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Abstract. Incomplete group divisible designs (IGDDs) are the group divisible designs
(GDDs) missing disjoint sub-GDDs, which need not exist. We denote by IGDD (v, n)
the design GDD[ k, 1, v; uv] missing a sub-GDD[ k, 1, n; un). In this paper we give
the necessary condition for the existence of IGDD (v, n) and prove that the necessary
condition is also sufficient for k = 3.

1. Introduction.

We suppose that the readers are familiar with the concept of pairwise balanced
design (PBD), group divisible design (GDD), mutually orthogonal Latin squares,
etc. (see [4], [12]). Here is the definition of IGDD missing one sub-GDD, adapted
from [9].

Definition 1.1: Suppose X is a finite set, G = {G1,G32,... ,Gi} is a partition of
X ,and A is a set of some subsets of X . SupposealsothatY C X,and H; = G;nNY
for1 <i< k.LetH = {H,..., Hi}. Then we say that we have an incomplete
GDD (X, G, A), briefly IGDD, missing a sub-GDD (Y, H, —), provided that no
block A € A can contain two members of a group G;, or two members of Y,
and that every pair {z,y} of elements with {z,y} € Y and {z,y} € G; for
1 < i < k&, is contained in a unique block.

Note that the “missing” sub-GDD needs not exist.

The singular indirect product construction plays an important role in various
combinatorial design problems such as mutually orthogonal Latin squares, block
designs, etc., and IGDD is instrumental in this construction.

The existence of IGDD} ( v, n) is the same as the existence of I A(v, n). Started
from J. D. Horton [6] much work on this problem has been done by W. D. Wallis,
K. Heinrich, L. Zhu ([S], (10], [13], [14]) and others. This problem is finally solved
in [5). In [9], D. R. Stinson has given a very general construction for GDDs using
IGDDs. On the other hand, H. Hanani [4] and A. E. Brouwer, A. Schrijver, H.
Hanani [3] have discussed the existence of GDDs for & = 3 and 4. From all of
these the natural and direct generalization is the existence problem of IGDDs.

By using recursive constructions of Wilson type, the direct construction of Bose’s
mixed differences, and other special constructions, we shall prove in this paper that
the necessary condition for the existence of IGDD?, (v, n) is also sufficient.

Now we give necessary condition for the existence of IGDDﬁ (v,n) and IGDDi

(v,n).
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In Definition 1.1, suppose z € X —Y andy € Y. Denote by 7., ry the numbers
of blocks containing z, y, respectively. Denote by b the number of blocks of an
IGDD(v, 7). Let 7z, be the number of blocks each containing z and one
elementin Y. Let r, & be the number of blocks each containing z and no element

inY. Then
r.=v(u—1)/(k-1)

ry=(v—n)(u—-1)/(k-1)

b=u(u— )(v? —u?)/k(k—1) .

Tek-1=(u—1n

Te = Tphk—1+ Tzk
Since r,; > 0, we have v > (k — 1)n. Since r;, r, and b are all integers, we
then have

Theorem 1.2. The necessary condition for the existence of an IGDD*(v, ) is

v2>(k—Dn

v(u—1)=0 (mod k—1)
(v=m)(u—1)=0 (mod k—1)
u(u— 1)(v? =) =0 (mod k(k— 1))

Corollary 1.3. The necessary condition for the existence of an IGDD3(v,n) is
v > 2n,and

@ v=0,4 (mod 6) and v,n=0 (mod 2), or

(i) u=1,3 (mod 6) and v,n are any positive integers, or

ven v=0 (mod 6) v=2,4 (mod 6)
@) u=2 (mod 6) a"d{ n=0 (mod 6), & { n=2,4 (mod 6),

. v=0 (mod 3) {vsl,z (mod 3)
=5 (mod 6) and r

W u=5( ) {nEO (mod 3), n=1,2 (mod 3).

2. Constructions.

First we describe some recursive constructions. Let Z,, denote the set of integers

0,1,...,n— 1, which forms a ring of integers modulo n.

Theorem 2.1. Suppose there exists 2 GDD[{uy,... 45}, 1, m;mu] and an
IGDD¥(v,n) forevery h = u;,1 < i < s. Then there exists an IGDD%(mv, mn).

Proof: Suppose the GDD[{u,... ,t,}, 1, m; mu] is defined on Z,, x Z, with
groups Zm % {j},j = 0,1,...,u — 1. For each block B, where |B| = u;,
1 < i < s, construct an IGDD% (v,n) on B x Z,. Then, all the blocks of
these IGDDs form the block set of the required IGDD¥(mv, mn) based on the set
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Zm X Zy X Z,. If each input IGDD has its missing sub-GDD based on B x Z,,
then the resulting IGDD has its missing sub-GDD basedon Z,, X Z, X Z,. §

Sincea (u, {uy,...,u,}, 1)-PBD can be regarded as a GDD with all groups of
size one, we then have from Theorem 2.1 the following.

Theorem 2.2, Suppose there exists a (u,{u1, ... ,u,},1)-PBD and an IGDD¥,
(v,n) foreveryu;, 1 < i < s. Then there exists an IGDD%(v, 7).

Theorem 2.3. Suppose there exists a TD(u + 1,q). Suppose also there exist
some non-negative integersti, 1 < 1 < g, such that for a given positive integer m
andany1 < i < g, anIGDD%(m+1;,1;) exists. Then there exists an IGDD*(mq
+r,7), wherer =t + ...+ t,.

Proof: Suppose (Y, H, B) isa TD(u + 1, g), where u is a positive integer, H =
{H,H2,... ,Hy, Hun1}, Hus1 = {71,22,... ,7,}. We define u weight func-
tions Wi: Y — Z*u{0},for 1 < i < u, such that

m ifz € H;,
W.-(z)={0 ifz € Hj, j<uandj#i,
ti if.’l;::z:)' EHM-]’

Then, (1) for each block B € B, there exists an IGDD(m + t;,t;), where ¢; =
Wi(z;), z; € BN Hyy and 1 < 1 < u; (2) for each group H;, 1 < i < u, there
exists a trivial GDD with group size vector (0,...,0,7,0,...,0) and empty
block set. From the general construction for GDDs in Stinson [9], we obtain an
IGDD with one missing sub-GDD, which has the group size vector (r,1,...,7).
The IGDD has the group size vector (mg + r,mg + r,... ,mq + r) and is the
required IGDD¥(mgq + r, 7). 1
The following lemma is obvious and we shall use it quite often without men-
tioning.
Lemma 2.4. Suppose there exist an IGDDﬁ(v, vy) and an IGDD,’j( vi,n). Then
there exists an IGDD%(v, ).

Next, we give some further recursive constructions.

Theorem 2.5. Suppose there existsaGDD( k, 1, m; mt). If there exist an IGDD*
(m + n,n) and an RTD(k, u), then there exist an IGDD(tm + n,m + n) and
an IGDDﬁ(tm +n,mn).

Proof: Suppose the GDD is based on Z,, X Z;. Give each element weight u
and use RTD(k, u) as input designs, we obtain a GDD[ k, 1, mu; mtu]. Since
the TD(k, u) is resolvable, for any block B of the initial GDD the input design
contains blocks B x {i} for 0 < ¢ < u — 1. We break the groups of size mu by
constructing IGDDX(m + n, ) on each group such that for group Z,, x {7} x 2,
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the IGDD has groups Zm x {j} x {i}U{oo}, ... ,007},i=0,1,... ,u—1. Inthe
resulting design we delete, for each i € Z,,, all the blocks in the set Z,, x Z; x {i}
and obtain the required IGDD!(¢m + n, n). For some j if we further delete all
the blocks in the set Zm X {j} X Z,, we obtain an IGDDE(tm + n,m+n). 1

Theorem 2.6. Suppose there exists a GDD([3,1, m;mt]. If there exists an
IGDD? (m+n, r), then there exist an IGDD3 (tm+n, m+n) andanIGDD3}(tm+
nn.

Proof: It is obvious that an RTD(3, 5) exists. Then apply Theorem 2.5. |

Corollary 2.7. If an IGDD}(m+ n,n) exists, then an IGDD?(3m + n,m+ n)
and an IGDD3(3m + n,n) exist.

Proof: The existence of a GDD[3, 1, m; 3m] is obvious, then apply Theorem
2.6. |

The following is a generalization of Theorem 2.5.

Theorem 2.8. Suppose there exists an IGDD§(m+r, 7). If there existan IGDD%
(m+ 7+ h,r+ h) and an RTD(k, u), then there exists an IGDD%(tm + tr + h,
tr+ h).

Proof: Suppose the IGDD is based on Zp., x Z;. Give each element weight u
and use RTD(k, u) as input designs like we did in Theorem 2.5, we obtain an
IGDD. Break its groups with IGDDY(m + r+ h, 7+ h), based on (Zpm+r x {7} U
{00!, ... ,00"}) X Z,, and delete all the blocks in each set Zm., x Z¢ x {j} for
0 < j < u— 1, we obtain the required IGDDf(tm + tr + h,tr + h), based on
(Zmar X ZyU {00,... ,00"}) x Z,. |

Theorem 2.9. For any positive integer m, if there exists an IGDD}(m + 1+
n, 1 + n), then there exists an IGDD3(3m + 3+ n,3 + n).

Proof: Apply Theorem 2.7 witht =3,k =3,u=5,7r=1and h = n. Since
N(m+1)>1,an IGDDg(m + 1, 1) exists. An RTD(3,5) is obvious and the
conclusion then follows. |

Theorem 2.10. Ifthere exists an IGDDg (v,n), thenan IGDDg (vm, nm) exists
for any positive integer m.

Proof: Give each pointof the IGDD§ (v, n) weightm. SinceaGDD(3, 1, m; 3m]
exists, we obtain the required IGDD. ]
Finally, we use Bose’s mixed difference method to give some direct construc-
tion for IGDDZ (v, n), which will be used in Section 5 and Section 6.
Suppose (X, G, A) is an IGDD missing sub-GDD (Y, K, —) withG = {G, ...,
Gs}, Gi = (Zyn U{o0!, ... ,00"}) x{i}, where v — 22 = 0 (mod 3),
H = {Hi,...,Hs}, Hi = {oo},... 00"} x{i}. For brevity we simply write
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(2); or z; for {z} x {i} and oo} for {0o’/} x {i}. Consider initial blocks defined
on (Z,—,U{oo!,...,00"}) xZs by filling the gaps in the following patterns:

{()0,()1:()3} {()0)()1;()4}
- o (1, ()3 - o, (, ()
L2 (O n }(1):”32" OO,
{Co, (1, ()} {0, (n,()a}

{006, ( 1, ()a}
{w(l))( )2)( )3}

2n (II1).

{008, ( 1,()a}
{093, ( )2,( 2}
We develop these initial blocks modulo v — = for the elements and modulo 5 for
the indices. Then we only need to verify the (1, 0) -mixed differences and (4, 1)-
mixed differences. Once part (T) and part (II) are constructed properly, that is,
they produce different (1,0)-mixed differences and different (4, 1)-mixed dif-
ferences, part (III) can be constructed freely. For example, if d does not appear
as a (4, 1)-mixed difference from part (T) and part (II), we can take some block
{00}, (O)1, (d)a} in part (III) in order that d does appear as a (4, 1)-mixed dif-
ference from this block. In this way we can obtain an IGDD§ (v,n) iff the (1,0)-
mixed differences from part (I) and part (ID) are all different and so do (4, 1)-
mixed differences.

3. Preliminaries.

In order to prove the main necessary and sufficient condition in Section 7 we give
some preliminary results here, which will be used in the subsequent sections.

By A. E. Brouwer [2], T. Beth, D. Jungnickel and H. Lenz [1], R. Roth and M.
Peters {7], we have

Lemma3.1. Denote B = {10, 14,18,22,26,30,34,38,42},C = {20,28, 44,
52}, and A = {n| nisaninteger> 5} — {6} — B — C. Ifq € A, then there
exists a TD(6,q). If g € B, then there exists a TD(6, 1q). Ifg € C, then there
exists a TD(6, Lq).

Lemma 3.2. There exists an IGDD3(3 k,0) for any positive integer k.

Proof: This IGDD is equivalent to a GDD[3,1,3k; 15k] and the latter exists
from Theorem 6.2 of H. Hanani [4]. [ ]

The following theorem is essentially Theorem 2.2 in Chapter 6 of [8].

37



Theorem 3.3. The necessary and sufficient condition for the existence of IGDD
(v,m) isv>2n.

In the remaining part of this section we shall show the existence of IGDD‘; (v,n
for some special parameters v and n. In the following lemma we list the initial
blocks for an IGDD2 (v, n) based on the set X = (Z,_,U{o0',... ,00"}) x Zs,
where the element is briefly written as z; or oo!. By (mod v — n, mod 5) we
mean that the initial blocks are developed mod v — = for the elements and mod
S for the indices. By (. , mod 5) we mean that development is done only to
indices. The notation (mod v — n, ) has the similar meaning. In each case
the groups G; are ( Zy—, U {c0!,... ,00™}) x {i} and the missing sub-GDD has
groups H; = {oo},... 00"} x {i}.

Lemma 3.4. There exists an IGDD}(v,n), where (v,n) € {(5,1),(5,2),
(7,2),(9,3),(21,9),(11,4),(16,7),(17,8) }.

Proof: For each case the initial blocks are listed in Appendix. 1

If k ¢ K, we denote by (v, K U {k*}, 1)-PBD the PBD containing a unique
block of size k. Let B(K U {k*}) denote the set {v | 3(v, K U {k*}, 1)-PBD}.
By R. M. Wilson [11] we have

Lemma 3.5. Ifu =5 (mod 6), thenu € B(5*,3).
Corollary 3.6. There exists an IGDD3(2,1).

Proof: Since 11 € B(5*,3), there exists a (11,{5* 3}, 1)-PBD. Delete one
point not belonging to the block of size 5, and delete also that block. This gives
an IGDD3(2, 1). |

Lemma 3.7. There exists an IGDD3(v,n) for(v,n) = (13,4),(14,5).

Proof: Apply Theorem 2.10 with the IGDD2(2, 1) in Corollary 3.6, we obtain
an IGDD3(6,3). Apply Theorem 2.9 with this IGDD and the IGDD3(5,2) in
Lemma 3.4, we get the required IGDDs. [ |

Lemma 3.8. There exists an IGDD3(v,n) for(v,n) € {(31,13),(13,1),
(13,5),(11,5),(7,1),(19,7,(17,5),(25,7),(23,11) }.

Proof: Apply Corollary 2.7 with IGDD2 (v, n) for (v,n) = (13,4),(5,1) and
(5,2), we obtain the first four IGDDs. Since IGDD2(7,2) and IGDD3(2, 1) ex-
ist, we have from Lemma 2.4 and IGDD2( 7, 1). Then apply Corollary 2.7, we get
the sixth IGDD. Give respectively weight 2 and 3 to each point of a GDD[ 3,1, 2;
8], we have a GDD[ 3, 1,4; 16] and a GDD[ 3, 1, 6; 24]. Applying Theorem 2.6
with IGDD3 (5, 1) and IGDD2(7, 1) gives the next two IGDDs. Apply Corollary
2.7 with IGDD2( 11, 5), we obtain the last IGDD. ]
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Lemma 3.9. There exists an IGDD:(v, n) for(v,n) € {(4,2),(6,3),(8,4),
(12,6),(16,8),(24,12)(10,5), (10,4),(20,8),(18,6), (14,2), (22,10),
(15,3),(28,10),(34,16)}.

Proof: Apply Theorem 2.10 with the known IGDDs shown above. [ |

Lemma 3.10. MemexistsanIGDD}(v,n) for(v,n) € {(4,1),(8,2),(16,4),
(10,1)}.

Proof: Apply Lemma 2.4 with IGDDg(v,n), where (v,n) = (4,2),(2,1),
(8,4),(16,8),(10,5) and (5, 1). [

4. Existence of IGDD3 (v,n) forn=0 (mod 3).

We are now in a position to prove the existence of IGDDZ (v, n). In this section

we deal with the case n = 0 (mod 3). By Corollary 1.3, we must now have
v>2nandv =0 (mod 3). Let n = 3k, v — n = 3¢q. Obviously, we have
g > k.Let A, B and C be the sets in Lemma 3.1,

Lemma 4.1. If g € A, then there exists an IGDD(v,n), wherev = n = 0
(mod 3) andv > 2n

Proof: Since ¢ € A, we have from Lemma 3.1a TD(6,q). Lett; =t =...=
ty = 3,tgs1 = ... = t, = 0 in Theorem 2.3. By Lemma 3.2 and Lemma 3.9
there exist IGDD2(3,0) and IGDD2(6,3), then we have from Theorem 2.3 an
IGDD3 (3¢ + 3k, 3k), thatis, an IGDD3 (v, n), wherev = n= 0 (mod 3) and
v>2n [ ]

Lemma 4.2. Ifq € B U C, then there exists an IGDD} (3¢ + 3k,3k).

Proof: For g € B, we have aTD(6, 7q). If kis even, lett) = ... =11, = 6,
tige1 = ... = t, = 0 in Theorem 2.3. By the existence of IGDDZ(12,6)
and IGDD2(6,0), we have an IGDD3(3¢ + 3k,3k). If k is odd, since 3¢ >
y(k—1+ 1, wecantake ty = ... =ty gy = 6, tpny = 30 byeonen =
... =13,= 0 in Theorem 2.3. By the existence of an IGDD2(9, 3), there exists
an IGDD3 (3¢ + 3k,3k).

For g € C, we have a TD(6,1q). Lett; € {0,1,...,12}, where 1 <i < g.
By the lemmas in Section 3 we have an IGDD3( 12 + t;,1;) for any t;. As }q >
3k/12, we could choose suitable ¢; such that¢; + ... + t}q = 3 k. Then we have
an IGDD2(3q + 3k,3k). |
Theorem 4.3. Whenn= 0 (mod 3), the necessary and sufficient condition for
the existence of IGDDE(v,n) isv =0 (mod 3) andv > 2n.

Proof: By Lemma 4.1 and Lemma 4.2 we need only check the cases when ¢ €
{1,2,3,4,6} and ¢ > k. We list these parameters (v,n) = (3¢ + 3k,3k) as
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follows.
g=1, (3,0 g=4, (12,0) g=6, (18,0)

(6,3) (15,3) (21,3)
g=2, (6,0 (18,6) (24,6)

9,3 (21,9) (27,9)

(12,6) (24,12) (30,12).
g=3, (9,0 (33,15)

(12,3) (36, 18)

(15,6)

(18,9)

The existence of IGDD? (v, n) for these v and n can be obtained directly from the
results in Section 3 or by applying Theorem 2.10 with those known results.

5. Existence of IGDD? (v, n) for n=1 (mod 3).

According to Corollary 1.3, we have v > 2nand v = 1,2 (mod 3). First,
we consider the case when v = 1 (mod 3), thatis,v — n= 0 (mod 3). Let
n=3k+1andv—n=3q. Sincev > 2n,wehaveg > k+ 1.

Theorem 5.1. Supposen=v =1 (mod 3) andv > 2n. Then there exists an
IGDDY(v,n).

Proof: Apply Theorem 2.3 with appropriate ¢; and IGDDs. For ¢ € A and a
TD(6,g),take ¢} = ... = tx = 3,441 = 1,tks2 = ... = t,. Since there
are IGDD2 (v, n) for (v,n) = (6,3),(4,1),(3,0), we obtain an IGDD§(3q +
3k+ 1,3k + 1), that is, IGDD3 (v, n).

For g € B, there exists a TD(6, 39). Since 3¢ > 3:(k + 1), we have 3¢ >
ki+ 1if k = 2k iseven,and g > ka + 1 if k = 2k, + 1 is odd. Write
3k+1=ky-6+1-10r3k+1= kz-6+1-4. Then the conclusion follows from the
existence of the input IGDDg(u,n) for (v,n) = (12,6),(7,1),(6,0),(10,4).

For g € C, there exists a TD(6, +¢). Since 12- Lg > 3k+ 1 and IGDD3(12+
ti, 1) exists foranyi € {0,1,...,12}and 1 < i < #g, we could choose suitable
t;suchthatty + ...+ 11, = 3k + 1 and get the required IGDD.

To complete the proof we need only check the cases when g € {1,2,3,4,6}
and g > k + 1. This leaves the parameters (v,n) = (3¢+ 3k+ 1,3k + 1) as
follows:

g=1, (4,1) g=4, (13,1) g=6, (19,1)

g=2, (7,1 (16,4) (22,4)
(10,4) (19,7) (25,7)

g=3, (10,1) (22,10 (28,10)°
(13,4) (31,13)
(16,7) (34,16)



The existence of those IGDDs can be obtained from the results in Section 3 and
Lemma 2.4, ]

Next, we consider the case whenv = 2 (mod 3), thatis,y—n=1 (mod 3).
Letn=3k+ 1andv—n=3¢g+ 1. Sincev > 2n, wehave g > k.

Lemma 5.2. Suppose k < g < $(Sk+ 1). Then there exists an IGDD3(3q +
3k+2,3k+1).

Proof: We use Bose’s mixed difference method described in Section 2. We need
only list the part (T) and part (II) and show that the (1, 0)-mixed differences are
different, and so do the (4, 1)-mixed differences. Based on (Z34.+1 U {0o* | 1 £
i < 3k + 1}) x Zs, the initial blocks for the first two parts are:

0o (3g00s (g+2k+1) 01 (g—k)s

0o (3¢g—1nl3 (g+2k+3) 0, (g—k+1)4

. (In; ¢* : (n.
0o (2g+k+1)1(g—k—1) (3¢—1)0 01 (2¢g—2k—1)4

First, we consider the (1, 0)-mixed differences. From the first two columns of
part (I) we have differences 2¢g + k+ 1, 2¢+ k+ 2,...,3¢. Part (I) yields
differences 2,4,...,2¢g—2kand3k+ 1,3k+2,... ,g+ 2k. Since k < ¢ <
1(5k+1),wehave2g—2k < 3k+2 andg+2k < 2¢+ k+ 1. This guarantees
that all these differences are different.

Next, we consider the (4, 1) -mixed differences. From part (I) we have0, 1,... ,
g—k-1landg+2k+2,q+2k+4,...,3g. Part (II) yields differences
g—k,g—k+1,...,2g—2k—1.Sinceg < 3(5k+1),wehave2¢—2k—1<
g + 2k + 2. Therefore, these differences are also different. This completes the
proof. |

Lemma 5.3. Suppose %(5k+ 1) < ¢ < 4k. Then there exissanIGDD§(3q+
3k+2,3k+1).

Proof: We construct on ( Z3g U {oo' | 1 < i £ 3k+ 1}) x Zs initial blocks
similar to Lemma 5.2. The first two parts are:

00 (29— 2kEn(3k+2)s 00 01 (29 + k+ 1

0p (2¢g—2k+1);(3k+4); 0o 11 (29 + k)4

. i ¢k . (n.
00 (3q—3k—1)i(2¢+k); 0o (g—k—Da(g+2k+2)

For the (1, 0) -mixed differences, we have from part () the differences 2¢—2 k,
2gq—2k+1,...,3¢—3k+1,and from part (I) the differences 0,1, ... ,g—k—1
andg—k,g—k+1,...,2q—2k— 1. These differences are obviously different.
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For the (4, 1)-mixed differences, we have from part (I) the differences 3k + 2,
3k+4,...,2g+kandg—4k—1,9—4k,...,29 — S5k — 2. Part (T) yields
the differences 3k + 3,3k + 5,... ,2g+ k+ 1. Here,g—4k — 1 =49 — 4k
(mod 3¢+ 1). Inother words, we have differences 3k+2,3k+3,... ,2¢+k+1
and4g—4k,4g—4k+1,...,2¢g—5k— 2. Since -,‘;(Slc-t- 1) < g < 4k,
wehave2g+ k+1 <4g—-4kand2g— 5k —2 < 3k + 2. Therefore, these
differences are different. And the proof is complete. |

Lemma 5.4. TherecxistsanIGDDg(3q+ 3k+2,3k+1) forg= %(Sk+ 1).
Proof: The initial blocks are:

00 0, (5k+2 —2¢)s 0o (g — k) (g+2k+ 1)
0o 1) (5k+4 —2¢)s 0o (g —k+1)1(g+2k)s

q—k : (n; g—k . (n.
0o (g—k— 1n(3k)s 0o (2g—2k—1)1(3k+2)4

The (1, 0)-mixed differences are:

0,1,...,g—k-1;
g—k,g—k+1,...,2¢—2k~-1;
29—2k,2q—-2k+1,...,3¢-3k-1.

They are obviously different. The (4, 1)-mixed differences are:
S5k—2g¢+2,5k—2qg+4,...,3k
g—4k—-1,q—4k,...,2q—-5k-2;
S5k—2g+3,5k—2qg+5,...,3k+1.

The first and third lines can be combined as
Sk—2g+2,5k—-2q+3,...,3k+1.

Since g = (5k+ 1) andg—4k— 1 = 4g — 4k (mod 3¢ + 1), we have
3k+ 1 < 4q —4k. So, these differences are different and the proof is complete.
|

Combining Lemmas 5.2, 5.3 and 5.4 gives the following.

Lemma 5.5. Suppose k < g < 4k. Then there exists an IGDD3(3q + 3k +
2,3k+1).

Lemma 5.6. Ifg > 4k + 1, then there exists an IGDD3(3q + 3k + 2,3k + 1).

Proof: In the case when ¢ — k € A, there is a TD(6,q — k). Since ¢ — k >
3k+ 1, wecantake ty = ... = tage1 = 2 and tapez = ... = tg—k = 0 in
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Theorem 2.3. The input IGDD3(v,n) for (v,m) = (3,0),(5,2) come from
Section 3. Then an IGDD3 (3¢ + 3k + 2,6k + 2) exists. Applying Lemma 2.4
with IGDD2(6 k + 2,3 k + 1) produces the required IGDD.

For ¢ — k € B, there exists a TD(6,3(g — k)). Since ¢ > 4k + 1, we
havez(q—k) >k+1 Takingt) = ...=t, = 6,tk41 = 2,842 = ... =
ty—k = 0, we obtain an IGDD3 (3¢ — 3k+6k+2 ,6 k + 2) and then the required
IGDD3(3q+ 3k+2,3k+1).

For g — k € C, there exists a TD(6, ;(q —k)). Smceq >4k+ 1, we have
-(q k) > 2(lc—l)-l- 1if kisoddand : $(g—k)>1 3k + 1ifk is even. Write
6k+2=3(k—1)-12+1.8 andtaketl =..= t*(k_,) = 12,4144y = 8,
th(k-1)e2 = +-o = tyce_gy = O for the former. Wrile 6k+2= 3k-12+2 and
take the corresponding t; for the latter. We obtain the required IGDD.

Now, there remains the case ¢ — k € {0, 1,2,3,4,6} to be considered. Since
3k+1< g—k <6,wehave0 < k < 1. More specifically, we have g — k = 4,
6ifk=1,andq— k=1,2,3,4,6 if Kk = 0. That is, we need consider those
IGDD3 (v, n) where (v,m) = (20,4),(26,4),(5,1),(8,1),(11,1),(14,1),
(20, 1). All these can be handled by Theorem 2.10, Lemma 2.4 and the results in
Section 3. The proof is now complete. |

Combining Theorem 5.1, Lemma 5.5 and Lemma 5.6 we obtain the main result
of this section.

Theorem 5.7. Whenn=1 (mod 3), the necessary and sufficient condition for
the existence of an IGDDs(v n) isv=1,2 (mod 3) andv > 2n.

6. Existence of IGDD3(v,n) forn=2 (mod 3).

By Corollary 1.3 we have in this case that v > 2nand v = 1,2 (mod 3). We
first consider the case when v = 2 (mod 3), thatis,v — n= 0 (mod 3). Let
n=3k+2 andv—n=3q. Since v > 2n, weknow thatg > k + 1.

Theorem 6.1. Supposev =n=2 (mod 3) andv > 2n. Then there exists an
IGDD?} 3(v,m).

Proof: Apply Theorem 2.3 again like we did in the proof of Theorem 5.1. For .
g € Aand aTD(6,q), take t; = ... tk-3tk+1—2tk+2—. =1, =
0. Forg € B, thereexnstsaTD(G,zq) Write 3k + 2 = -(k— 1)-6+ 1.5
if kis odd, and 3k + 2 = —k 6+ 1.2 if k is even. Using IGDDg(v n) for
(v,m) = (12,6),(11,5),(6 0) and (8,2) we obtain the required IGDD. For
g € C, we have a TD(6, ;:-q). Since there exists an IGDD3 (12 + ¢;,t;) where
t;€{0,1,...,12},i=1,2,..., }q,and ;¢ > (3k + 2) /12, we could choose
suntablet.suchthattw .+t =3k+2. Hence,anIGDD3(3¢+3k+2,3k+2)
exists.
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Now, we consider the remaining cases ¢ = 1,2,3,4,6. We list the parameters
(v,m) =(3¢+3k+2,3k+ 2) as follows:

¢=1, (5,2 g=4, (14,2) g=6, (20,2)

¢=2, (8,2 (17,5) (23,5)
(11,5) (20,8) (26,8)

g=3, (11,2) (23,11) (29,11)°
(14,5) (32,14)
(17,8) (35,17)

All these IGDDs, except two with (v,n) = (29,11) and (35, 17), exist from
Theorem 2.10, Lemma 2.4 and the results in Section 3. Applying Corollary 2.7
with m = 9 and n = 2,8, we get an IGDD2(29, 11) and an IGDD3(35,17).
Therefore, the proof is complete. |
We now tumn to consider the case when v = 1 (mod 3), thatis,v —n= 2
(mod 3).Letn=3k+2 andv—n= 3¢+ 2. Sincev > 2n, we have ¢ > k.

Lemma 6.2. Suppose k < q < 4k. Then there exists an IGDD3(3q + 3k +
4,3k+2).

Proof: When g = k, the required IGDD comes from the IGDD2(2,1). When
k<g<gz L(5¢) +2, we use Bose’s mixed difference method and llst the first two
parts of initial blocks as follows:

0o (3g+ 1):103 (g+2k+3) 01 (g— k)
0o (3ghi13 (g+2k+5) 01 (g—k+1)a
(D; g%y . (ID).
0o (2g+k+2)1(g—k—1) (3¢+1)0 01 (2¢—2k~1)
When 1(5k) + 2 < ¢ < 4k, we take
00 (2¢g—2kn(3k+3)s 0o 0y (2g+ k+2)
0o (2g—2k+1)(3k+5) O 1) (2g+k+ 1)
. (D, ¢y . (0.
0o (3g—3k—1)1(2g+k+1)s 0o (g—k—1n(g+2k+3)4

It is a routine matter to verify that the (1, 0)-mixed differences in each case are
different and so do the (4, 1)-mixed differences. Thus the proof is complete. J

Lemma 6.3. Suppose q > 4k + 1. Then there exists an IGDD? 5(3¢+ 3k +
4,3k+2).

Proof: We mainly use Theorem 2.3. In the case wheng — k € A,aTD(6,q— k)
exists. Since 3¢ — 3k > 3(3k+ 1) > 6k + 4, there exists an IGDD: (3¢ — 3k +
6k+4,6k+4), andthenaanDD3(3q+3k+4 3k+2).



For g — k € B, there exists a TD(6, (g — k)). Since +(¢g—k)-6 > 6k+ 4,
there exists an IGDD3(3¢+3k+4,3k+2). If g—k € C, thereisa TD(6, +(g—
k)). Write 6k+4 = 3(k—1)-12+ 1-10 if k isodd,and 6 k+ 4 = Lk 12+ 1.4
if k is even. Since 1—(q— k)-12 > 6k + 4, we also have the required IGDD.

Ifg—ke{1,2,3,4,6},wehave3k+ 1 < g — k < 6, which leads to the
parameters (v,n) = (3g+ 3k + 4,3k + 2) as follows,

(7,2),(10,2),(13,2),(16,2),(22,2),(22,5),(28,5).

All these IGDDs exist from the result in Section 3 and Lemma 2.4 and Theorem
2.10. The proof is complete. |

Combining Theorem 6.1, Lemma 6.2 and Lemma 6.3 we have

Theorem 6.4. When n = 2 (mod 3), the necessary and sufficient condition
for the existence of an IGDD3(v,n) isv=1,2 (mod 3) andv > 2n.

7. Existence of IGDD3 (v, n).

From Corollary 1.3 we know the necessary condition for the existence of IGDD?
(v, n). Inthis section we shall prove that this necessary condition is also sufficient.

Theorem 7.1. For u= 1,3 (mod 6), the necessary and sufficient condition for
the existence of IGDD3(v,n) isv > 2n.

Proof: Here u € B(3). The conclusion follows from Theorem 3.3, Theorem 2.2
and Corollary 1.3. ]

Theorem 7.2. For v = 5 (mod 6), the necessary and sufficient condition for
the existence of IGDD3 (v, n) isv > 2nand

{uEO (mod 3) or {vEl,Z (mod 3)
n=0 (mod 3), n=1,2 (mod 3).

Proof: By Lemma 3.5, we have 4 € B(5*,3). From Theorem 4.3, Theorem
5.7 and Theorem 6.4 there exists an IGDD3 (v, n) for the given parameters v and
n. Therefore, an IGDD2 (v, n) exists from Theorem 2.2 and Theorem 3.3. This
proves the sufficiency. The conclusion then follows from Corollary 1.3. [ |

Theorem 7.3. For « = 0,4 (mod 6), the necessary and sufficient condition
for the existence of IGDD3(v,n) isv >2n and v=n=0 (mod 2).

Proof: Sincev=n=0 (mod 2) and v > 2n, there exists an IGDD3} (L v, 1n)

from Theorem 3.3. Since u = 0,4 (mod 6),2u+1=1,3 (mod 6), and then
2u + 1 € B(3). Deleting one point from a (2u + 1,3, 1)-BIBD, we obtain a
GDD[ 3, 1,2;2u]. By Theorem 2.1 anc Corollary 1.3 we have the result. 1
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Theorem 7.4. For u = 2 (mod 6), the necessary and sufficient condition for
the existence of IGDD3 (v, ) isv > 2n, and

v=0 (mod 6) {v52,4 (mod 6)
{nEO (mod 6), & 1 n=2,4 (mod 6).

Proof: Here,2u+1=5 (mod 6). So, we have from Lemma 3.5 that2u+1 €
B(5*,3). Deletc one point froma (2u+1,{5* 3}, 1)-PBD, not belonging to the
block of size 5, we obtain a GDD[{5*,3},1,2; 2u). Since an IGDD3 (v, +n)
exists from Theorem 7.2, and an IGDD3( }v, 1n) exists from Theorem 3.3, we
then obtain the sufficiency from Theorem 2.2, The conclusion follows from Corol-
lary 1.3. |

Combining the above theorems of this section we have the main theorem of this
paper.

Theorem 7.5. The necessary condition for the existence of an IGDD3(v,n),
shown in Corollary 1.3, is also sufficient,
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Appendix
IGDD3(5,1), X =(2Z4 U{o0}) x Zs,

oop 01 24 O 1} 24
oop 02 03 0o 31 03 (mod 4, mod 5)

IGDD}(5,2), X =(Z3 U {oo',00?}) x Zs,

oo(‘, 0 2 oo% 0; 04 0o 01 13

oo 11 14 oof 11 24 lo 21 24

oo(l) 2 04 oo% 2 14

oo(l, 0 15 oo% 0 25

00(1, 12 03 oo% 12 13

005 22 23 oo(z, 2, 03 ( , mod 5)

(o

IGDD3(7,2), X = (25U {oo!,0?}) x Zs,

oo(’, 01 04 oo% 01 24 00 01 13
00(1, 02 23 oo% 02 13 00 31 14
(mod 5, mod 5)

IGDD3(9,3), X =(Zs U {oo!,00%,00°}) x Zs,
oop 0y 04 o0} 0 24
00(1) 02 03 oo?, 02 53

oo% 0 14 0 1; 33
003 0, 23 2 0,5  (mod6,modS5)
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