v,n]
exists, and (3) a (u,k)-IGD[n'v,n'n] exists, then a (uk)-IGD[v'v,v'n] exists.
Proof. Let G; = {a;D,a,D, .. 1 D0 D, D}, 6 = (G;: 1 < ),
and X = U1<i<yGi- According to (1), there is a (u,k)-IGD[v',n’] on X such
that G is the group family and B = {By,B,,...,B} is the block family, and the
condition that {ooj(P),ook(Q)] is not in any block is satisfied.
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Let Y= {y],Yy.ps®1 g} By (3), on (Upgigy(o0gD,yennpoo D)) x Y
we may form a (uk)-IGD[n'v,n'n] with group family {{ool(i), 400 -(i)] xY:
1 <i < u} and such that its block famxly B’ satisfies the condition that every
palrm(u1<|<u{oel() 2(') 0 () }) X {e0]00,..., oo} is not contained in
any block.

For B; € B, on B;xY we construct a (k,k)-IGD[v,n] such that its group family
is {{b}xY: b e B;} and such that its block family B, satisfies the condition that
no block contains any pair from Bjx{coq,00,,...,00 }.

Now let {G;xY: 1 <i < u} be the group family and B'U(V] <i<sB;) be the
block family; we obtain a (u,k)-IGD[v'v, v'n] on XXY.

Construction VIIL If (1) a GD[k,1,m; um] exists, (2) a (k,k)-IGD(v,n]
exists, then a (uk)-IGD[mv,mn] exists.

Proof. We merely take (v', n") to be (m, 0) in Construction VII.

Construction IX, If (1) N(u) 2k - 1, (2) a (kk)-IGD[v,n] exists, and (3) a
(uk)-IGD[v+n',n+n"] exists, then a (u,k)-IGD[kv+n'kn+n'] exists.

Proof. Suppose A = {a},a,,...,2;}, B = {by,by,...,by }. Since N(u) 2k - 1 we
form an RT([k,u] on X = AXB with group family {A;: A; = Ax(b;},1 <i <k}
and with block family B = {Bl, B,,..., By2} whene Bl' B»...., By, form a
parallel class. Now we have already obtained a GD[(k,u},1,k;uk] with group
family {Bj, By,..., B} and block family By = {Ay,..,A},B; . 1...B,2}. Set
Y = {y oYy @120l Z = {05059}

For B; € B,, we construct on B;xY a (k,k)-IGD[v,n] such that its group
family is {{b}xY: b € B;} and such that its block family B'; satisfies the
condition that no block contains any pair from B;x{e'}...,e', }.

On {Ajx Y}U{AX Z}, we construct a (uk)-IGD[v+n', n+n'] such that its
group family is [([(aj,bi)}xY) ) ({aj]xZ): 1 £j <u) and such that its block
family B"; satisfies the condition that no block contains any pair chosen from
(AjX (o' 50’y DU (AXZ).
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Now on (XX YX/(AX Z) we take [({aj}xBx Y)u({aj]x Z): 1 <j<u} to be the
group family and B3 = (U4 1<i<u? B';}u{Uj<i<kB"i] to be the block
family; then we obtain a (uk)-IGD[kv+n'kn+n’).

Construction X. If we have conditions (1) N(u) 2k - 1, (2) a GD[k,1,v; kv]
exists, (3)a (uk)-IGD[v+n',n] exists, thena (uk)-IGD(kv+n',v+nT] exists.

Proof. In the proof given for Construction IX, we set n = 0 and we take B3 =
{Uy+1<i<u? B';j}U{Uy<i<B"j}. The conclusion follows.

3. An application.
For k = 4, there are many results about Incomplete Group Divisible Designs.

Theorem 3.1. ([8]) If v = 3n, thena (u,4)-IGD[v,n] exists if and only if we
have n(u - 1) =0 (mod 3).

The following important result is obtained in [S].

Theorem (Heinrich-Zhu). A (4,4)-IGD[v,n] exists if and only if v 23n and
(v,n) # (6,1).

In this paper, we will use our results to prove the following theorem.

Theorem 3.3. A (7,4)-IGD[v,n] exists if and only if v 2 3n and v-n is even.

We will use several Lemmas. First, we record the necessary condition.

Lemma 3.4. The necessary condition for the existence of a (7,4)-IGD[v,n] is
that v 2 3n and v-n is even.

Proof. This is just a corollary of Theorem 1.1.

Lemma 3.5. ([3]1) A GD[4,1,v;uv] exists_if and only if we have the
conditions (1) v(u - 1) =0 (mod 3), and (2) vzu(u - 1) =0 (mod 12), except
for (v,u) = (2,4) or (6,4).

Corollary 3.6. A GD[4,1,v; 7v] exists if and only if v =0 (mod 2).

Lemma 3.7. If v - n <€ 12, then Lemma 3.4 is sufficient for the existence of a
(7,4)-IGD[v,n).
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Proof. From the appendix, we only need to construct a (7,4)-1GD][v,n] for
(v.n) € {(3,1), (9,1), (6,2), (8,2), (10,2), (14,2), (9,3), (15,3), (12,4), (16,4),
(15,5), (18,6)}. By Theorem 3.1, we know that, if (v,n) e {(3,1), (6,2), (9,3),
(12,4), (15,5), (18,6)}, then a (7,4)-IGD([v.n] exists. Since a (7,4)-IGD[9,3]
and a (7,4)-IGD[3,1] exist, a (7,4)-IGD[9,1] exists by Construction 1. By
Corollary 3.6, a GD[4,1,2;14] exists. Hence we may setn=2,t=4, 5, 7, in
Construction IV; this produces a (7,4)-1GD(8,2], a (7,4)-IGD[10,2), and a
(7,4)-IGD[14,2), respectively. Since a (7,4)-IGD[5,1] exists (cf. the appendix),
we can take t = 3 to get a (7,4)-IGD[15,3] by Construction III. By Corollary
3.6, a GD[4,1,4; 28] exists; so we may set t = 4 to get a (7,4)-IGD[16,4] (IV).
This completes the proof.

Lemma 38. Ifv-n>12andv-n ¢ F, then Lemma 3.4 is sufficient for the
existence of a (7,4)-IGD[v,n], where F = {20, 24, 30, 40, 60, 120}.

Proof. From [1], we have N(t) 2 6 if t = 70, 72, or t > 77. Hence, if v -n > 12
and v-n ¢ F, then v - n can be represented as txm where m is even, 2<m < 12,
and N(t) 2 6. Since v 2 3n, we have n <(v - n)/2 and (v - n)/2 = txX(m/2); thus n
can be written as n = Yj<j<lj With 0 < I; < m/2. By Lemma 3.7, a

(7,4)-1GD[m+1];,1;] exists, since m < 12. Using Construction V, and taking t
and m to be the same as here, we get a (7,4)-IGD[v,n].

Lemma 3.9. If v - n = 20, then Lemma 3.4 is sufficient for the existence of a
(7,4)-IGD[v,n].

Proof. Since a (7,4)-IGD[21,7) and a (7,4)-IGD[7,1] exist, a (7,4)-IGD[21,1)
exists by Construction I. Let m = 2, t = 11, lj =13 - .. =15 = 1. By using

construction VI and taking s to be 0, 1, 2, 3, 4, 5, respectively, we can obtain
a(7,4)-IGD[v,n] for (v,n) equal to (22,2), (23,3), (24,4), (25,5), (26,6),
(27,7), respectively. Since a GD[4,1,2;14] exists by Corollary 3.6, and a
(4,4)-1GD[14,4] exists by Theorem 3.2, a (7,4)-IGD(28,8] exists by
Construction VIII. A (7,4)-IGD[30,10] exists by Theorem 3.1. In the
Appendix, a (7,4)-IGD{29,9] is given. This completes the proof.

Lemma 3.10. If v - n = 40, then Lemma 3.4 is sufficient for the existence of
a (7,4)-IGD(v,n).

Proof. Ifne {1,2,3,4,5), thena (7,4)-IGD[40+4n,3n] exists by previous
results. Since a (7,4)-IGD[3n,n] exists by Theorem 3.1, a (7,4)-IGD[40+n,n]
exists forne {1, 2, 3, 4, 5) by Construction I. By taking (uk,v) = (7,4,104n)
and using Construction IX, we get a (7,4)-IGD[46,6) when (n,n’) = (1,2); a
(7,4)-IGD[47,7] when (n,n") = (1,3); a (7,4)-IGD[48,8] when (n,n’) = (1,4); a
(7,4)-IGD[49,9] when (n,n") = (2,1); a (7,4)-IGD[50,10] when (n,n") = (2,2); a
(7,4)-IGD[51,11] when (n,n') = (2,3); a (7,4)-IGD(52,12] when (n,n") = (3,0);
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a (7,4)-IGD[53,13] when (n,n") = (3,1); a (7,4)-IGD[54,14] when (n,n) =
(3,2); a (7,4)-IGD[56, 16] when (n,n") = (4,0); a (7,4)-IGD[57,17) when (n,n")

yh Jo

Since a (7,4)-IGD[11,3] exists, a (7,4)-IGD[55,15] exists by Construction III.
Since a GD[4,1,2;14] exists by Corollary 3.6, and a (4,4)-IGD[29,9] exists by
Lemma 3.9, a (7,4)-IGD[58,18] exists by Construction VIII. Also, a
(7,4)-IGD[60,20] exists by Theorem 3.1, and a (7,4)-IGD[59,19] exists (cf.
the Appendix). This completes the proof.

Lemma 3.11. Ifv-n e {24, 30, 60, 120}, then Lemma 3.4 is sufficient for
the existence of a (7,4)-IGD[v,n).

Proof. Since a (7,4)-IGD[25,3] and a (7,4)-IGD([3,1] exist, a (7,4)-IGD[25,1]
exists by ConstructionI. Set m=2,t=13,lj=lh=..=1;=1,0<s<7,and
use Construction VI to give a (7,4)-IGD[v,n] for 26 <v<33and v -n=24. By
taking u=7,k=4,v=8,n' € (2, 3, 4}, and using Construction X, we get a
(7,4)-IGD[v,n] for (v,n) € {(34,10), (35,11), (36,12)}.

Since a (7,4)-IGD[31,3] and a (7,4)-IGD(3,1] exist, a (7,4)-IGD(31,1] exists.
By takingm=2,t=16,lj =lh=...= =1, 0 <s < 10, and using Construction
VI, we obtain a (7,4)-IGD[v,n] for 32<v <42and v -n=30. By takingu=7,
k=4,v=10,n" € {3, 4, 5} and using Construction X, we obtain a
(7,4)-IGD[v,n] for (v,n) € {(43,13), (44,14), (45,15)}.

Since é;l (7,4)-IGD[61,3] and a (7,4)-IGD[3,1] exist, a (7,4)-IGD[61,1] exists.
By taking m =2, t = 31, L4 =h=..= 1, =1,0 <5< 25, and using Construction
VI, we obtain a (7,4)-IGD[v,n] for 62 <v <87 and v -n=60. By takingu =7,
k=4,v=20,n"€ {8, 9, 10} and using Construction X, we obtain a
(7,4)-IGD[v,n] for (v,n) € {(88,28), (89,29), (90,30)}.

Since a (7,4)-1GD[121,3] and a (7,4)-IGD[3,1] exist, a (7,4)-IGD[121,1] exists.
By takingm=2,t=61,1j =l =... =L =1, 0 <5 <55, and using Construction
VI, we get a (7,4)-IGD[v,n] for 122 <v <177 and v - n = 120. By takingu =7,
k=4,v=40,n"e (18, 19, 20}, and using Construction X, we get a
(7,4)}IGD[v,n] for (v,n) € {(178,58), (179,59), (180,60)}. This completes the
proof.

Lemma 3.4 and Lemmas 3.7 to3.11 establish Theorem 3.3.

We have also obtained an interesting example of a (13,4)-IGDI[6,1] (cf.
Appendix (12)). Since a (4,4)-IGD[v,n] exists if and only if v = 3n and (v,n) #
(6,1), and since 13 € B[4], we have the following result by Construction II.

Theorem 3.12. A (13,4)-IGD[v,n] exists if and only if v = 3n,
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Appendix

In what follows we assume, unless indicated otherwise, that the group family is

{A%{j}: jeZ7].
(1) A (7,4)-IGD[5,1] exists. A= Z4 {0 ). The base blocks are:

((°°1 ,O),(O, 1 )s(392)s(1v4))v ((°°1 a0)9(0s6)9(2s5)r(2!3))’
((0,0),(0,1),(3,3).(3,6)), (mod 4, mod 7).

) A (7,4)-IGD[7,1] exists. A = Z6u{ oo }. The base blocks are:

((ml ,0),(0,1),(0,2),(4,4)), ((ool 10)v(0,6)v(1 .5),(1 ’3))$
((0,0),(3,1),(2,3),(2,6)), ((0,0),(1,1),(3,3),(4,6)),
(mod 6, mod 7).
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(3) A (7,4)-IGD[11,1] exists. A = Z; {0 }. The base blocks are:

((°°l ’0)3(001 )’(0’2)’(4’4))’ ((”l ’0 9(0v6)9(4o5 ):(9:3))’
((0,0),09,1),(6,3),(6,6)), ((0,0),(8,1),(8,3),(7,6))
((0,0),(7,1),(5,3),(8.6)), ((0,0),(5,1),(7,3).(9.6)),
(mod 10, mod 7).

(4) A (7,4)-IGD[13,1] exists. A = ZjpU{ee1 }. The base blocks are:

((e01,0),(0,1),(0,2),(4,4)), ((*1.0),(9.6).(1.5).(7,3)).
((0,0),(10,1),(6,3),(9,6)), ((0,0),(9,1),(2,3),(10,6)),
((0,0),(8,1),(11,3),(11,6)), ((0,0),(7,1),(9,3),(7,6)),
((0,0),(6,1),(1,3),(8,6)), (mod 12, mod 7).

(5) A (7,4)-1GD[12,2] exists. A = Z;(U{o0],%07}. The base blocks are:

((=1,0),(0,1),(0,2),(4.:4)), ((=1,0),(0,6),(1,5),(0,3)),
((002,0),(0,1),(8,2),(1,4)), ((=29,0),(0,6).(4,5),(4,3)),
((0,0),(7,1),(5,3),(8,6)), (€0,0),(5,1),(7,3),(9,6)),
((0,0),(4,1),(9,3).(7.6)), (mod 10, mod 7).

(6) A (7,4)-IGD[11,3] exists. A = Zg U{ooy,009,003}. The base blocks are:

((>1,0),(0,1),(1,2),(3.4)), ((>21,0),(0,6),(6,5),(1,3)),
((202,0,(0,1),(3,2),(1,4)), ((e22,0),(0,6),(3,5),(2,3)),
((223,0),(0,1),(6,2),(5.4)), ((+23,0),(0,6),(1,5),(6,3)),
((0,0),(0,1),(0,3),(4,6)), (mod 8, mod 7).

(7) A (7,4)-IGD[13,3] exists. A = Zj U{o0,009,003).The base blocks are:
((°°l ,0),(0,1).(0,2),(0,4)), ((“1 ,0),(0,6),(8.5 )’(l v3))9
((222,0),(0,1),(3,2),(6:4)), ((22,0),(0,6),(6,5),(,8,3)),
((=23,0),(0,1),(5,2),(7.4)), ((==3,0),(0,6).(3,5),(2,3)),
((0,0),(8,1),(4,3),(9,6)), (0,0).(9,1),(3.3),(4,6)),

(mod 10, mod 7).
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((°°1 10),(0,1),(0,2),(1,4)),
((>02,0),(0,1),(7,2),(4.4)),
((=3,0),(0.1),(4,2),(7.4)),
((=4,0),(0,1),(2,2),(0,4)),
((0,0),(9:1),(8,3),(4,6)),

((>¢1,0),(0,1),(0,2),(8,4)),
((029,0),(0,1),(5,2),(5,4)),
((=3,0),(0,1),(8,2),(9.4));
((=24.,0),0,1),(10,2),(2,4)),
((=°5,0),(0,1),(1,2),(10,4)),
((0,0),3,1).(6,3),(5.6)),

((°°l 10),(0,1),(0,2),(10,4)),
((=9,0),(0,1),(2,2),(1,4)),
((=3,0),(0,1),(5,2),(17,4)),
((o=4,0),(0,1),(7,2),(18,4)),
((=25,0),(0,1),(9,2),2,4)),
((o06,02:(0,1),(12,2),(13,4)),
((=07,0),(0,1),(14,2),(8,4)),
((=8,0),(0,1),(16,2),(0,:4)),
((=9,0),(0,1),(18,2),(15,4)),
((0,0),(11,1),(7,3),(16,6)),

(8) A(7,4)-IGD[14,4] exists. A = Z;( U{o0],99,003,504 ). The base blocks are :

((==1,0),(0,6),(2,5),(8,3)),
((22,0),(0,6).(5,5),(5,3)),
((==3,0),(0,6),(7.5),(1,3)),
((024,0),(0,6).(9,5),(7,3)),
(mod 10, mod 7).

(9) A (7,4)-IGD[17,5] exists. A = Z; 5 U{o0},%0,003,%4,%05 ). The base blocks are:

((=21,0),(0,6),(8,5),(9,3)),
((=02,0),(0,6),(6,5),(0,3)),
((=3,0),(0,6),(3,5),(8,3)),
((=24,0),(0,6),(1,5),(11,3)),
((=25,0),(0,6),(10,5),(5,3)),
(mod 12, mod 7).

(10) A (7,4)-IGD([29,9] exists. A = ZyU{o],099,...,2g}. The base blocks are:

((==1.0),(0,6),(19,5),(1,3)),
((02,0),(0,6),(17,5),(17,3)),
((=23,0).(0,6),(14,5),(9,3)),
((o04,0),(0,6),(12,5),(6,3)),
((==5,0).(0,6),(10,5),(8,3)),
((o06,0),(0,6),(7.5),(4,3)),
((=27,0),(0,6),(5,5),(16,3)),
((==g.0),(0,6),(3,5),(15,3)),
((>29,0),(0,6),(1,5),(14,3)),
(mod 20, mod 7).
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((>1,0),(0,1),(0,2),(3,4)),
((=22,0):(0,1),(2,2),(1,4)),
((=3,0),(0,1),(4,2),(13,4)),
((>4,0),(0,1),(6,2),(38,4)),
((>5,0),(0,1),(8,2),(36,4)),
((=6,0),(0,1),(10,2),(34,4)),
((>=7,0),(0,1),(12,2),(17,4)),
((=g,0),(0,1),(14,2),(30,4)),
((=9,0),(0,1),(16,2),(28,4)),
((2210:0),(0,1),(18,2),(26,.4)),
((>11,0,(0,1),(22,2),(20,4)),
((e212,0),(0,1),(24,2),(18,4)),
((==13,0),(0,1),(26,2),(21,4)),
((e214,0):(0,1),(28,2),(25,4)),
(=21 5:0),(0,1),(30,2),(5.4)),
((>*16,0).(0,1),(32,2),(23,4)),
((e217,0):(0,1),(34,2),(15.4)),
((=18,0:(0,1),(36,2),(6,4)),
((>219,0),(0,1),(38,2),(27.4),
((0,0),(21,1),(22,3),(21,6)),

(12) A(13,4)-IGD[6,1] exists. We take
=Zg U{e0). The base blocks are:

((=/0),(0,1),(2,2),(4,11)),
((=,0),(0,3),(0,7),(4,9)),
((0,0),(2,5),(0,10),(3,6)),
((0,0), (0,1),(4,4),(1,6)),

(11) A(7,4)-IGD[59,19] exists. A = Z4U(1,299,.-+%19]}. The base blocks are:

((¢01,0),(0,6),(39.5),(32,3)),
((02,0),(0,6),(37.5),(31,3)),
((23,0),(0,6),(35,5),(33.3),
((4:0).(0,6),(33.5),(3.3)),
((5,0),(0,6),(31,5),(5,3)),
((06,00,6).(29.5),(7.3)),
((+7,0),(0,6).(27,5),(9.3)),
((5,0),(0,6),(25,5),(11,3))
((09,0),(0,6).(23,5),(36.3)),
((2100:(0,6).(20,5),(16,3)),
((¢=11,0,(0,6),(17,5),(21,3)),
((012,0),(0,6),(15,5),(38.3)),
((0013:0).(0,6),(13,5),(28,3)),
((0214/0),(0,6)(11,5),(0,3),
((15:9),(0,6).9.5).(29.3)) ,
((216:9).(0,6).(7.5).(24.3)),
((0217:0).(0,6).(5.5),(26,3)),
((18:0),(0,6),(3,5),(30,3),
((219:0),(0,6),(1,5).(8.3)),
(mod 40, mod 7).

{(AX{j}:jeZ;3} as group family, where A

((=,0),(0,4),(0,10),(0,12)),
((=0,0),(0,5),(4,6),(2,8)),
((0,0),(3,1),(1,4),(2,6)),
(mod 5, mod 13).
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