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Abstract: By means of partial fraction method, we investigate the de-
composition of rational functions. Several striking identilies on harmonic
numbers and generalized Apéry numbers will be established, including the
binomial-harmonic number identity associated with Beukers’ conjecture on
Apéry numbers.

1. INTRODUCTION

The generalized harmonic numbers are defined to be partial sums of the

Riemann-Zeta series:
n

1
H(m)—O and H,g'"’:E e for m,n=1,2,---. (1)
k=1

When m = 1, they reduce to the classical ones, shortened as H,, = H,(Ll).

If the shifted factorial is defined by
(co=1 and (¢)p=c(c+1)---(c+n—-1) for n=1,2,--- (2)

then we can establish, by means of the standard partial-fraction decompo-
sitions, the following algebraic identities:

! o (1)
ﬁTﬁZ(k)ii)k 3)
2 n
(‘(:)l;;)+1 =kz=:( ){((L'+k)2 x-l-k(Hk H”—k)} (4)

N3 1 3
(:(cr)lﬁll B ,;,(_l)k( k) {(x TP PR e A (2)

+ éﬁ (3B - Hoet)? + (B + H‘z)k)]} (5b)
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Multiplying (5a-5b) across by z and then letting £ — oo, we recover one
identity among the hardest challenges claimed in [4, Eq 16], [5, Eq 12] and
[10, Eq 20}:

Zn:(—nk(’,:)a{a(ﬂk —HoaP+(HP +HE ) =0 (9
k=0

This has best exemplified the power of partial fraction method. For more
general rational functions, we will investigate their partial fraction decom-
positions in the second section, which involve the complete Bell polynomials
(or cyclic indicators of symmetric groups) on the generalized harmonic num-
bers. Several further examples and miscellaneous formulae will be collected
in the third and last section. In order to facilitate consultation for read-
ers, three short tables of the complete Bell polynomials on the generalized
harmonic numbers will be presented in the appendices.

2. PARTIAL FRACTION DECOMPOSITIONS

For two natural numbers n and k with 0 < k < n, define two functions
related to harmonic numbers by

n
1
Hiw)=3 p=gyp = Hek) = Hyp—H (72)
=1
1
Hele) =3 rggy = MR =H2e+ CU'ES. ()
=0
v#k

They come respectively from the logarithmic derivatives of the binomial
coefficients

hz) = (l;_f)n - (*29) (82)
! k T
o) = - el o

Let o(€) be the set of partitions {1™1,2™2,... ™} of ¢ represented by ¢-
tuples of nonnegative integers (mi, mg, - - - ,m¢) such that Ei=1 kmy = ¢.

Its subset of £-partitions into m parts with mel my = m is denoted by
om(£).
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Theorem (Partial fraction decomposition). Let \, u and n be three natural
numbers with A + (A — p)n > 0. Then there holds the algebraic identity:

(n')*"‘(l - z)8 K n+k Q) 1, —k)
(@41 Z( () ("7 Zel(ch)u ®)
with the Q-coefficients being determined by the Bell polynomials (or the

cyclic indicators of symmetric groups):

¢ S AHi(z) — (-1)'uH;i(z) mi
T R L CR e IC)

o(t) i=1

(10)

where the multiple sum runs over o(£), the set of £-partitions represented by
£-tuples of nonnegative integers (my, ma,- - - ,my) such that Zi=1 kmy = €.

In particular, the -coefficients read explicitly as

d {A [HO+ 0 D, ) +u[BP -HE,] }m‘

Qe —k) = 83 T o T - (Y

o(t)i=1

Proof. By means of partial fraction decomposition, we can formally write

P (a)h#(z) ()P E1 -z X Ok,
@+k} (@R Z{,% (= + k)=

where the coefficients C(k, £) are to be determined. Letting D, = £ stand
for the derivative operator with respect to  and then noting that

M-k = (-D*(%)

h(—k) = (n ;:;- k
we first demonstrate that for 0 < £ < X there holds:
Ok 8) = W (~R)h(—) x 2t 1) (12)
where the Q-coefficients are given by the following logarithmic derivatives:
Di{fi"(x)h"(m)}
Qe(M, 8, x) P @heE) (13)
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For £ = 0, we have obviously Qp(), 4, z) =1 and that
C(k,0)

limk M )R (z) x Qo(A, 4, Z)
R} (—k)h# (~k) x Qo(A, g, —k).
Next for £ = 1, we can check (12-13) through L’Hépital’s rule that

P (z)h#(z) C(k,0)
(x+k> (m+k)’\}
= lim R (z)h*(x) — C(k,0)
-k z+k
- im, o (o)

= RM—k)h*(—k) x (A, p, —k).

Ck1) = lim (@ + kP

Supposing now the truth of (12-13) for £ = 0,1,--- ,m — 1 with m < A,
then we have to verify it also for £ = m. Applying again the L’Hopital rule
m-times, we can determine the coefficient

m—1
Ctkm) = Jim o+ (T - 2 i)

= lim _k(x_+k)_m{n*(x h#(z) — Z Cl(k,£) x (a:+lc)‘}

£=0
D;"{h’\(a:)h"(z)}
m! fA(z)
1 (—k)h*(—k) x Mév—,nl:’-——ﬂ

lim K*(z)h*(x)
z——k

Based on the induction principle, we have confirmed that the coefficients
in partial fraction decomposition are determined by (12-13).

To complete the proof of the theorem, it remains to show that these co-
efficients can be calculated explicitly through equation (10) and therefore
(11) (Bell polynomials and/or the cyclic indicators of symmetric groups).

Manipulating the differential operation

DR @he(z))  Dof(@)h(a)} DE{M @)h(a) |
@) (z)  FM@)hA(T) > (z)hE(z)
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we can derive for (13) the recurrence relation
Qe p,7) = {D,, — My (z) - pH;(a:)} Qe mz). (1)

It is trivial to see that 0¢(), i, ) defined by (10) admits the initial condition
Qo(A, 1, z) = 1. If we can check that ¢(), u, z) defined by (10) satisfies the
same recurrence relation (14), then the validity of (10) would be confirmed
for all the natural numbers £.

Now substituting the RHS of (10) into the RHS of (14) and then noticing
the differential relations

D Hj(z) = +jHjw(z)
D:Hi(z) = —jHjni(z)

we get the following expression

[4 - m;
(- 1)1+¢e!{ @) + wi@)] ST bru@-cowm@}™ )

g
o(8) i=1 myl e
£ { : mgl
M@= (CDBH @} NS L Ay (@)H(- 1)l
+ ZH mil z'mg Zij ):’)-(J- : (=1 ﬁHj ;)x - (15b)
o(e) i=1 ' =

In accordance with the combinatorial structure, each ¢-partition enumer-
ated by o(£) becomes a (1 + £)-partition with a “j”-part being shifted to a
“1 + j"-part for 0 < j < £. Vice versa, every (1 + £)-partition enumerated
by o(1 + £) reduces to a £-partition with a “1 4 j”-part being replaced
by a “j”-part for 0 < j§ < £. Then the sum over partitions should be
reformulated accordingly.

First, the line (15a) with an extra part “1” yields a new factor My := m;+1.
Then if m;y = 0, for each j corresponding to the shift from part “5” to part
“l4-3” displayed in line (15b), the coefficient jm; is replaced by (1+7)M;41
under two index substitution M; := m; — 1 and My, := my4; + 1 for
1 £ j < £ Lastly if mg = 1, the coefficient m; will be replaced by
(1 + £)M,4; with two summation index being substituted by My :=my -1
and M, := me. Summing up, we may combine (15a) with (15b) and
obtain the following expression

1+¢ {)\H,-(a:) - (—1)i#Hi($)}Mli+e .

e S T L S

a(1+8) i=1 j=1
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According to (10), the last expression becomes Qi4¢(}, i, z), i.e., the left
member of (14) thanks for the (1 + £)-partition 1+ ¢ = ZH" jM;. This
confirms that the RHS of (10) satisfies indeed the recurrence relation (14).
We therefore have established equality (10) and (11). This completes the
proof of the theorem. O

In the theorem, multiplying the partial fraction decomposition by z and
then letting £ — oo, we derive the following harmonic number identity.

Corollary (Harmonic number identity). Let A, p and n be three natural
numbers with A+ (A — u)n > 1. Then there holds the algebraic identity:

Z( () () e -k = 0 (16)

where the Q-c:oeﬁiczents are given by the Bell polynomials (10).

Defining further two sequences by

we(A, x) = (A, 0,2) = M = g|z:( 1)£AmHH (x)

h* (z) s mgl imi
) = 00, ) = B _ 5y [T oy
a(f) t—l

and then applying the Leibniz rule to (13), we find the following convolution

formula: .

Qt(/\: Hy :E) = Z( f )w'.(’\l Z)we—. (12, x)' (18)

=0

Putting £ = —k, we write down the corresponding relation as follows:
¢
£
Qe p,-k) = 30 () )@ ~kwe, (4 k) (19)
=0
where w and w are explicitly provided by the following formulae:

P {H’?‘) + (—l)iHy(.i.)_k}m‘
@e(X, —k) = Qe(2,0,-k) = 2> x| — (20a)
a(®) i=1 e
{H(') Hf:lk mg
we(p, —k) = Qu(O, k) = 83 _p™ [[ —— (20b)

o) =1
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3. ExaAMPLES: HARMONIC NUMBER IDENTITIES

By means of the theorem and the corollary, we will display several examples
of partial fraction decompositions and the corresponding harmonic number
identities.

Example 1 (A =1). For u =0, 1, there hold partial fraction ezpansions

o = BT

n+l

and the two corresponding harmonic number identities:
n

n. V1A AYA R A%

= () ()

When u = 0, the corresponding partial fraction expansion reads as the
formula displayed in (3). For an alternative derivation, refer to the recent
paper (7. When u = 1, the last binomial identity is a special case of the
Chu-Vandermonde convolution formula on binomial coefficients:

() = 5
Example 2 (A = 2). For u=0,1,2, there hold partial fraction expansions
("')2_“((135),,?: _i( K )2("7;'“)"{ eEToL
+— [(2 + p)Hy — 2Hp g — #Hn+k] }

and the three corresponding harmonic number identities:

0= 2":( Z)z(n Z k)#{(2+#)ﬂk —2H, k- an+k}-
k=0

For p = 0, the corresponding partial fraction expansion has been given by
(4).
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Example 3 (A = 3). For u =0,1,2,3, there hold partial fraction expan-
stons

—u(l-z)h z)¥ + k\» 1
o ‘Z( v(3) ) e
( + pE [(3 + p)Hy — 3Hp—i — MHn+k]
L2 [ {3+ wHi — 3Hn—x — pHusr}®
s+k |+ {3+ wHD +3H2, - uHE,}

and the four corresponding harmonic number identities:

o= S (R CE e |

k=0 + [+ “)Hliz) +3H (2)1: “Hv(zz-l)-k]

When p = 0, the corresponding partial fraction decomposition and har-
monic number identity have been exhibited respectively in (5a-5b) and (6).

Example 4 (A =4). For p=0,1,2,3,4, there hold partial fraction expan-
sions

|4—p(1 m)n — = frn4k\# 1 (4+u)Hr—4Hn—x—pHnsk
o s =2 (e) (% ) (et e
1/2
MDY
1/6 [{(4+u)H~ Hoo—uHuri )+ 2{@+mHP ~aH®, —uHE), }]}

2
[{(4+u)uk-4n,.-.,—ua,.+k} +{(rwH +aH?, - H"’,,}]

z+k | +3{(4+m) Hu—4Hn_k—pHoss } x { @+m) HP +aHP, —uHD),

and the five corresponding harmonic number identities:

=3 ()54

3
[(4+)Hi— 4= pHoir ]+ 2[4 B 4B, —uH ), ]
+3[(4+M)Hk—4Hn-k—I‘Hn+k]x[(4"'“)”;(,2)""4”,(.:_) -#Hm ]
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Example 5 (A = 5). For p = 0,1,2,3,4,5, there hold partial fraction
ezrpansions

(5+u)Hi~5Hu—p—pHnik

1 n n n
(n1)®" “( x) —g( —DER)° (" {(z+k)5+ (z+k)*
1/

+ m [{ (5+I‘)Hk—5Hn—k—“Hn+k}2 + {(5+u)H,§2’ +8HZ ~ —pH;[ & }

1/6 | {(s+mHx—5Hn-k—pHass } +2{(+u)HS ~5HD  ~uHS) D, }
(@+k)? | +3{ s+ Hi=5Hak—uHnsn }x{ G+mHP +sHP, ~un ), } |

n-k

4 -
{(5+P)Hk"‘5un-k‘”"n+k} +3{(5+“)H£2)+5”§.2_)k_“"v(3|2k} +6(5+M)H'(‘4)

L 1/
z+k

2
+6{ (54 Hy —5Hy g~ By } x{crmn@rsul®, —un @, Yoo,

+8{(5+n)8k ~SHp_j—pHpyk } x { G+ su (D _un } —eun{ |

and the siz corresponding harmonic number identities:

= S () (Y

k=0
4
{ G+ Hu—5Hn sk =pHosr } +3{ G+ HED 4502, —uH®, } +6+mHP
2
X | +6{(5+u)Ha~5Hn_x—pHnsx } x{ G+ HP +sHP, —uH®), } 3089,
+8{ (5+m) Hi~5Hn_x—uHnsr p x {5+m HD -sHD, —ur® Y —6ubl),

By means of the standard partial fraction method, we can also derive the
following algebraic identities and the corresponding harmonic number for-
mulae, even though they are not consequences of the theorem and the
corollary proved in the present paper.

Example 6. Partial fraction decomposition formula

z(l —z)2 2 n+k
— = —_ +
(=)an ,62:1( ) )
-k + 14 2kHp it + 2kH, 1, — 4H}
(z + k)2 T+k

and the corresponding harmonic number identity associated with Beukers’
conjecture (cf. [1] and [2]):

- é(k) ("*’“) {1+2an+k+2an_k-4Hk}
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Example 7. Partial fraction decomposition formula

e - e
{ k2 _ 2k?
(z+k)? =z+k

( + Hpi + H, —k—2Hk)}
and the corresponding harmonic number identity:
nin+1) = Zkz ( ) (n:k) {k +Hppr+Hp —2Hk}

Example 8. Partial fraction ezxpansion with denominator polynomial of
type 241"

alx (2n)! & (2 (-1)*
@2l =2)n = (2T A +n)(z-k)

[V]a

(2)(20 g + e o 2t )

and the corresponding harmonic number identity:

n 2n n
e ——

k=1 k=0

k=0

Example 9. Partial fraction ezpansion with denominator polynomial of
type “ + 1”

(n1)? x (2n)! (oar) (-1)* & 20 2
()34~ $)n (1+'I’t)2 Z (n::) ok T é(—l)k( 2 ) ( n -:'k )
{ 1 2Hx+Hn4i—3Hn 1/2 (2”& + Hogx = 3Hn—k)2]}
(z+k)3 (@+kP " o+ kle(erO e van 2,

and the corresponding harmonic number identity:

> o e~ S O G st ) )

k=0
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Example 10. Partial fraction decomposition formula with denominator
polynomial of type ‘3 +2”

alx {@2n)}° 1 Z": o) { 1 +Hk_1+2Hn_k—3Hn+k}

(z)3,,(1-2)2 “1+n ot :i’; (z - k)? z-k

' ’g(—l)k( ) )2{ et e

2
(Hx +2Hnsx — 3Hn_i) +(HP +2H,‘,"2,¢+3H,‘:“_>,‘)] }

T .
2(z+k)
and the corresponding harmonic number identity:

n
_nE( Y[ 2n (H + 2Haps — 3Ha_)
Z( b ( k ) ( n+k ) {+(H(2)+2H(2)k+3}1(2)k) }
n 2

1 +n z T:;‘{:-.k:: (3H”+k - Hk-l - 2Hn_k).
n

Example 11. For nonnegative integer 0 with 0 < 8 < 4 + 4n, there hold
partial fraction decomposition formulae:

(n)iz? & A (=k)®  (—k)P-1
(@)n 41 B :L:g( :) {(m + k)4 + (z+ k)3 [9 — 4k(H} - Hn—k)] (212)
+ (—k)0—2 }2 20er(2) . () (21b
sy (o e Y=o )] ()

( —k)®3 [ {6ak(Hu-Ha-i) } +2{0-ax3EO-HD,)} (21¢)
T 6+ B | ~s{osk-Han)} otk BB )}

The corresponding harmonic identities read as

n
o-3( N {Hk(Hk—H,._k)} +2{9_4k3(H(3) H() )}
kgok ( k ) [ —3{0—41:(1{,, H,,_,‘)}{sz(ﬁ(z) (z)k;} (22a)

_ o, 0<0<2+4n

{ 6(n!)4, 0=3+4n.

For 6 =0, 1, 2, the corresponding results to this identity have been conjec-

tured by Weideman (10, Eq 21] and confirmed by Driver et al [4, Eq 20]. In

particular, we recover, with the case § = 1, the identity found by Driver et
al [5, Eq21].

(22b)

The list can be endless. However, we are not bothered to extend it further.
The interested reader can do that for enjoyment.
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APPENDIX A. THE Q-COEFFICIENTS COMPUTED VIA (11) AND (19)

Qo(M , —k) = 1. (A0)
(A, p, —k) = /\{Hk - Hn—k} + M{Hk - Hn+k}- (A1)
(1, —k) = {A(Hi — Hact) + u(He — Hog) ) (A2s)
+MHP + BE S + {8 - B, (A2b)

Qa0 s —8) = {\(He — Hnt) + 0(Hi ~ B }° (A3a)
+o{aE® - BD) +u(@P - B} (%)

+3{A(H — Haot) + p(Hx — Hare) } (A3c)

x {MEP +HD) +u(@8P -BE) ). (A39)
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QX p, —k) = {/\(Hk — Hp_g) + p(Hk - Hn+k)}4
+ G{A(H(“) H(4)k) + N(H(4) H(4)k)}
+ 8{,\(H,c — Hp_i) + p(Hy - Hn+k)}
« (MED ~HE) 4 - L)
+ G{A(Hk - Hn_k) + [A(Hk - Hn+k)}
(N B2 4D - 1))

+3{A\HP + HD,) +p(H? - H ,‘f}k)} :

(A k) = {A(Hi — Hook) + 6(He ~ Haas) )
+ 24{,\(11‘5> HE) +u(HS - H‘5>k)}
+ 10{,\(151,c — Hp_i) + p(Hr — n+k)}
x {’\(Hg) H?) + w(H#P - Hﬁk)}
+20{A(Hic ~ Ho_t) + p(Hi - Hn+k)}
{1 - B2+ - 1)
+ 15{,\(Hk — Hpk) + p(He — Hn+k)}
(P + B2 + wE? - 1R}
+ 30{A(Hk — Hn_) + p(Hi - n+k)}
x {MH® + HEY,) + p(E - =)}
+20{0(H + B2 +u(EP - BE,)}
(A~ 52 + - )}
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(Ada)
(A4b)
(Adc)
(A4d)
(Ade)
(A4f)

(Adg)

(Aba)
(A5b)
(A5c)
(AS5d)
(ASe)
(A5f)
(A5g)
(A5h)
(A5i)
(A5))
(A5k)
(A51)



APPENDIX B. THE w-COEFFICIENTS COMPUTED VIA (20a)

wo(\ —k) = 1. (BO)
(A, —k) = A{Hk - H,,_k}. (B1)
@a(\, k) = Az{Hk - H,,_,c}2 + ,\{HE) +HO L, (B2)
@s(n, ~k) = X Hy - Hooi) +20{HY - HO), (B3a)
+33*{H - H,._k} x {H,‘f’ +H® (B3b)
wa(\, —k) = X{ H, - H,._k}4 +6x{ B + HY, (Bda)
+83{ Hi - Hoi ) x {HO - HY, (B4b)
+6x*{ H, - H,._,c}2 x{HP + B, (B4c)
+ax2{H® +HO, ). (B4d)
@s(A, —k) = 3*{ Hi - H,,_,c}5 +20{H - BD, (B5a)
+1034{ H, - H,._k}3 x {H® + HD, (B5b)
+203%{ Hy - Hos *x {8 - B2 e (B5c)
+ 15).3{Hk - H,._k} x {H,?’ +HO )\ (B5d)
+303{Hy - Hoi} x {H{" + =D} (B5e)
+2002{ B + HO, < (0P - B, }. (BSE)

APPENDIX C. THE w-COEFFICIENTS COMPUTED VIA (20b)

wO(“) —k) =1 (CO)

wi(ph,~k) = p{ By = Hosn }. (C1)
2

wa(p, —k) = #2{Hk - Hn+k} + #{Hg) -52 1 (C2)
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3
ws(p, ~k) = p*{Hi - Hare} +2u{ B - HE), (C3a)

+ 82 {Hy ~ Hoi } x {B - B®, ). (C3b)
wa(p, —k) = u*{ —Hn+k}‘+6u{H,£" - B, (Cta)
+8u*{Hy — Hore} x {HP - HE), (C4b)
+6u{Hy — Hus} x {HO - 5O, (Cdo)
+3u2{H{® - H®, ’ (C4d)
s, —k) = u{ He ~ B} +24u{B® - ), (C5a)
+ 10;4"{H,, - H,,+,,}3 x {H,?’ ~-H?, (C5b)
+20u*{ Hy - H,,+,,}2 x {HY - HE), (Csc)
+ 15;;3{}1,, - Hn+k} x {H,ﬁ'*” -H?, : (C5d)
+30u?{Hi - Hou ) x {B{® - HY, (CSe)
+20u2{ B - BZ ) x (B - HE),}. (C5f)
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