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Abstract. The set of Lyndon words of length n, A,, is the set obtained by choosing
those strings of length n over any finite alphabet Z of cardinality o which are lexico-
graphically least in the primitive or aperiodic equivalence classes determined by cyclic
permutation. It is well-known that A, is a maximal synchronizable code with bounded
synchronization delay for fixed word length n. If the Lyndon words of length nare rep-
resented as vertices of the n-cube we show that they form a connected set for arbitrary
alphabets. Indeed, we show that between any two Lyndon words there is a path con-
sisting of at most 25 Lyndon words in the n-cube. Further, we show that there always

exists a path of n{o — 1) — 1 Lyndon words in the n-cube.

Let T be a nonempty totally ordered finite set, called the alphabet, with cardi-
nality o. A mapping s : {1,--- ,n} — X is a string of length n. We denote
a string of length nby s[1]s[2] - - - s[n]. Let Z* denote the set of all o™ strings
of length n over £ and set £* = UZ™. We suppose further that Z* contains the
empty string, \. For notational convenience, set Z* = £* — {\}.

Define an equivalence relation on £* by: u ~ v if there are strings z,y € Z*
such that u = zy and v = yz. If u ~ v then u and v are said to be conjugate.
The resulting equivalence classes are sometimes referred to as "circular strings”.
Equivalently, two strings are conjugate if and only if one is a cyclic shift of the
other.

In the sequel we are concerned with just those circular strings that are primi-
tive. A string w is primitive if w # u*, for any u € X* and positive integer k.
Here, exponential notation is used to indicate the concatenation of k copies of the
substring u. Note that if w is primitive and v ~ w, then v is primitive.

An easy counting argument using elementary Mobius inversion shows that the
number of primitive strings with fixed length nis

S(n,0) = Zu(n/d)a’, )
where the summation is over all positive divisors d of » and p is the M6bius
function of elementary number theory. (For a proof using M&bius inversion see,
for example, [1].)

It will be convenient to consider the set Z * as ordered by the usual lexicograph-
ical ordering, that is, strings u and v in Z* satisfy u < v if
(i) v=uv forsomev' € T* or,
(ii) u=ras,v=rbtanda < bfore,b€ X; r,s,t € L°.
We state as Lemma 1 two well-known properties of lexicographical ordering:
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Lemmal. Ifu,v € Z* then

(1) u < vifandonly ifwu < wv forallw € L*
(ii) ifv # uv' foranyv' € £* thenu < v implies uw < vz forallw,z € Z*.

Aq = A, (o) is the set of strings of length n > 1 in £ " which are lexicograph-
ically least in the primitive equivalence classes determined by ~. The strings in
A, are called Lyndon words. We set Ay = Z and A = UA,,.

From (1) the cardinality of A,(o) is };S(n, o) since each equivalence class of
~ containing primitive strings has n elements. Our interest in A,, stems from the
work of Golomb and Gordon [4] who first proved that A, is a maximal block code
with bounded synchronization delay. We now state two well-known properties of
A asLemmas:

Lemma 2.

(i) Astringw € A ifandonly ifw = uv whereu,v € A andu < v in the
lexicographical order.
(i) Ifu,v €A andu < v thenu*v € A foreveryk > 1.

Proof: For a proof of (i) see [5]. Notice that (ii) follows from repeated applica-
tions of (i) of this lemma and (i) of the definition of lexicographical order. §

Lemma 2 (i) yields a recursive algorithm to generate all the strings in A,,. But
the difficulty lies in the fact that many repetitions of the same string may be gen-
erated, necessitating frequent "lookups” in any program to generate all the strings
of A, without repetition. For example, in A when Z = {0,1}:

010111 = (01)(0111) = (01011)1.

Both factorications above are in A since 01 € Ay, 0111 € A4, 01011 € A5,
and1 € A; = {0,1}.

If w = uv and u is non-empty the v is a proper right factor of w. For a proof
of the following lemma see [5).

Lemma 3. A stringw € A if and only if w is strictly less in the lexicographical
ordering than each of its proper right factors.

Lemma 3 appears to yield a more efficient algorithm for generating A, but it
still requires testing each of the 2™ binary strings of length n.

Recently, Duval [3] has given an algorithm which lists the words of A, in lex-
icographical order in linear time without auxiliary memory. Our concem here is
with a "geomeltrical” ordering of A,,. In particular, we are interested in listing A,
with only a single bit change between adjacent strings.



Proposition 4. If w = wywy -+ - wy, € Apy Withw; € A, and ifx € A, with
w; <z < wgforallif 1 and allk > i then

/
W= W Wy - W1 TWis) * - Wiy € A,

Proof: By Lemma 3 it suffices to show that each proper right factor y of w' is
larger than w'. Notice first that if y begins with a proper right factor of one of
the w;’s then y > wj; since w; € A, hence y > wjwjy) - - - wy. Similarly, if y
begins with a proper right factor of z then y > zw;y - - - wy,. Thus it suffices to
show that each proper right factor y of w’ beginning with a w; or z is larger than
w'. Since wiw;s1 - - - wy, is a proper right factor of w it follows that w; > w, and
hence z > w,;. Consequently, Tw;s1 - - - wym > w'. On the other hand suppose
Y = WjWjs ¢ Wy Ifj >ithenw < w; < x < w; implies w; > w
andhencey > w'. If j < itheny = wj---z ... wp,. First notice that if there
isapwithl < p < i—1and wjp > wp then taking the smallest such
p yields wj - --wjsp1 > wy ---wp hence y > w'. So assume wjip-1 = wp
forp = 1,2,---,i — 1. Here notice that w; ---w;_jw; > wy - Wi_jwi_j+1
since w € Apa SO w; > wi_js1. Since T > w; we have x > w;_j+ thus
Wy Wi )T D> Wy - Wi jWioje1 aNd y > w. |

The n-cube over an alphabet X is the graph whose vertices are the strings of
Z ™ with an edge between distinct vertices o and g if d( e, 8) = 1, where d(«, 8)
denotes the Hamming distance between « and g; i.e., the number of bits in which
« and 8 differ as strings. A set S of distinct vertices v ,va, - - - , v in the n-cube
over X determine a path if there is an ordering

Va(1), Vo(2)) " " s Vo(k)
of the vertices in S such that
d(vo(i), Voqieny) = 1 fori=1,2,... k-1,
We say that the path is ordered if
Ug(1) < Yg(2) <« < VUg(k)-

We proceed with applications of Proposition 4. In [2] it was shown that the
code A, is a connected subset of the n-cube for £ = {0, 1}. The connectivity of
A, for arbitrary alphabets is given in Theorem 6 which follows from Lemma S.

Lemma 5. Letu,v € A,. There is a path of at most 2n Lyndon words in the
n-cube starting at u and ending at v.

Proof: If n= 1 then u, v is the desired path. Suppose n > 1. Let z be the largest
elementof £ = A and suppose u = 122 ---Z,,Z; € £. Let 1 be the largest
integer such that z; < z. Such an 1 exist since 2™ ¢ A,. If{ # 1 then

w=T - Til12Tis1 Ty € Ay
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by Proposition 4 and d(u, ') = 1. Repeating this process we see that there is a
path of at most n Lyndon words in the n-cube from u t0 z, 2™ . ;2! isin A,
by Lemma 2. Similarly, there is a path of at most n Lyndon words in the n-cube
from v 0 y1z*! for some 1 € I \ {z}. Notice that d(z; 2!, y2"1) < 1.
Thus these paths can be joined to form a path from u to v of at most 2x Lyndon
words in the n-cube. N

Theorem 6. Ifn > 1 then A, is a connected subset of the n-cube over any finite
alphabet.

Theorem 7. Ifthere is an ordered path of m Lyndon words in the n-cube then for
every integerr > 1 there is a path of r(m — 1) — 1 Lyndon words in the rn-cube.

Proof: Suppose w; < wy < --- < wy, is an ordered path of Lyndon words in the
n-cube. Forr = 1,w;, w2, -+ ,wn-2 will work so assume » > 1. By Lemma
2(ji), w{ ™ 'wi1 € Amfori=1,2,...,m — 1 and notice that

ol 0 ) = dwn o) =

forj=1,2,.-.,r — 2. By repeated applications of Proposition 4, we see that

w;_l Wi+ ] lw;-zwiz-l-l 17 wl'w;:ll
is a path of »r — 1 Lyndon words in the rn-cube. Finally notice that each of these
paths can be joined to the next path by inserting the Lyndon word w;w{ﬁz Wis2 .
This yields a path from w] ™' w 10wy, w};" consisting of r(m — 1) — 1 Lyndon
words in the rn-cube. §

Corollary 8. For every integerr > 1 there is a path of r(g — 1) — 1 Lyndon
words in the r-cube.

Proof: The ordered alphabet Z is an ordered path of ¢ Lyndon words in the 1-
cube, thus the result follows from Theorem 6. i
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