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Abstract. The vertex integrity of a graph, I(G), is given by I(G) = miny/(|V'| +
m(G-V")) where V! C V(G) and m(G— V') is the maximum order of a component
of G — V. The edge integrity, I'(G), is similarly defined to be I'(G) = min g (| E'| +
m(G — E')). Both of these are measures of the resistance of networks to disruption. It
is shown that for each positive integer k, the family of finite graphs G with I'(G) < k
is a lower ideal in the partial ordering of graphs by immersions. The obstruction sets
for k < 4 are determined and it is shown that the obstructions for arbitrary k are
computable. For every fixed positive integer k it is decidable in time O(n) for an
arbitrary graph G of order n whether I(G) is at most k, and also whether I'(G) is at
most k. For variable k, the problem of determining whether I'( G) is 2t most k is shown
to be NP-complete, complementing a similar previous result conceming I(G).

1. Introduction

Several graph-theoretic parameters have been studied for the purpose of modeling

the property of a network of being resistant to disruption. Connectivity is one such
metric of network resilience. A systematic classification of such parameters has
recently appeared [BBLP1]).

The principal subject of this paper is the computational complexity of vertex and
edge integrity, two “trade-off™ metrics of network vulnerability [BBLP2, BBLP3,
BBLP4, BES1, BES2, CEF].
Definition.: The vertex integrity of a graph G is I(G) = miny.(|V'| + m(G —
V')) where V! C V(G) and m( H) denotes the maximum order of a component
of H.
Definition.: The edgeintegrity ofagraphGis I'(G) = ming(|E'|+m(G—-E"))
where E' C E(G).

It has previously been shown that for each positive integer k, the family of

graphs
F. = {GII(G) < k}

is a lower ideal in the partial ordering of graphs by minors [CEF]. This has the con-
sequence that for each fixed value of k, membership in Fj can be decided in time
O(n?) fora graph of order n, by the deep results of Robertson and Seymour [RS1,
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RS2, RS3, RS4]. From a practical perspective, the small degree polynomial-time
bound is somewhat deceptive. The algorithms are only proven to exist (the proof
is nonconstructive, however, see [FL3] for a widely-applicable method of con-
structivization) and even if known, they would involve astronomical constants. It
is an important open problem for many of the applications of the Robertson- Sey-
mour theorems to determine whether alternative and “reasonable” small-degree
polynomial-time algorithms can be found [FL1, FL2, Jo). We show that this is
indeed the case for vertex and edge integrity.
In the next section we show that for every k the family of graphs

Fy={G|I'(G) < k}

is a lower ideal in the partial ordering of graphs by immersions, recently proved
to be a well-partial order by Robertson and Seymour [RS3]. The obstruction sets
for k < 4 are determined, and are shown to be computable for arbitrary k.

In Section Three we show constructively that for each positive integer k, mem-
bership in F; (and membership in F}) can be decided in time O(n) for input a
graph G of order n. The algorithms that we present identify a witnessing set of
vertices V' C V(G) (or edges E' C E(G)) when one exists.

In Section Four we show that the problem of determining, for a graph G and
a positive integer k, whether I'(G) < k, is NP-complete. The reduction is from
GRAPH PARTITIONING [GJ). This complements a previous result that it is NP-
complete to determine, for a graph G and a positive integer k, whether I(G) < k
{CEF].

All graphs in this paper are simple, without loops or multiple edges.

2. The Immersion Order and Obstruction Sets

Let G be a graph and let u, v, and w be vertices of G such that uv and uw are
edges of G. A graph H is said to be obtained from G by alift if H = G — uv —
uw + vw.

Definition.: Given graphs H and G, H < G in the immersion order if a graph
isomorphic to H can be obtained from G by a sequence of operations of the fol-
lowing two kinds

(i) Replace G by a subgraph of G.
(ii) Lift two adjacent edges of G.

A lower ideal L in a partially ordered set (S, <) is a subset L C S such that
ifze Landy < ztheny € L. The obstruction set for L is the set of minimal
elements of L = § — L. The obstruction set O for L characterizes L in the sense
that z € L if and only if there is no y € O such that z > y. The partially ordered
set (S, <) is a well-partial order if every obstruction set is finite.



Theorem 1. The family of graphs Fy, is a lower ideal in the immersion order for
allk>1.

Proof: Let G € Fy, G nontrivial. If v is an isolated vertex of G then I'(G —
v) = I'(G) < kandsoG —v € F|. Lete € E(G),G = G — eand let
S be a set of edges of G such that |S| + m(G — S) = I'(G). Ife ¢ S then
m(G-58) >2m(G -8)soI'(G")Y < I'(G) < k,50G € Fi.Ifee S
thenlet ' = S —e. Hence |S'] = |S|— 1 and m(G — S) = m(G' — §') so
I'G) < |8+ m(G'—8') < |S|+ m(G~8) = I'(G) < k. Thus again
G' € F. Therefore F is closed under the operation of taking subgraphs.

Let uv and vw be adjacent edges of G and let G’ = G — uv — vw + uw. If uy
and yw are not in S then m(G' — 8) < m(G - 8) so I'(G") < I'(G) < k and
G' € Fi. Ifuv € Sorvw € Sthenlet $' = S — uv — vw + uw. So |§'| < |S]
and m(G' — §') < m(G — 8) and hence I'(G') < I'(G) < k. ThusG' € F;
and therefore F}, is a lower ideal. §

Theorem 2. For every positive integer k it is decidable in time O(n*) whether
an arbitrary graph G of order n satisfies I'(G) < k.

Proof: From (BES2], I'( P,) = [2+/m] — 1 where P,, denotes the path with m
vertices. So, form > (k+1)2/4, P,, ¢ F}. Hence, by the theorems of Robertson
and Seymour [RS4] we have our result. In particular, since the immersion order
is a well-partial order, the obstruction set O}, for F} is finite. The planar graph P,,
is excluded, so for input G of order n, testing whether G > H for each H € Ok
can be done in time O(#?). §

In the rest of this section we identify the obstruction sets O}, for edge integrity
for k < 4 and show that for every k, Oj, is computable.

Lemmal. If GEO; then I'(G) = k+ 1.

Proof: Ife € E(G) and G € O, then, by the minimality of G, I'(G — e) < k.
Let S be aset of edgesin G — e such that I'(G —e€) = |S|+ m(G —e—8) < k.
LetS' = SU {e}. Thus m(G —e—S) = m(G — §') and |S'] = |S| + 1 so
'@ LIS|+m(G-8)=|8|+1+m(G—-e-8)<k+1.1

Lemma 2. If G € Oj, for k > 1 then G consists of at most k + 2 connected
components and each of these components has order at most k(k + 1).

Proof: By Lemma 1 there is a set of edges S such that |S| < kand m(G - S) <
k+1—|S|. If C is acomponent of G of order greater than k(k + 1) then C — S
must have a component of order > k + 1. But this implies that I'(G) > k+ 2,
contradicting Lemma 1.

If G has more than k + 2 components then for every set S of at most k edges
there must be two components disjoint from S. Let C be a component of G of
minimum order. We claim that I'(G'— C) > k+ 1 and therefore G is not minimal

25



inF",‘. Suppose not; then there is a set S of at most k edges in G — C such that
|S] + m(G — C — 8) < k. There must be at least one component C' of G — C
disjoint from S, and therefore |C'| < k — |S]. Since |C| < |C'], (G - 8) <
k — |S| which implies I'(G) < k, a contradiction. §i

Theorem 3. For each positive integer k the obstruction set O;, is computable.

l k\s | 0 | 1 2 | 3 |
0 K, [ [ ]
1 K, ) [} ]
2 ) [} [} [}
Ca
3 K3 Ps )} ¢
PiUPR;
Cs
K4 Py ]
Ps U P,
PsUK)3
4
UP;
UP,
UK 3
Table 1 —

26



Proof This follows immediately from Lemma 2, noting that it is straightforward
to decide exhaustively for a graph H whether H € O;. 1

In what follows we describe a more efficient procedure for computing O}, and
we identify the obstruction sets for k < 4.

Define O}, ; to be the subset of O}, consisting of those graphs H satisfying
min{|S| : I'(H) = k+ 1 = |S|+ m(H — S)} = i. Note that Oi; = 0 for
i >k, k > 1. Construct a graph H as follows

(i) Let H — S consist of at most £+ i+ 1 components, each of which has order
atmost k + 1 — 1 and at least one of which has order exactly k + 1 — .
(ii) Add i edgesto H — S, where each edge joins vertices in different compo-
nents of H — S. These edges form the set S.
It is clear that any graph H in O;, ; can be constructed in this manner.

Theorem 4. The sets O ;, O < i < k < 4, are given in Table 1.

Proof: Progressively determine the elements of O} ; « by identifying those graphs
H constructed as above which satisfy the following conditions
@ I''Hy=k+1
(ii) The deletion of any edge or the lifting of any pair of adjacent edges of H
decreases the edge-integrity.
(iif) H does not belong to O ; for j < i.

For example, let us determine the elements of O3 ; . First note that any candidate
H for membership in O3 , must consist of at most 5 components of H — S with
order at most 3, with at least one component having order exactly 3, along with an
edge joining two components of H — S. Thus H — S consists of z; copies of K,
z3 copies of K3, z3 copies of P and x4 copies of K3. Also S = {uv}, where
u and v are in different components of H — S. If u or v is a vertex of degree 2
in H — S then H contains a subgraph isomorphic to K; 3. Note that K 3 is an
element of O3 o so that if H is isomorphic to K, 3 then H ¢ O}, and if K3 3

is a proper subgraph of H then H is not minimal in F,‘ and again H ¢ 05 1°

Thus if H is a graph in O3 ; then neither u nor v can belong to a copy of K3 and
neither u nor v can be the degree 2 vertex in a copy of P;. If the largest component
of H has less than five vertices then, for S = §, |S| + m(H — S) < 4 and so
H € O34 or I'(H) < 3. Ineithercase H ¢ O} ;. There must therefore be one
component of H with at least 5 vertices. Thus, neither u nor v can be a copy of
K. Hence z, = 0 since isolated vertices do not affect edge integrity. So uv must
connect 2 copies of P; or a copy of P3 to a copy of K> . It follows that the largest
component of H is either Ps or Ps. Now I'(Ps) = 4 so Ps € O} 1+ Thus, the
largest component of any candidate for membership in O} ,1 mustbe Ps. If H has

any components besides the Ps then H is not minimal in F' and therefore Ps is
the only graph in O3 ;. §
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3. Linear-time algorithms for fixed k

The fact that for each positive integer k the families of graphs F} and Fj are
lower ideals in respectively, the minor and immersion orders, is enough to imply
the existence of polynomial-time membership tests for these classes. The algo-
rithms would be known if the obstruction sets for these classes were known. The
Robertson-Seymour theorems establish only that the obstruction sets for Fi and
F are finite. We have seen in Section 2 that the obstruction sets for edge and
vertex integrity are at least computable.,

Because computing the vertex or edge integrity of a graph is NP-hard, it is to
be expected that there would be a hidden constant exponential in & in our proof
that, for all fixed k, membership in F;. and F] can be decided in time O(n). The
exponential hidden constant that we obtain is 3%,

Algorithms based on obstruction testing exhibit the additional peculiarity that
they do not generate any information like *“natural evidence” for the decision. In
other words, an algorithm for vertex integrity might respond *“yes” to a graph G
without giving any hint about what a vertex set V! C V(G) might be that would
satisfy the inequality |V'| + m(G — V') < k. The algorithm would only cormrectly
establish whether or not such a subset V' C V(G) exists.

The process of using a decision algorithm to construct evidence is termed self-
reducibility and has been studied from a number of perspectives in structural com-
plexity theory (see, for example [MP, S]). The starting point for our linear-time
algorithms is the design of efficient self-reductions for k-vertex and k-edge in-
tegrity. In particular, we will show that, given to use as an oracle an algorithm
that decides membership in Fi (F}), we can produce a witnessing set of vertices
(edges), when one exists, in time O(n) by making at most a constant &' number
of queries to the oracle. The constant k' depends linearly on k.

In order to state the theorems that follow we must fix a model of computation,
and in order to reflect linear time requirements on real machines we choose the
random access framework [AHU]. A random access oracle machine is equipped
with a special set of registers into which a word z can be writien. The machine
has a special query state g-, and two associated states g,., and gn,. Upon entering
go atransition is made to either g,., or g,, depending upon whether z € A, where
A is the oracle language for the machine.

Lemma 3. For every positive integer k there is a constant k' (that depends on k)

and an oracle algorithm of time complexity O(n) making at most k' calls to the
oracle, that for input a graph G of order n satisfying I(G) < k and m(G) > k,
finds a vertexv € V(G) suchthat (G —v) < k- 1.

Proof: Intime O(n) it can be determined whether any vertex u of G has degree
k or more. Since I(G) < k there is some subset V' C V(G) such that [V'| +
m(G — V') < k. Suppose u ¢ V' and let ¢ be the number of neighbors of u that
belong to V'. The component of G — V' containing u has order at least k + 1 — ¢,
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which implies that |V'| + m(G — V') > k + 1, a contradiction. Thus every such
subset V' must contain u, and I(G — u) < k — 1. Otherwise, G has maximum
degree at most k — 1. This implies that no component of G has order greater than
or equal to k3, since removing k vertices from a connected graph of maximum
degree k — 1 yields a graph with no more than k2 components.

In time O(7) a component of G can be found with order at least k + 1. Such
a component C exists, by the hypothesis that m(G) > k. Since C has order
bounded by k*, no more than log, k* oracle calls are necessary to discover a
vertex v satisfying the conclusion of the Lemma by binary search. We may take
k'=[31log, k]. I

Lemma 4. For every positive integer k there is a constant k' (that depends on
k) and an oracle algorithm of time complexity O(w) that for input a graph G of
order n satisfying I'(G) < k and m(G) > k, finds an edge e € E(G) such that
I'(G—e) <k-1.

Proof: The argument is similar. No component C of G can have order greater
than k2. Otherwise, if t = | E'| for a witnessing set of edges E’ then necessarily
t < k— 1 and removing ¢ edges from C yields at most ¢+ 1 < k components and
one of these must have order at least k.

In time O(7) a component C of order at least k + 1 can be found, and every
witnessing set of edges E' must contain some edge of C. Thus in at most (%)
queries of the oracle an appropriate edge e can be identified. This can be improved
by the observation that no vertex of G can have degree k or more. Thus k' = k*
oracle calls suffice. |§

Linear-time algorithms for integrity can be derived from the procedures embod-
ied in the Lemmas above by replacing actual oracle consultations by exhaustive
checking of all possible outcomes.

Theorem S. For all k in time O(w) it can be determined for an arbitrary graph
G of order n whether I(G) < k, and a set V' C V(QG) produced such that

V'|+ m(G-V" <k

when one exists.

Proof: In time O(n) it can be determined whether m(G) < k. If so, then
I(G) < k and V' can be taken to be the empty set. Otherwise, by Lemma 1,
if such a set V' exists then by a procedure requiring time O(n), a set of at most
k* graphs can be obtained from G, each by removing a single vertex, and for at
least one such graph G' = G' — v we must have I(G") < k — 1. Repeating this
process, we construct a tree T°, each vertex of which is labeled by a graph H, and
by asubset S of V', with H = G — S. The root is labeled by G, the children of the
root (there are at most k°) are labeled with the graphs described above, assuming
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m(@) > k, and in general a vertex of T at a distance r from the root is labeled
with a graph obtained from G by removing r vertices, each in a stage of applica-
tion of Lemma 1. A leaf of T at a distance r from the root is labeled by a graph
H for which one of the following holds

(1) The largest component of H has order greater than k — r, but the O(n)
procedure of Lemma 1 fails to find either a vertex of degree atleast k — r
or a component of order at most (k — r)3.
(2) The largest component of H has order at most k — r. (In this case we may
take V' tobe the set S for which G—S = H,and conclude that I(G) < k.)
If at each leaf (1) holds, then I(G) > k. T has order bounded by a constant
that depends on k, and thus the entire algorithm requires O(n) time. The hidden
constant is (k°)* = k3¢,
By an entirely analogous argument using Lemma 2 we obtain

Theorem 6. Forall k, in time O(n) it can be determined for an arbitrary graph
G of order n whether I'(G) < k, and a witnessing set E' C E(QG) produced,
when one exists. |

4. The complexity of edge integrity for variable k.

The main result of this section is a proof that the following decision problem is
N P-complete.

EDGE INTEGRITY

Input: A graph G and a positive integer k.

Question: Is I'(G) < k?

A similar result for the analogous problem VERTEX INTEGRITY has been
previously established {CEF]. Our proof will make use of the following subprob-
lem of GRAPH PARTITIONING [GJ] that is known to be N P-complete [HR].

GRAPH 3-PARTITION (G3P)

Instance: A graph G, and a positive integer k.
Question: Is there a subset E' C E(G) with |E'| < kand m(G — E') < 37

Theorem 7. EDGE INTEGRITY is N P-compiete.

Proof: The problem is plainly in N P. We assume that the order of G is at least
S. Given an instance (G, k) of G3P we show how to compute a graph G' and a
positive integer k' such that I'(G") < k' if and only if (G, k) is a “yes” instance
of G3P. Let k' = 4k. Let G be the graph obtained from G by identifying each
vertex of G with a vertex of a copy of the complete graph on k vertices. Let G’ be
the disjoint union of G and two copies of the complete graph on 3 k vertices.

Ifthereisasubset E' C E(G) with |E’| < k such that G— E' has nocomponent
of order greater than 3, then removing the same set of edges from G’ yields a graph
in which no component has order more than 3k, and so I'(G") < 4k =k'.
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Conversely, suppose I'(G') < 4k, and let E' be a set of edges minimizing
|E'| + m(G' — E'). Since at least 6 k — 2 edges must be removed from 2 K3, in
order to produce a graph with largest component of order less than 3 k and without
loss of generality we may assume E'N2 K3; = @, we musthave m(G'—E') > 3k.
I'(G") < 4 k immediately implies |E’| < k. If G — E’ has a component of order
greater than 3 then G' — E' has a component of order > 4 k. If E’ is nonempty
then we are done. Otherwise, the order of G is 4, contrary to our assumption. [

5. Summary

The picture of the computational complexity of the vulnerability metrics of vertex
and edge integrity appears now to be rather complete. For fixed k, the vertex in-
tegrity class is closed in the minor ordering, and the edge integrity class is closed
in the immersion ordering. Thus encouraged to look for small degree polynomial-
time algorithms we have seen that constructive algorithms with time bound O(7)

having reasonable hidden constants exponential in k are to be had, while for vari-
able k both problems are N P-complete.
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