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Abstract. The conjugation relation among the subspaces of a finite unitary geometry
and its properties are studied. Then they are used to find some enumeration formulas for
the subspaces of the unitary geometry, to prove a type of transitivity of the unitary group,
10 construct PBIB designs, and to establish the isomorphism between some known PBIB
designs.

1. Introduction.
Let g be a prime power, F, the finite field with g elements, and F. the finite field
with g2 elements which has F, as a subfield. It is well known that the mapping

a—a=a?
is an automorphism of order 2 of Fz, and fixes the subfield F,. The set of matri-

ces T of order n over Fjz such that TT = I ,» where T is obtained from T by
replacing its (4, 7) entry ¢;; by £;; (1 < 4,7 < ), is a group with matrix multipli-
cation as the composition. This group is called the unitary group of degree nover
Fg and denoted by U, ( Fj2). Let V,(F2) denote the n-dimensional vector space
over Fp. The unitary group U, ( F;z) can be viewed as a transformation group of
Va(F2) -Vo(F,2) with the unitary group U,( Fz) as its transformation group is
called the n-dimensional unitary space or unitary geometry over F;z, and also de-
noted by V,( Fy2). Throughout the present paper, we will conduct our discussion
in the n-dimensional unitary geometry V,,( Fj2).

Two vectors o and 8 in V,( F,2) are said to be orthogonal if «f' = 0. Let P
be an m-dimensional subspace of V,( F;2). We use P* to denote the set of such
vectors that are orthogonal to all the vectors in P. Obviously, P* is an (n— m)-
dimensional subspace, and is called the conjugate subspace of P.

Let Q be an m x nmatrix of rank m over F;z. We will use the same symbol
Q to denote the subspace that is spanned by the rows of . Q is said to be an
m-dimensional subspace with index r if the rank of Qﬁ' is r, and is simply called
an (m, r) -type subspace. )

Wan et al [4] computed the number N(m, r; n) of the (m, r)-type subspaces
of Vo ( Fy2), and the number N(my, r1; m,7; n) of (my,r)-type subspaces that
are included in a given (m, r) -type subspace. For convenience of reference, we
restate these results as follows:
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Theorem 1.

n:' _apsy (1)) (u+r—2m) s
N(m,riny=4 Tateconga@m 4 s dr<mandntr>2m
0 otherwise.
¢y
Theorem 2. Suppose thatr < m andn+ r > 2m. Then
N(mi,m15m,7;n)
M Mheren—zmiszier(8 = (=1) TTar g1 (6% = 1)
k=max (0,["'_1.!_1_‘2" ’!]) Hi=](q'-(_l)') Hi=1-k—n(q2'_l) niﬂl(qz‘ - 1)

. qr,(r+r| =2my+2k)+2(m; —k)(m—r-k) . (2)

In the above formulas (and in the following) we adopt the usual convention

[Iw=1, Y n=

i€d i€d

Wan (2], Yang [7}, Shen [1] and Wei [5, 6] have studied the transitivity of the
unitary group and some enumeration formulas, and then constructed a number of
association schemes and a number of PBIB designs. In the present paper, we will
study some properties of the conjugation relation in the unitary space V,( F,2), and
then obtain some relations among the enumeration formulas for some subspaces
as well as a type of new transitivity of the unitary group U,(F,2). Furthermore,
we will point out that some known association schemes as well as some known
PBIB designs are isomorphic to each other by giving the isomorphism mappings,
and also give a new kind of PBIB designs.

The concepts and notations used but not defined in this paper are all adopted
from [4].

2. Some properties of conjugation relation.

For two subspaces P and Q of the n-dimensional unitary space V,( F2), we use
P NQ to denote the intersection of P and Q, and P U Q the subspace spanned by
P and Q.

Theorem 3. Let P and Q be two subspaces in the unitary space Vo(Fp), and
T € Un(F,). Then
@ (PH*=P
(ii) IfP C Q, thenQ* C P*;
(iii) (PT)* = P*T;
v) (PUQ)*=P'NQ*%
™ (PNnQ)*=P*uQ@*
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Proof: From the definition of conjugation, it follows that P C ( P*)*. Noting that
dim P = dim ( P*)*, we have (i).
(ii) and (iv) are two immediate consequences of the definition of conjugauon
Replacing P and Q by P* and Q*, respectively, in (iv), we have (v) by (i).
Now we prove (iii). Since

(PTY(P*T)' = PTT(P")' = P(F*)' =0

we have P*T' C ( PT)*. Ontheother hand, dim P*T = dim( PT)* = n—dim P,
so P*T = ( PT)*. This completes the proof. 1

Theorem 4. Letr < m andn+ r > 2m. Then the conjugate subspace of an
(m, ) -type subspace is of (n — m, n+ r — 2m) -type. And the conjugation
mapping between the set M (m, r;n) consisting of all the (m, r) -type subspaces
and the set M(n—m, n+r—2m; n) consisting of all the(n—m, n+r—2m) -type
subspaces is a one-one mapping.

Proof: Let
I 0 0 0 T
il (0 I A 0 )

m-—r
r m—r m—r ntr-2m

0 I M 0 m=r
P“(o 0 0 I )

ntr=2m
r m—r m—7r ntr-2m

where ) is an element of Fiz such that 1 + AX = 0. For its existence, see Lemma
1 in Chapter 2 of [4]. Clearly, P is an (m, r) -type subspace, P, an (n— m,n+

r — 2m)-type subspace, and PP1 = 0, that is, P, C P*. On the other hand,

dim P; = n— m = dim P*. Hence, P, = P*.

Let Q be an (m, r)-type subspace. Since the unitary group acts transitively on
the set of the subspaces of the same type, there exists T € Un(Fp) such that
Q = PT. By (iii) of Theorem 3, we have Q* = P*T". Hence Q* and P* are both
of type (n— m,n+ r — 2m), and so the former assertion of the theorem is true.

According to this assertion, the conjugate subspace of an (n— m,n+ r —
2m)-type subspace R is of (m, r)-type. And by (i) of Theorem 3, the conjugate
subspace of this (m, r) -type subspace is the (n—m, n+ r—2 m) -type subspace R
itself. Soany (n—m, n+ r—2m)-type subspace must be the conjugate subspace
of some (m, r)-type subspace. Clearly, the conjugate subspaces of two distinct
(m, r)-type subspaces are also distinct. Hence, the latter assertion of the theorem
is also true. This proves the theorem. 1
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3. Some applications of conjugation relation.

In this section, we will apply the conjugation relation among the subspaces of
the unitary space V,( Fyz2) to the enumeration formulas for subspaces, to the study
of a type of transitivity of the unitary group, and to the construction of a class
of new PBIB designs. The application to establishing the isomorphism between
some known PBIB designs will appear in the next section.

For the enumeration formulas for subspaces, we have

Theorem S. Letr < m,n+r—2m >0,and

max (o-_-2+_2m) < min(m — 7, m1 — 1),

then
(i) N(m,msn) = N(n—m,n+r-2m;n);

(i) NT(mi,r;m,75n) = N(n—m,n+r—2m;n—my,n+r —2my;n);
where NT(my,r1; m,r; n) denotes the number of the (m, r; n) -type sub-
spaces which contain a given (m.,r1; n) -type subspace.

(ii) N(m,r; ) N(my,r;m,r;n) = N(my, ;) N(n—-m,n+r—2m; n—
mi,n+ 1 —2m;n).

Proof: The conclusion (i) is an immediate consequence of Theorem 4. By (i) and
(ii) of Theorem 3, an (m;,r;)-type subspace P is included in an (m, r)-type
subspace Q if and only if the (n — m;,n+ 7, — 2m,)-type subspace P*, the
conjugate subspace of P, contains the (n — m,n+ r — 2m)-type subspace Q*,
the conjugate of Q. From this, we have (ii).

To prove (iii), we compute the number of the pairs (P, Q) of subspaces P and
Q satisfying

PeM(my,m:n), Qe M(m,mn, PCQ.
Considering first P and then Q, we know this number to be
N(my,m5m) NT(mi,mi;m,7;0).
On the other hand, considering first Q and then P, we know this number to be
N(m,r;n)N(mi,r1;m,7:n).
Therefore,
N(my,ri;m)NT(my, 1 m,r;n) = N(m, r; WN(my,rim, ).

Substituting (ii) into it, we have (iii). This completes the proof. [ |
We can obtain some relations among the subspaces of higher dimensions from
the ones among the subspaces of lower dimensions. For example, we have



Theorem 6. Letn > 4. Then the intersection of two (n — 1,n — 2)-type
subspaces in the unitary space V,(Fq) must be either an (n — 2,n — 4)-type
subspace or an(n— 2, n— 2) -type subspace, and must not be an(n— 2 ,n—3) -
type subspace.

Proof: Let P and Q be two (1, 0)-type subspaces. Then PU Q is a (2,0)-type
subspace when P and Q are orthogonal, and a (2, 2) -type subspace when P and Q
are not orthogonal. We know that the conjugate subspace of a(1, 0) -type subspace
is of (n— 1, n— 2)-type, the conjugate subspace of a (2, 0) -type subspace is of
{n— 2,n— 4)-type, and the conjugate subspace of a (2, 2)-type subspace is of
(n— 2,n— 2)-type. Therefore, by (iv) of Theorem 3 and Theorem 4, we have
the conclusion of the theorem. |

Theorem 7. Letn > 4. Then the unitary group U,(F,z) acts transitively on
the set of the (n — 1,n — 2)-type subspace pairs the two subspaces of each of
which intersect in an (n — 2, n— 4) -type subspace, as well as transitively on the
set of the (n— 1,n— 2) -type subspace pairs the two subspaces of each of which
intersect in an (n— 2, n— 2) -type subspace.

Proof: We know that the unitary group U,(F,;2) acts transitively on the set of
the (1, 0) -type subspace pairs the two subspaces of each of which spana (2,0)-
type subspace, as well as transitively on the set of the ( 1, 0)-type subspace pairs
the two subspaces of each of which span a (2, 2)-type subspace (see, for example,
Chapters 7 and 8 of [4]). Therefore, by (iii) and (iv) of Theorem 3, and by Theorem
4, the conclusion of the theorem is obtained. I

Wan, Dai, Feng and Yang constructed in [4] the following association scheme:
Theorem 8. Letn > 4.Taking the (1,0) -type subspaces of the unitary space
Va(Fy2) as the treatments, and defining two treatments (o be the first (resp. sec-
ond) associates of each other if they as subspaces are orthogonal (resp. non-

orthogonal), one obtains an association scheme with two associate classes. Its
parameters are

_ (@ = (=D")(g! = (=D"")

v

g -1
n = ("% = (=D™2)(g™? —(-D™3) 2
¢ -1 o)
4 _ (_1)"4 n=5 _ (_1\5

-1

2 _ (a2 — (=" 1) (g2 - (-h™?)
pn = qz —1 .

By Theorems 6, 7 and 8 and by the conjugation relation among the subspaces,
we have the following association scheme immediately:
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Theorem 9. Letn > 4. Taking the(n— 1, n— 2) -type subspaces of the unitary

space V,( Fg2) as the treatments, and defining two treatments to be the first (resp.
second) associates of each other if they as subspaces intersectinan(n—2,n—4) -
type (resp. (n— 2, n— 2) -type) subspace, we obtain an association scheme with
two associate classes and with the same paramelers as in (3).

'We can use the association scheme in Theorem 9 to construct a new PBIB design
whenn= 4,

Theorem 10. The (3, 2) -type subspaces of the unitary space V4 (F,) are taken
as the treatments, and the (2, 1) -type subspaces are taken as the blocks. Two
treatments are defined to be the first (resp. second) associates of each other if they
as subspaces intersect in a (2,0) -type (resp. (2,2) -type) subspace. A treatment
is said to be arranged in a block if the (3, 2) -type subspace which has been taken
as the treatment intersects the (2, 1) -type subspace which has been taken as the
block ina(1,0) -type subspace. Then we obtain a PBIB design with two associate
classes and with the parameters

v=(g+1)(g*+ 1), m =g (g+ 1),
ph=¢* -1, ph=q+1,

b=(g* + 1)(g* + 1)(g— g,

k=(g+1)¢, r=(¢* - 1)¢’,
M=(g? - D(g-1yg, M =(¢* - 1)g.

Proof: By the transitivity of the unitary group, we know that we certainly obtain
a PBIB design. Its parameters can be computed as follows:
Setting n= 4 in (3), we have

v=( + (¢ +1), m=g%(g+1),
ph=¢" -1, ph=g+1l.
By Theorem 1,
b= N(2,1;4) = (¢’ + 1)(¢* + 1)(g — )g.

Since k is the number of the (3, 2) -type subspaces which intersect a given (2, 1)-
type subspace in the (1, 0) -type subspaces, we have

(¢ + 1)(g* + 1)(g—-1)g
(@ +1(g?2+1)(g—-1)g

N(3,2,4)N(1,0,3,2;4) _N(3,2:4)N(2,1;3,2;4)]

=1.[(q+l)q2+l— ]=(q+l)<12
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and then "
r=—=(-1¢.

We now compute \;. Let P and Q be two distinct (3, 2)-type subspaces, and
D = PNQ a(2,0)-type subspace. then ), is the number of the (2, 1)-type sub-
spaces (written as R) which intersect P as well as Q in the (1, 0) -type subspaces.
We assert that RN P = RN Q. Otherwise, RN P and RN Q are two distinct 1-
dimensional subspaces, so they span a 2-dimensional subspace which is included
in R. Then the subspace (R N P) U (R N Q) must be R. But this contradicts
the fact that two distinct ( 1, 0) -type subspaces only span a (2, 0) -type subspace
ora(2,2)-type subspace. Hence, RNP = RNQand RNP=RNQ C D.
On the other hand, the number of the (2, 1)-type subspaces which include a fixed
(1, 0)-type subspace that is included in the subspace D is

N(2,1;4)N(1,0;2,1;4) _
N(1,0:4) =(g—Dg.

Furthermore, two (2, 1)-type subspaces which include, respectively, different
(1,0) -type subspaces of D are distinct, so the number of the (2, 1)-type sub-
spaces, each intersecting D in a (1, 0) -type subspace, is

N(1,0;2,0;4)(g— g =(g* + 1)(g—1)g.

Note that, a (2, 1)-type subspace in P or in Q intersects D in a (1, 0)-type sub-
space. So each of these (2, 1) -type subspaces has been enumerated once. There-
fore, the number of the (2, 1)-type subspaces which intersect P as well as Q) in
the (1, 0) -type subspaces, that is )1, is

M=(g*+ 1)(g—1Dg—2N(2,1;3,2;4)
= (g% + 1)(g—1)g—2(g— g =(¢* — I)(g— Dg.
Finally, we compute ). Let P and Q be two distinct (3, 2) -type subspaces,
D = PNnQ a(2, 2)-type subspace, and R a (2, 1)-type subspace which intersects
P in a (1,0)-type subspace and Q in a subspace of the same type. In a similar

way of computing A\, we have RN P = RN Q C D. Clearly, the number of the
(2, 1)-type subspaces which intersect D in the (1, 0)-type subspaces is

N(1,0;2,2;4)(¢g - g =(g* — 1)g.

We now prove that it is ), . For this, we only need to show that any (2, 1)-type
subspace in P or in Q does not intersect D in a (1, 0)-type subspace. Suppose
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the contrary is true. Let R be a (2, 1)-type subspace in P,and Ry = DN R a
(1, 0)-type subspace. Write D = (g:) and R = (3'). Then

2

Ry
P= (Dl) .
Ry

Without loss of generality, we may suppose
RY(REY_(0o 1\ (RR\(RY _/0 o
Dy Di) \1 »/)'\R, R/ \0 1/
- R R\’ 010
PP=(D1)(D|) =(l * *).
R, R, 0 % 1

Hence, P isa (3, 3) -type subspace, a contradiction with the factthat Pisa (3, 2)-
type subspace. This proves the theorem. |

It is worth pointing out that although one can obtain a PBIB design isomorphic
to the one in Theorem 10 by using Theorem 8 for n = 4, the computation of the
parameters of the PBIB so obtained is not convenient.

4. Isomorphism between some known PBIB designs.
In the final section we will point out that some known PBIB designs are isomor-
phic to each other.

In [6], Wei gave the following association scheme, that will be denoted as As-
sociation Scheme B.

The 2-dimensional non-isotropic subspaces in the unitary space Va(F,2) are
taken as the treatments. Two treatments V; and V; are defined to be the ith (1 <
i < g—1) associates of each other, denoted by (V;, V3 ) = i, if they as subspaces
intersect in a non-isotropic vector D and if

1 0 O
B\
P
P, ) (0
0

1 ) ) 2 S'Sq_ 1 ’
i

where z3,z3,..., and z,_; are the ¢ — 2 elements of the set F,\{0,1}, and P,

and P, are both orthogonal to D and satisfy

(7)-w (B)-»
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And two treatments V; and V> are defined to be the gth associates of each other,
denoted by (V;, V)5 = g, if they as subspaces intersect in an isotropic vector.

This association scheme is in fact isomorphic to one which can be obtained from
a general association scheme given also by Wei in an earlier paper [S]. Setting
n = 3 in [S], one obtains the following association scheme that will be denoted
by Association Scheme A.

The (1, 1)-type subspaces in the unitary space V3(F,z) are taken as the treat-
ments. Two treatments V; and V, are defined to be the first associates of each
other if V; and V; are orthogonal, that is,

(4)(a)=( 9):

V1 and V; are defined to be the ith (2 < 1 < g — 1) associates of each other if

i\ (iY_(11

Va )\ V2 1 z,)°’
where {z2,... ,7,-1} = F;\{0,1}; and V; and V> are defined to be the gth
associates of each other if

vi\(WY_(11
Va Va2 1 1/°
The symbol (V7, V2)4 = 1 denotes that V; and V5 are the ith associates of each

other in this association scheme.

Theorem 11. The Association Schemes A and B described above are isomorphic
to each other.

Proof: Clearly, the subspaces taken as the treatments in Association Scheme A
and the subspaces taken as the treatments in Association Scheme B are conjugate.
Now we prove that the conjugation relation leads to an isomorphism between the
two association schemes. It suffices to prove that for any two treatments in Asso-
ciation Scheme A, we have
(Vi,Va)a = iif andonly if (Vi V)p =4, 1<i<q.
It is easily seen that we only need to prove that for 1 < 1 < ¢ we have
if (V,Va)a=1, then (Vi V)p=i.

There are three cases to be examined.
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(i) Case1: i= 1. Take V; = (1,0,0) and V2 = (0,1,0). Then (V;,Va)a =1

«_(0 1 0 «_ (1 0 0
Vl‘(o 0 1)' V2‘<o 0 1)‘

Write D = Vi N V3 = (0,0, 1). Then V¢* = (), V¢ = (°),and

D\ /D\' 100
€ ey 0 0 1

Therefore, D is non-isotropic. Hence, (V{*,V;)p = 1.

Let W) and W; be two treatments in Association Scheme A, and (W, W),
= 1. Since the unitary group acts transitively on the set of the ( 1, 1) -type subspace
pairs the two subspaces of each of which are first associates, there exists T €
Us(Fp) suchthat Wi = ViT and W, = V4 T. Then

Wi = WT, 3= WT,

DT DT
wi=(ar) = (1)

Therefore, W} N W3 = DT is non-isotropic, and

DTN\ /DT\' /D D\' /D\ /D\'
(ezT) (ezT) = (ez)ﬁ(ez) = (ez) (ez) =1T. @
1T eT el el e ey
Hence, (W}, W3) = 1.

(ii) Case2: 2 <i<gqg—1.
Take V; = (1,0,0) and V; = (1, z,0), where z € F such that 1+ 2% = z;.
Clearly,

that is,

()G) - (52)

thatis, (V;, V2)4 = 1. On the other hand,

. (0 10 . (001
V"<001'V2“-510’

Therefore, Vi* N V' = e3 is non-isotropic, and

e3 &\’ 1 00
o o 0 1 ¢

where o = (-7, 1,0). Hence, (Vi*, V))p = i.

Let W, and W> be two treatments in Association Scheme A, and (W), Wa)4
= i. Then there must be T' € U3 (Fz) such that Wy = VT, W, = V,T. By an
argument similar to that used in Case 1, we have (W, Wi)g = i.



(iii) Case3: i=gq. _
Take Vi = ¢y and V, = (1,1, ), where A € Fz such that 1+ A = 0. Clearly,
{(V1, ¥2)4 = q. On the other hand,

012X 01X
* *=
V‘"(oo 1)' Vi (10)\)'

Therefore, Vi* N V3* = (0,1, ) is isotropic. Hence, (Vi*, V;)g = g.

Let W1 and W2 be two treatments in Association Scheme A, and (W), W2)4
= ¢. By an argument similar to that used in Case 1, we have (W}, W§)p = ¢.
This completes the proof. |

The proof of the following two theorems is simpler than that in Theorem 11, so
omitted.

Theorem 12, The first PBIB design given in Theorem 5 of Chapter 8 of [4] is
isomorphic to the first design given in Theorem 11 of the same chapfer.

Theorem 13, The PBIB design withn = 2v given in Theorem 14 of Chapter 8
of [4] is isomorphic to the design withn = 2v and m and r replaced byn— m
andn — 2m, respectively, given in Theorem 13 of the same chapter.

We incidentally point out that some similar work in finite symplectic and or-
thogonal geometries has been done. It is given in other two separate papers.
The authors would like to thank the referee for his helpful comments.
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