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1. Introduction.

A balanced incomplete block design D, briefly a design, will have parameters
(v,b,r,k,)\). For a particular design D the incidence matrix A is essentially a
listing of points on blocks. The matrix S = ATA = (s;;) gives the size of block
intersections where s;; = |B; N B;|. Also the projection matrix C = v(r — A)I +
MkJ — 78 is intimately related as C = CT,C? = r(r — \)Cand AC = 0. A
principal minor of C must have a non-negative determinant. This excludes many
possible choices of initial blocks. Section 2 describes these properties.

Section 3 treats automorphisms (or collineations) of designs. I conjecture that
if a design D exists then a design with the same parameters will have a non-trivial
automorphism,

Section 4 considers applications of codes to designs. Codes are a major tool,
and in particular have led to a proof of the non-existence of a plane of order 10.

2. Matrices associated with a design.
Given a design D(v, b, r, k,)) the matrix associated with this is the incidence
matrix A
A=lagzli=1,...,v, j=1,...,b 2.1)
where a;; = 1 if the ith point is in the jth block and otherwise a;; = 0. Thus the
incidence matrix can be considered a detailed listing of points on blocks. Taking
Jtu to be the ¢ by u matrix of all 1°s.

Alp=71Jw, JwA=kly, AAT =(r—\I1+\w. 22)

The intersection matrix S is defined as

S=ATA=[s;]4,j=1...b (23)
where s;; = |B; N Bj|. Relations on § are
ST =8, 8Jw=rkiw, S =(r—28+\k*Jy. (24)

A further matrix associated with the design D is the projection matrix C defined
> C=r(r =M1y + AkJy —r8S. (2.5)
Relations on C are

C*=r(r-)\C, C=CF, AC=0, C=rmank(b—v). .(26)
Since C corresponds to a positive semi-definite quadratic form, every principal
minor of C has a non-negative determinant.
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3. Automorphisms of designs.

An automorphism (or collineation) of a design D is a one-to-one mapping of
points onto points and of blocks onto blocks which preserves incidence. If A is
the incidence matrix of D, X the point mapping, Y the block mapping then

X 1AY = A. (3.1

If the design D is a symmetric block design with v = b, k = r, then A is a non-
singular square matrix and
Y=A"'XA (3.29)

from which it follows that trace Y = trace X and so the collineation fixes the same
number of blocks as points. I have a conjecture:

Conjecture. If a design D(v,b,r, k,)\) exists then a design with the same pa-
rameters exists with a non-identical automorphism.

This conjecture is true in all known cases. The projective plane of order 10 is the
symmetric design D(111, 11, 1). For some time it has been known that it could
have only the identical automorphism. But recently it has been shown by Clement
Lam that the plane does not exist. Of the 81 designs (15,35,7,3, 1) some have
only the identical automorphism but others have non-trivial automorphisms.

For adesign (28,42, 15, 10, 5) itis not hard to show that for an automorphism
a with a? = 1, for no prime p > 5 does an automorphism exist. But witho?® = 1.
Tonchev and van Lint [4] have constructed a design. On the points P, 1,...,27
« fixes P and moves 1,...,27 in 9 orbits of 3 points.

a=(P)(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)

(16,17, 18)(19,20,21)(22,23,24) (25, 26,27). (3.2)

Here is the full design which they constructed
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(28,42,15,10,5) Tonchev and van Lint
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If a group G acts transitively and regularly on the points (and so also on the
blocks) of a symmetric design, then D is completely determined given the points
on a single block, say (zi,...,zx). Wesay A(z;,z2,... ,3}) is the difference
set. If G is abelian and written in additive form this means that any d # 0 is
represented as d = z; — z;, T;, T; € A exactly ) times. In general if D is given by
an abelian difference set there will be further automorphisms of the shape z — tz,
where ¢ is called the multiplier.
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Multiplier Theorem 3.1. Ifp is a prime, (p,v) = 1p |k — X andp > ) thenp
is a multiplier of a difference set D given by A(z,,... ,zk).
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A tempting case is the following:
A symmetric (81, 16, 3) design with a collineation « of order 13.

CQ C Cs Cs Cs Ce
a=
(1,...,13)(14,... ,26)(27,... ,39)(40,...,52)(53,... ,65)(66,... , 7B X)(YI(2)
(3.8)
A possible orbit matrix is the following:
CiC G CiCs Ce XY 2
B 13 0 00 0 0 111
B> 013 00 0 0111
B; 0 0130 0 0 111
By(...Bs) 2 2 23 3 3 100. (39
Bir(...B») 2 2 23 3 3 010
By(...B) 2 2 23 3 3 001
Bs(...Bss) 3 3 34 3 0000
Bs¢(...Beg) 3 3 30 4 3 000
Be(...Bsi) 3 3 33 0 4 000

This orbit matrix is entirely consistent, but as yet no one has been able to choose
subscripts correctly to complete the design.

4. Applications of codes.

Let ¢ = p*, p a prime. We consider F, = GF(q) the finite field with g elements.
Let A be the incidence matrix of design D(v, b, 7, k, \). The code C of D over F,
is defined to be the subspace of F spanned by the rows (a1, ... ,a),i=1...v
of A taken as vectors over F,. Since a;; = 1 or 0, this is certainly possible. The
dimension of C will be s so that C contains ¢° vector. The weight w(v) of a
vector v = (z1,...,) is the number of z; ¥ 0. The weight distribution of
C is Ao, A1,... , Ay where A; is the number of codewords of weights . The
orthogonal dual code C+ is defined by

Ct = {w|(w,v) =0¥v e C}. @.1)
Here the inner product (w, v) = wyv; + w2 vz ... + wewy. Clearly Ct is a vector
space and it is easy to show that dim C* = b — dim C. Also (C1)* = C. If
Ci N C, is the set of vectors common to Cy and C; and C; + C, the vectors
spanned by both C; and C, then it easily follows that

(GINC) r=Ct+Cr (Ci+C)t=CLNnCy. @4.2)
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The condition p > X seems to be superfluous, but is needed in all known proofs.
There are a number of classes of known difference sets. The following is a some-
what unusual individual case with (v, k,A) = (133,33, 8).

A =(1,4,5,14,16,19,20,21,25,38,54,56,57,64,66,70,76,80, 83,

84,91,93,95,98,100,101, 103, 105, 106, 114, 125,126, 131).
(34
Here G is the cyclic group of order 133. Here 5 is a multiplier, even though the
condition p > A does not hold.

To construct a symmetric (41, 16,6) design we assume a collineation « of
order 5 fixing exactly one point and one block. Let the collineation on points
bea=(2)(1,2,3,4,5) (6,7,8,9,10)...(36,37, 38,39, 40) and on blocks
a = (Bo)(By,B2,B3,B4,Bs) ...(Bis, B3, Bg, By, Bap). If a block B;
contains b;; points from the jth orbit of points, the matrix B = [bi;] is the orbit
matrix. Here one possible orbit matrix is

X C C G Cy Cs Cs C7 Cs

Bob{1 55 5 00000
B |11 2 2 11 4 2 2
Bs |1 2 1 2 4 11 2 2
Bygll1 2 2 1 1 4 1 2 2. 3.5
Beg|0 0 3 3 2 2 1 3 2
Bn|0 3 0 31 2 2 3 2
Bs|0 3 3 0 2 1 2 3 2
By|10 0 2 2 2 3 3 10
Byp|0 1 2 2 2 2 2 0 4

This table suggests a possible further collineation B of order 3 permuting
(C1,C;,Cs) and (Cy, Cs, Cs). In fact this works with B on points being
B=(2)(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)
(17,22,27)(18,23,28)(19,24,29)(20, 25,30)

(30)(32)(33)(34)(35)(36)(37)(38) (39) (40). 56
Representative blocks are .
Bo X12 3 4 5 6 7 8 91011 12 13 14 15

By X46 7131516 21 27 28 29 30 31 32 36 38
Bs X35 9111217 18 19 20 21 26 31 32 36 38
B; X12 810 14 16 22 23 24 25 26 31 32 36 38
Big 6 79 13 14 1518 19 22 25 26 31 32 34 39 40. (3.7)
By 3 45 1112 14 16 23 24 27 30 31 32 34 39 40
Bx 1 24 8 910 17 20 21 28 29 31 32 34 39 40
By 1 36 8 11 13 18 19 20 23 24 25 28 29 30 32
B 1 26 7 11 12 17 20 22 25 27 30 31 38 39 40
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Along with the weight distribution of C is the weight enumerator W (z, y)
Wolz,y) = Aozb+ A1z* ly+ ...+ Azl + .+ Ab. @3)

There is aremarkable result, due to Jesse MacWilliams which asserts that given the
weight distribution of C the weight distribution of C+ is completely determined.
This is given by the MacWilliams identity.

Theorem 4.1.
1

We(z+ (g—-1y,z-y). 4.4)

This identity is very powerful. For a code C coming from a design D there is a
powerful result on Ct, over F, with g = p*andp | (r — ))

Theorem 4.2. over F, withq = p* andp | r — X thenC N C* is of codimension
OorlinC.

Proof: Let r;,72,73 be any 3 rows of A. Then
(rym)=r=i(n,n)=x2 (rn-r2,13)=2=-x2=0 (mod p). (4.5)

It now follows that the difference of any two rows of A is a vector of C+ and so
C N C* is of codimension 0 or 1 in C. Combining them with the MacWilliams
identity gives much information.

The projective plane of order 10 is a symmetric (111,11, 1) design. It has
recently been shown by Clement Lam that it does not exist. The proof depends
on coding theory. In a major work in 1973, Jessie MacWilliams, Neil Sloane, and
John Thompson [3] applied coding theory to the problem of existence of the plane.
Let A be the incidence matrix of a plane. Then (4.6) AAT = B = 10] + J det
B =112 .10"9 det A = +11-10%, Hence, over F5, A has rank at least 56
‘and so dim C > 56. Then dim C* > 55. As dim C + dim C* = 111 it follows
that dim C = 56, dim C* = 55 and C*+ C C. A word of C has weight = 0,
3 (mod 4) and words of C have weight= 0, (mod 4). Every row of A has
weight 11 and so a word which is the sum of an odd number of rows will have
weight= 3 (mod 4) and the sum of an even number of rows will have weight =
0(4). Trivially Ap = 1 and using these facts A; = 0,1 =1,...,10. Consider the
configuration of a word W of weight 11 = {P; ... Py; }. Two of the points P, P,
will lie on a line L. If L contains a point Q notin P, ... P, then there will be 10
further lines through @Q and at most 9 further points of W;. Hence, there is a line
L* through Q with no points of W!! . But words of odd weight have an odd number
of points in common, a conflict. Hence, there is no such Q and Wy {P, ... P, }
is a line. Thus, Ay; = 111. Also the sum of all rows of A is (11,11,...,11) or
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(1,...,1) over F,. Hence, Ajy = 1 and so A; = Ajj; -, counting complements.
With these facts and the MacWilliams identity the complete weight distribution is
determined by A2, A;s, and Aj6. A word W2 of weight 12( Py, ... , Pp) will
be such that a line through P; meets W) in an even number of points and so in at
least one more P;. Hence, the 11 lines through P; use up the remaining 11 points
of Wy2. Hence, a Wi, is an oval , every line meeting Wi, in 0 or 2 points. A line
will meet a Wis( P, ... Pis) in an odd number of points.

LNnWis = 11wt(L + Wis) =4 aconflict
LNWis =9wt(L + Wis) =15 -9+ 2= 8 aconflict 4.6)
LNWis=Tuwt(L+Wis)=15-T+4=12,

but here the oval of 12 points has L meeting it in 4 points, a conflict. Let there be
by, b3, bs lines meeting W5 in respectively 1,3, or S points. Then

by + b3 + bs = 111
b]+3b3+5b5= 15-11 = 165 (4.7)

3b3 + 10bs = ¥= 105.

The first of these counts the number of lines, the second the incidences of the 15
points on lines, the third the () = 105 pairs of the 15 points. Solution of (4.7)
is easily seen to be

bp=90 b =15 bs=6.

Lemma. No one of P, ...Pys is on as many as 3 of the 6 lines containing 5
points.
Proof: Consider

P, P, P Py Ps

P, Ps P; P Py .

Py Py Py Py Pa

Here only P14 and Pys remain and so a 4 th line with 5 points through P, is im-
possible. Thus, a further 5 point line will contain exactly 3 of P, ... P;3 and so
both of P4 and Pys. There are 3 such lines and this is a conflict, and the lemma is
proved. As there are 6- 5 = 30 incidences on the 5 point lines each of P; ... P;s
will occur exactly twice. Thus, up to isomorphism these lines are

b P, P Py, Ps
P, Ps P, P4 Py
P, Ps Pp Pn Pp
Py By Po Pis Pig’
Py Pg Py P13 Pys
Ps Py Pp Py Pis

4.8)
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Py must still appear with Pyo, Py1, P12, Pi3, Pa, Pys in 3 point lines

Py Py
P P “4.9)
b P

Pyg has been with P;3 + Py4 so the 3rd point of P; Py is P;s. This yields similarly

P, Py Pis
P, Py Pa. 4.10)
P, Py P

Similarly all 15 3 point lines are completely determined. Using a computer they
showed that this configuration cannot be completed to a full plane, and conclude
that A;s = 0.

In 1974 J L. Carter showed that some of the six possible configurations for Wi¢
are impossible. Clement Lam showed all of these impossible giving Aj¢ =
Similarly he showed that A2 = 0. This fully determined the weight distribution
and in particular Ay9 = 24,675. A line intersects a Wy in 1, 3, or 5 points and
suppose there are by, b3, bs such lines. Then

by + b3 + bs = 111
by + 303+ 5b5=11-19=209

3b3 + 10bs 1—9—1-8- = 171.

2

(.11)

Solution here is by = 67, b3 =37, bs = 6.

These are 64 possible configurations for the 6 5 point lines. Using the CRAY
computer at the Institute for Defense Analyses in Princeton, all 64 cases have
now been eliminated and we conclude that a plane of order 10 does not exist. The
amount of computer time used was very large.

A design D(22,33,12,8,4) is of particular interest since this is the smallest
number of points for which the existence is unknown [1]. Hamada and Kobayashi
[2] have shown that the rows of S are of the following 4 types (apart from order)

84444 212316
84441 2° 39
84411 26 3% @.12)
8440

The code C over , will be doubly even with all weights multiples of 4, Ao,
A4 As, A1z, Ars, Az, A2a, Azg. We must have A3y = 0 since in the remaining
33rd column there will be a 1 and 11 further 17s in the row, contrary to the fact that
any two words of C have an even number of positions where both are 1. Thus, if
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C* has weight distribution Cp,C;,C2,...,Cs wewillhave Cg = 1,Cs3 = 1,
butalsoC, = 0, = 0. If C; > 0 there would be a column with no 1’s
and if C, > 0 we would have two identical columns contrary to Hamada and
Kobayashi. Let [C] = 2°. Using this and C; = C, = 0 we can solve for A2,
Aje,and Ay in terms of 2°, A4, As,A24,A2s. In particular we have

2°9C, = —45.2°% + 90+ 2834 + 5Ag + 34 + 24 Ay

o0 a0 4.13)
2°77Cs = —39-2°77 + 4744 9234 + 5Ag + 3A2 —40A2s.

This leads to
2°-9Cs=2°C, +6-2°7 + 384 + 64 A; — 64 Agg. @4.14)

Since C33 = 1, Cs = Cy > Ajzs. Hence, if A3 > 6 then Cs > 6. Butif
Az < 6 then (4.14) gives 2°=2C5 > 6-2°-9 and so Cs > 6 in either event.

A word of weight 5 in C* corresponds to 5 columns of A in which every row
has an even number of 1°s, namely, 0, 2 or 4. Up to isomorphism there are 108
such configurations. Using the projection matrix and other arguments all but 13
of these starts have been eliminated. A start will give a 5 by 5 principal minor of
5. The 13 possibilities remaining are

1 38 55 64
8§ 22 2 2118 3 3 22 82 2 33 8 4 4 2 2
2822 2|38 2 32 2 8 3 3 2114 8 2 4 2
2 282 21132 8 32 2 3 8 3 21|42 8 42
2.2 2 8 21123 3 8 2 33 3 8 1]]2 4 4 82
222 2 8 22 2 28 32 2 1 81122 2 28
65 74 78 80 81
8 4 3 3 2 83 3 313 8 2 3 43 8 4 2 3 3/|83 3 3 3
4 8 3 32 38 3 53|28 4 3 3|[|48 4 3 1[1(38 4 3 2 4.1
33 8 42|33 8 33 34 8 2 3|23 8 2 4 34823(‘5)
33 8 4 2(133 3 8 1|43 2 8 1/[33 2 82|33 8 22
2 2 2 2 81133 3 138 33 3 181131 4 2 381132 3 28
82 88 89 91
8 2 4 313 8 3 3 4 2 8 3 4 3 2 8 3 4 3 2
28 4 33 3 8 4 2 3|28 4 32 38 4 23
4 4 8 2 2 3 4 8 23 4 4 8 1 4 4 4 8 2 2
33 2 8 2]142 2 82 33 1 83 322 823
33 2 281123 3 28 22 4 3 8 2.3 2 3 8

An attempt to complete these minors to the full matrix § would involve a pro-
hibitively large number of cases.
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