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ABSTRACT. A tree R such that after deleting all leaves we cbtain a path P
is called a caterpillar. The path P is called the spine of the caterpillar R.
If the spine has length 3 and R on 2n vertices contains vertices of degrees
r,8,t,2, where 2 < r,3,t < n, then we say that R is an [r, 3., 2]-caterpillar
of diameter 5. We completely characterize {r, s, t, 2)-caterpillars of diameter
5 on 4k + 2 vertices that factorize the complete graph Kyi42.

1. INTRODUCTION

Let G be a simple graph with at most n vertices. A graph H with n
vertices has a decomposition into subgraphs Go, G1, Gy, ..., G; if each edge
of H belongs to exactly one G;. When all subgraphs G;,0 < i < s, are
isomorphic to a graph G, we say that H has a G-decomposition. If G has
exactly n vertices and none of them is isolated, then G is called a factor
and the decomposition is called a G-factorization of H.

Graph factorizations have been extensively studied for many years.
Special attention has been paid to isomorphic factorizations. Among graphs
whose G-factorizations have been sought, the most popular ones are the
obvious candidates—complete graphs and complete bipartite graphs (see,
e.g,, [3,12]). In this paper we concentrate on isomorphic factorizations
of complete graphs into spanning trees and in particular into spanning
caterpillars of diameter 5.

1991 Mathematics Subject Classification. 05C70, 05C78.
Key words and phrases. Decompositions and factorizations of complete graphs, span-
ning trees, flexible g-labeling, blended p-labeling, caterpillars.

JCMCC 60 (2007), pp. 181-201



A simple arithmetic condition shows that only complete graphs with
an even number of vertices can be factorized into spanning trees. Moreover,
every spanning tree, which factorizes Ko, satisfies the mazimum degree
condition, which means that for each vertex v in such a tree on 2n vertices
it holds that deg(v) < n.

It is a part of graph theory folklore that each graph K2, can be
factorized into hamiltonian paths Ps,. On the other hand, it is easy to
observe that each K», can be also factorized into double stars; that is, two
stars K 1 joined by an edge with the endvertices in the centers of both
stars. The first attempt to fill the gap between these two extremal cases
was P. Eldergill’s thesis [2], where he dealt with symmetric trees. Some
classes of non-symmetric trees were examined by Fronéek [4,5], Froncek
and the author [7], and by the author [8]. Other papers on caterpillars of
diameter 5 of types not included in this paper are under preparation. In
[6] Froncek proves that certain classes of caterpillars of diameter 4 and 5
do not factorize complete graphs of order 2n.

Results in this paper give a complete characterization of certain class
of caterpillars of order 4k + 2 and diameter 5, [r,s,t,2]-caterpillars, that
factorize Kgx4+2. An exact definition of this class of graphs is given in
Section 2.

The labeling used in constructions in this paper exists only for graphs
with 4k+2 vertices. Therefore, we examine just a special class of caterpillars
of diameter 5, namely the caterpillars of order 4k+2 with exactly one vertex
of degree 2 and without a vertex of degree greater than 2k. The reason why
we do not present here a more general class is that the other caterpillars
with one vertex of degree 2 or the caterpillars with two or none vertices of
degree 2 require many different and usually very long constructions. The
results for the remaining classes are already in preparation.

2. DEFINITIONS AND NOTATION

A labeling of G with at most 2n ++ 1 vertices is an injection A :
V(G) — S, where S is often a subset of the set {0,1,...,2n}—however, in
this paper we have § = {0, 1o, ..., (n—-1)0,01,11,...,(n—1),}. The labels
of vertices u,v, denoted Mu) = i, A(v) = j, respectively, where 7,57 € S,
induce uniquely the length £(e) of the edge e = (u,v) with endvertices u,v.
All labelings used here are generalizations of labelings introduced by A.
Rosa [10,11].

The following definition was introduced in [5,1].

Let T be a tree with 2n = 4k + 2 vertices, V(T) = LUV, VoNV; =
0, and |V} = |Vi] = 2k + 1. Notice that the sets Vp and V; are not
the partite sets of T. Because we are factorizing the complete graph
into isomorphic spanning trees, every vertex of the complete graph ap-
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pears in every factor. Therefore, the labeling is a bijection from V(T) to
{00, 10,...,(n=1),04,1y,...,(n—1);} and V; is the set of vertices labeled
0o, 10, ...,(n—1)o, and V; is the set of vertices labeled 0;,1;,... ,(n=1);.
Let A be a bijection, A : V; — {0:,14,2;,...,(2k);},i = 0,1. The pure
length of an edge (z;,3:) with z;,y; € V;,1 € {0,1} is defined as follows: If
A(.’L‘i) = Q; and A(y-,) = b,’, then Z,’g(x,‘, y,-) = min{la— bl, 2k+1- |a.—b|} for
i =0,1. The mized length of an edge (xo,1) with A(zo) = ag and A(y;) =
by, is defined as &1 (z0,71) = b~ a mod (2k + 1) for zg € Vo, 1 € V;. We
say that T has a blended p-labeling or just blended labeling if

(1) {eii(xi) yi)l(ziayi) € E(T)} = {112’ reey k} for i= 0: la

(2) {301(1'0, yl)l(xOr yl) € E(T)} = {Oa 1, 2) ey 2k}'

To simplify our notation, we often unify vertices with their respective
labels. We will say “a vertex a;” rather than “a vertex z with A(z) = a;”.
Similarly, we will say “an edge (a;,b;)" rather than “an edge zy, where
A(z) = a; and A(y) = b;”.

Notice that the lengths of pure and mixed edges are computed dif-
ferently. Suppose we have the complete graph K4 with the vertex labels
0o, 1o, ...,60,01,1;,...6;. Then both the edges (1o, 3p) and (19, 60) have
the pure length 2. On the other hand, the edge (1o,3;) has the mixed
length 2 while the edge (11, 3p) has the mixed length 5. Similarly, the edge
(10,64) has the mixed length 5 while the edge (6o, 1,) has the mixed length
2.

It was proved in [5] that a tree T of order 4k + 2 with a blended
labeling allows a T-factorization of K4k12.

We want to characterize some classes of trees on 4k + 2 vertices
of diameter 5, which allow a blended p-labeling. Since the factorization
into hamiltonian paths Py, is well-known, we start our work with the
caterpillars. From now on we will only consider caterpillars with 4k + 2
vertices.

A tree R such that after deleting all leaves we obtain a path P or a
trivial graph is called a caterpillar. The path P is called the spine of the
caterpillar R.

It is clear that the caterpillars on 4k + 2 vertices of diameter 2 are
the stars K 4x4+1, which clearly do not satisfy the maximum degree con-
dition. The caterpillars of order 4k + 2 with diameter 3 are the double
stars mentioned above. Therefore, the first interesting case is the class of
caterpillars of diameter 4. The results obtained in [6] and [8] give the com-
plete characterization of the caterpillars of order 4k + 2 with diameter 4,
which factorize the complete graphs Kgki2. Hence, we continue with the
caterpillars on 4k + 2 vertices of diameter 5. Recall that if Ris a caterpillar
of diameter 5 then the spine of R has four vertices.

Let the spine of a caterpillar R of diameter 5 have vertices A,a,b,B
and edges Aa,ab,bB. Then we see that the endvertices of the spine of R
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of diameter 5 are denoted by A, I3 and the internal vertices are denoted by
a,b. If deg(A) = d;,deg(a) = dp,deg(b) = ds,deg(B) = d,, then such a
caterpillar will be called a (di, d2, d3, dq)-caterpillar. If we specily just the
degrees of the vertices, say as 7y > rp > r3 > 74, without specifying their
location on the spine, then we will denote R as an [ry, 72, 13, 74]-caterpillar.

If deg(z) < 2k + 1, where z € {A, a,b, B}, and R has 4k + 2 ver-
tices and exactly one vertex of degree 2, then we call this caterpillar R an
[, 5, t,2)-caterpillar.

Notice that we deal only with trees with 4k + 2 vertices, since trees
with 4k vertices do not allow a blended labeling (see (7]). A complete
characterization of [r, s, 2, 2]-caterpillars of order 4k + 2 and diameter 5,
where 3 < r,s < 2k + 1, was given in [6] and [9]. Recall that we know that
every caterpillar with 2n vertices and diameter 5 that factorizes K3, and has
exactly one vertex of degree 2 must contain a vertex of degree at least n—1
(see [6]). Further, recall that we do not present here a more general class of
the caterpillars of order 4k +2 and diameter 5 that factorize K42 because
the proofs require many different and usually very long constructions. The
results for the remaining classes are already in preparation.

We conclude this section with the main result of this paper that will
be proved in Section 3.

Theorem 2.1. Let R be an [r, s, ¢, 2]-caterpillar of order 1k +2 and diam-
eter 5, where k> 2 and 2k > 1 > s 2t > 3. Then R factorizes Kqx 2 if
and only if r = 2k.

3. [r,s,t,2]-CATERPILLARS OF ORDER 4k +2 AND DIAMETER 5
We will use the following results to prove Theorem 2.1.

Theorem 3.1. (Fronéek [6]) For every [r,s,t,2]-caterpillar of order 2n
with r > s > t that factorizes Kon il holds that T > n — 1.

Lemma 3.2. [8] Let T be a iree with a blended p-labeling A and z,y be
arbitrary vertices of T such that z € Vo and y € V1. Then there exists a
blended p-labeling \' such that X'(z) = 0p and A'(y) = 0;.

The proof is straightforward and can be found in [8].

Lemma 3.3. [9] Let T be a tree on 4k + 2 vertices, which allows a blended
p-labeling. Then 3.y, deg(i) = 3 jcv, deg(j) =4k + 1.

The proof can be found in (9].

From Theorem 3.1 it {ollows that we can further consider just
[2k, r, s, 2]-caterpillars of order 4k + 2 and diameter 5 for 2 < 1,5 < 2k.
Moreover, it is obvious that such caterpillars exist only for k& > 2.
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Recall that every tree T with a blended labeling has vertices labeled
so that Vp = {00, 10,...,(2)&:)0},"’1 = {01,11,...,(2’6)1} and V(T) =Wu
V1, VoNV; = 0. Therefore in all following constructions we assume that the
vertices are already labeled and then join them by edges, keeping in mind
that we need to construct the [2k,, s, 2]-caterpillar while obtaining exactly
one edge of each mixed length from 0 to 2k and exactly one edge of every
pure length from 1 to k in each set V; for i = 0, 1.

Lemma 3.4. A (2k,r,2, s)-caterpillar on 4k +2 vertices and with diameter
5 allows a blended p-labeling for every k,r, s, where 2 < r, s < 2k and k > 2.

Proof. By constructions. Let r = n+2,s = 2k —n for 1 <n<2k-
3. Notice that for some values of n in the following constructions it can
happen that we get an edge sequence of type (z;, a;), (zs, (a+1);), (=4, (a+
2);); --» (%1, b;), where @ > b and 1, € {0,1}. In this case this sequence is
indeed empty.

Case 1. Let k be even, k = 2gq.

Subcase 1.1 Let R be a (2k,n + 2,2, 2k — n)-caterpillar on 4k + 2 vertices,
where n is odd, n = 2p+1, and 1 < n < k — 1. Furthermore, let V(R) =
VoU VLY = {09, 1o, ...,(2’0)0}, Vi = {0,1;, ,(2k)1} and A = Qp,a =
(k+1)1,b = (k+1)o, B = 0,. We sce that the spine of R contains mixed
edges of lengths k,0 and k + 1. First we attach each vertex from the sets
{ko, (k+2)o, (k+3)o, ..., (2k)o} and {1;,2, ..., (k—1)1} by an edge to 0p. We
obtain pure 00-edges of lengths k, k—1, k-2, ..., 1 and mixed cdges of lengths
L,2,...,k—1. Then we join every vertex from the sets {1o, 2o, ..., (k-1)o},
{(k+2)1,(k+3)1, s (k+g—ph}, and {(k+ g +p+2)1,(k+qg+p+
3)1,...,(2k)1}, and the vertex k; by an edge to 0,. This way we obtain
mixed edges of lengths 2k, 2k —1,..., k+2 and the pure 11-edges of lengths
k—1,k-2,..,9+p+1landq—p—-1,9-p—2,...,1, and k. Finally we attach
each vertex from the set (k+q—p+1)1, (k+q—p+2)1, ..., (k+q+p+1); by
an edge to (k+1);. We obtain 11-edges of lengths ¢ —p,q —p+1, ..., q+p.

If we replace in the previous construction the pure 11-edge ((k + 1)y, (k +
g+1)1) of length g by the edge (0, (k+¢+1),) of length g, then we obtain
the proof for every neven, 0 <n < k — 2.

Subcase 1.2 Let R be a (2k,n + 2,2,2k — n)-caterpillar on 4k + 2 vertices,
where niseven, k < n < 2k -2, n - (k- 1) = 2p + 1. Furthermore,
let V(R) = ‘/0 U ‘/lv‘/o = {001 10,...,(2k)0}, vl = {01’111 "‘)(2k)l} and
A=0p,a=(k+1),,b=(k+1)o, B =0,. Again, the spine of R contains
mixed edges of lengths £+ 1,0 and k. First we attach each vertex from the
sets {(q—p)o, (q_p+l)0’ il (Q+p)0}1 {ko’ (k+2)0: (k+3)07 ey (k+q—P)0},
{(k+q+p+2)o, (k+q+p+3)o, ..., (2k)o}, and {1,,2y,...,(k—1);} by an edge
to 0p. We obtain pure 00-edges of lengths g ~p,g—p+1, ..., q+pand k, k—
Lk—2,..,9+p+1,andg—p—1,9-p—2,...,1 and mixed edges of lengths
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1,2, ..., k—1. Then we join every vertex from the sets {1, 29, ..., (g—p—1)0}
and {(g+p+1)o, (g+»+2)0,...,(k—1)o}, and the vertex k; by an edge to
0,. This way we obtain mixed edges of lengths 2k,2k -1, ...,3¢+p+2 and
3¢—-p,3¢—p—1,..,k+2, and a pure 11-edge of length k. Finally we attach
every vertex from the sets {(k+9—p+1)o, (k+9—p+2)0, ..., (k+g+p+1)o0}
and {(k +2)1, (k+ 3)1,...,(2k), } by an edge to (k +1),. We obtain mixed
edges of lengths 3¢ +p+ 1,3¢+p,...,3¢ — p + 1 and the pure 11-edges of
length 1,2, ...,k — 1. Note that R is (2k, 2k, 2, 2)-caterpillar for n = 2k — 2,
but we need it for the construction of (2k, 2k — 1, 2, 3)-caterpillar.

If we replace in the previous construction the 11-edge ((k+1)1, (k+q+1)1)
of length q by the 11-edge (01, (k+ g+ 1)) of length g, then we obtain the
construction for every nodd, k—1<n <2k - 3.

Case 2. Let k be odd, k=2g+1.

Subcase 2.1 Let R be (2k, n+2, 2, 2k—n)-caterpillar on 4k+2 vertices, where
nisodd, n =2+ 1,1 < n < k. Furthermore, let V(R) = UV, =
{00, 10, ..., (2k)0}, Vi = {01,114, ...,(2k)1} and A = 0p,a = ky,b = ko, B =
0,. We see that the spine of R contains mixed edges of lengths k, 0 and k+1.
First we attach each vertex from the sets {(k + 1)o, (k + 2)o, ..., (2k)o} and
{11,21, ..., (k = 1),} by an edge to 0p. We obtain pure 00-edges of lengths
k,k—1,k-2,...,1 and mixed edges of lengths 1,2,...,k — 1. Then we join
every vertex from the sets {19, 29, ..., (k—1)o}, {(k+1)1, (k+2)1,..., (k+g—
?)1}, and {(k+q+p+2)1, (k+q+p+3)1,..., (2k),} by an edge to 0,. This way
we obtain mixed edges of lengths 2k, 2k — 1, ...,k + 2 and the pure 11-edges
of lengths k,k—1,...,g+p+2and g—p,q—p—1,...,1. And finally we attach
each vertex from the set (k+q—p+1)1, (k+9—p+2)1,...,(k+g+p+1); by
an edge to k). We obtain 11-edges of lengths g—p+1,9—p+2,...,9+p+1.

If we replace in the previous construction the pure 11-edge (ki, (k+q+1)1)
of length ¢+ 1 by the edge (0, (k+q+1);) of length g+ 1, then we obtain
the proof for every neven, 0 <n < k-1.

Subcase 2.2 Let R be a (2k,n + 2, 2,2k — n)-caterpillar on 4k + 2 vertices,
where niseven, k+1 < n < 2k -2, n-k = 2p+ 1. Furthermore,
let V(R) = WUuUW,W= {00, lo,..., (Qk)o}, i = {01, 14, ,(2’6)1} and
A=00,a= k],b=ko,B =01.

Again, the spine of R contains mixed edges of lengths k,0 and k+ 1.
First we attach each vertex from the sets {{(g—p+1)o,{(¢ —p+2)o, ..., (g +
p+1)o}, {(k+ Do, (k+2)o, ..., (k+q-p)o}, {(k+q+p+2)o, (k+q+p+
3)o,---,(2k)o}, and {11,24,...,(k — 1)1} by an edge to 0p. We obtain pure
00-edges of lengths g—p+1,9—p+2,..,9+p+1and k,k—1,...,q9+p+2,
and g —p,q—p—1,...,,1 and mixed edges of lengths 1,2, ...,k — 1. Then we
join every vertex from the sets {1¢, 2o, ..., (—p)o} and {(g+p+2)o, (g+p+
3)o, ..., (k—1)o} by an edge to 0;. This way we obtain mixed edges of lengths
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2k,2k —1,...,3¢+p+3and 39— p+1,3¢g —p, ..., k + 2. Finally we attach
every vertex from the sets {(k+q—p+1)o, (k+9—p+2)o, ..., (k+g+p+1)o}
and {(k+1)1, (k+2)1,...,(2k),} by an edge to k;. We obtain mixed edges
of lengths 3¢+p+2,3¢+p+1,...,3¢—p+2 and the pure 11-edges of length
1,2,..,k

If we replace in the previous construction the 11-edge (k1, (k+ g+ 1)1) by
the 11-edge (0;, (k+ ¢+ 1)), then we obtain construction for every n odd,
k<n<2k-3. 0O

Lemma 3.5. A (2k,2,7,s)-caterpillar on 4k+2 vertices and with diameter
5 allows a blended p-labeling for every k,r,s, where2 < r,s < 2k and k > 2.

Proof. By constructions. Let r=n+2,s=2k-nforl <n <2 —3.
Case 1. Let k be even, k = 2q.

Subcase 1.1 Let R be a (2k,2,n + 2,2k — n)-caterpillar on 4k + 2 vertices,
where n is odd, n = 2p + 1,1 < n < k — 1. Furthermore, let V(R) =
Vou Vi, W = {0, 1o, v (2k)0}, Vi = {04,14,..., (2k),} and A = 0p,a =
(k+1)o,b=(k+1),B =0,.
Then R contains
(i) pure 00-edges (0o, (k + 1)o), (0o, (k + 2)o), ..., (Op, (2k)o) of lengths
k,k-1,..1,and
(ii) pure 1l-edges (01, (k + 1)1), (01, (k + 2)1), ..., (01, (k + g — p)1) of
lengths k,k—1,...,g+p+1and (O, (k+q4p+2)1), (01, (k+q+p-+
3)1) - (01, (2k)1) of lengths g—p—1,9—p—2, ..., 1, and ((k+1)1, (k+
g=p+1)1),((k+1)1,(k+q=p+2)1),... (+1)1,(k+g+p+1)1)
of lengths g —p,g—p+1,...,g +p, and
(iii) mixed edges (0o, 11), (0o,21), ..., (0o, k1) of lengths 1,2, ..., k and (04,
10), (01, 20), ..., (01, ko) of lengths 2k, 2k —1,...,k + 1, and finally the
edge ((k + 1)o, (k + 1)1) of length 0.

If we replace in the previous construction the pure 11-edge ((k + 1), (k +
g+1),) of length ¢ by the edge (04, (k+q+1);) of length ¢, then we obtain
the proof for every n even, 0 <n < k — 2.

Subcase 1.2 Let R be a (2k,2,n + 2,2k — n)-caterpillar on 4k + 2 vertices,
where n is even, k < n < 2k -2, n— (k- 1) = 2p 4+ 1. Furthermore,
let V(R) = VbuV, W = {00, 1o, ..., (2k)o}, V1 = {0y,14,..., (2k);} and
A=0p,a=(k+1)o,b=(k+1);,,B=0,.
Then R contains
(iv) pure 00-edges (O, (9=p)o); (0o, (¢—p+1)0), ..., (0o, (g+p)o) of lengths
q9—p, q_p+1, veey (I+p and (OOr (k+ 1)0)1 (001 (k+2)0)1 ) (OOa (k+q_
plo) of lengths k,k—1,...,g+p+1, and (0g, (k+q+p+2)o), (O, (k+
q+p+3)o), ..., (0, (2k)p) of lengths g —p—1,g—p~2,...,1, and
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(v) pure 11-edges (0;, (k+1);) of length k and ((k+1);, (k+2)1), ((k+
11, (k +3)1), ..., ((k +1)1,(2k);) of lengths 1,2, ...,k — 1, and

(vi) mixed edges (0o, 11), (00,21), ..., (0o, k1) of lengths 1,2,...,k and (0j,
10), (01, 20), ..., (01, (g — p — 1)o) of lengths 2k,2k - 1,...,3¢+ p+ 2,
and (Olv (q +p+ 1)0)1 (011 (q +p+ 2)0)! ey (Olka) of ]engt'hs 3q -
p.3g—-p—1,...k+1,and (k+ 1)1, (k+g—p+1)), ((k+ 1)1, (k+
g—p+2)0), ., ((k+1)1,(k+q+p+1)o) of lengths 3g+p+1,3¢+
Py e3q—p+ 1.

If we replace in the previous construction the 11-edge ((k+1)1,(k+¢q-+1)1)
of length ¢ by the 00-edge (01, (k+ g+ 1)1) of length g, then we obtain the
construction for every nodd, k—1<n <2k -3.

Case 2. Let k be odd, k =2¢+ 1.

Subcase 2.1 Let R be a (2k,2,n + 2,2k — n)-caterpillar on 4k + 2 vertices,
where n is odd, n = 2p+ 1 and 1 < n < k — 2. Furthermore, let V(R) =
Vo UV, Vo = {00,10,...,(2k)o}, Vi = {01,1,,..,(2k)1} and A = Op,a =
ko,b=k,, B = 0.
Then R contains
(vii) pure 00-edges (0o, ko) of length k and (0o, (k + 2)o), (0o, (k + 3)0), -.-
(0o, (2k)o) of lengths k — 1,k —2,...,1, and
(viii) pure 11-edges (01, k1) of length k and (04, (k +2))1, (01, (kK +3)), ..,
(01, (k4+q—p)1) of lengths k—1,k-2, ...,q+p+2, and (0, (k+g+p+
2)1)1 (olv (k+Q+P+3)l)s seny (011 (2k)1) oflengt.hs q9—=p,q—p— 1.1,
and (ky, (k+g—p+1)1), (k1, (k+g—p+2)1), ..., (k1, (k+q+p+1)1)
of lengthsq—p+1,9—p+2,...,9+p+1, and
(ix) mixed edges (0o, (k+1)1), (01, (k+1)o) and (ko, k;) of lengths k+1,k
and 0, and (0, 1,),(0o,21), ---, (0o, (k — 1),) of lengths 1,2, ...,k -1,
and (04, 10), (01, 20), .., (01, (k — 1)o) of lengths 2k, 2k —1,...,k + 2.

If we replace in the previous construction the 11-edge (k;,(k+ g + 1)) of
length ¢ + 1 by the edge (0, (k + ¢+ 1)1) of length g + 1, then we obtain
the construction for every neven, 0 <n <k —3.

Subcase 2.2 Let R be a (2k,2,n + 2,2k — n)-caterpillar on 4k + 2 vertices,
where n is even, n— (k—2) = 2p+1 and k — 1 < n < 2k — 4. Furthermore,
let V(R) = VoUW, Vo = {0o,10,...,(2k)o}, Vi = {01,11,...,(2k)1} and
A=00,a= ko,b:kl,B =01.
Then R contains
(x) pure 00-edges (0o, ko) of length k and (0o, (g —p+ 1)0), (G0, (9 — P+
2)0)1 ooy (00, (Q+p + 1)0) of lengths g—-p+l,q9q—p+ 2,.q+p+1,
and (0o, (k + 2)o), (G0, (k + 3)0), ---, (0o, (k + g — p)o) of lengths k —
1,k—2,..q+p+2, and (0p,(k +q+p+2)), (00, (k+g+p+
3)0), -.s (0o, (2k)o) of lengths g —p,q—p—1,...,1, and
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(xi) pure 11-edges (0, k), (0,, (2k)1) of lengths k and 1, and (k;, (k +
2)1), (k1, (k + 3)1), ..., (k1, (2k — 1)1) of lengths 2,3, ...,k — 1, and

(xii) mixed edges (Op, (k + 1)1), (01, (k + 1)o) and (ko, k;) of lengths k +
1,k and 0, and (0, 1p), (04, 20), ..., (01, (g — p)o) of lengths 2k, 2k —
1: seey 30+P+3, and (Oh (Q+P+2)0)x (011 (q+p+3)0)) eeey (011 (k— 1)0)
of lengths 3¢—p+1,3q-p,....k+2, and (ky, (k+q9—p+1)o), (k1, (k+
q—p+2)0), ..., (k1, (k+g+p+1)o) of lengths 3g+p+2, 3g+p+1,..., 39—
P+ 2, and (0p, 1), (09, 21), ..., (Op, (k — 1);) of lengths 1,2, ...,k — 1.

If we replace in the previous construction the 11-edge (k;,(k + g +1);) of
length g + 1 by the edge (04, (k + g+ 1)1) of length ¢ + 1, then we obtain
the construction for every n odd, k — 2 < n < 2k — 5.

Subcase 2.3 Let R be a (2k, 2,n + 2,2k — n)-caterpillar on 4k + 2 vertices,

where n = 2k —3. Furthermore, let V(R) = VoUV;, Vp = {09, 1o, ..., (2k)o},

V= {0), 14, ..y (2k)1} and A=0p,a = (k+ 1)o,6=0;,B = k.
Then R contains

(xiii) pure 00-edges (Qo, (k + 1)o), (0o, (k + 2)o), ..., (0o, (2k)o) of lengths
k,k—-1,.,1 and

(xiv) pure 1l-edges (01, k1), (k1,(k + g + 1);) of lengths k and ¢+ 1, and
(01: (k + 2)l)v (Ola(k + 3)1)1 veny (Oli(k + q)l) of lengths k - 1, k -
2) g+ 2| and (011 (k +q+ 2)1)\ (01| (k +q+ 3)1)» sy (011 (2k)1) of
lengths ¢,9 -1, ...,1, and

(xv) mixed edges (0o, (k + 1)1),(0y, (k + 1)o) and (ko, k) of lengths k +

1,k and 0, and (0y, 1p), (01,20), ..., (01, (k — 1)o) of lengths 2k, 2k —
1,...,k+2, and (0p, 1,), (0o, 2y), ..., (Oo, (k—1);) of lengths 1,2, ..., k—
1. O

Lemma 3.6. A (2k,r,s,2)-calerpillar on 1k+2 verlices and with diameter
5 allows a blended p-labeling for every2 < r, s < 2k and every k cven, k > 2.

Proof. By constructions. Let r=n+2and s=2k—nfor1 <n <2k —3
and let R be a (2k, n+ 2,2k —n, 2)-caterpillar of order 4k + 2 and diameter
5 and &k = 2q.

Case 1. Let nbeeven,n—1=2p+1and2 <n < k. Furthermore,
let V(R) = VoUW,V = {0g,10,.--,(2k)o}, Vi = {0, 1,,..., (2k);} and
A=0p,a= (k+1),b=0,,8B = 1,.
Then R contains
(i) pure 00-cdges (0o, (k + 1)o), (0o, (k + 2)o), ..., (0o, (2k)o) of lengths
k,k—-1,..,1, and
(ii) pure 11-edges (01, (k + 1),) of length k, and (0, (k + 2)1), (0, (k +
3)1)s -y (01,(k+ g —p)1) of lengths k — 1,k — 2,...,.q+p + 1, and
(011 (k +q9+p+ 2)1)r (Olt (k +q+p+ 3)1)’ ooy (01, (2k)1) of Iengt‘hs
q—p"li (I—P-Q, seey l: and ((k+l)l$ (k+q—p+l)l)((k+l)l: (k+q_
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P+2)1), oo ((k+1)1, (k+g+p+1)1) of lengths g—p,g—p+1,....q+p,
and

(iii) mixed edges (ko, (k+1)1) and (1o,1,) of length 1 and 0, and (0,, 1o),
(01,20), .., (01, (k — 1)o) of lengths 2k, 2k —1,...,k + 2, and (0o, 2),
(00) 31)1 ey (00’ kl)v (00, (k + 1)1) of lengths 2,3,...,k,k + 1.

Case 2. Let nbeodd, n—k=2p+1 and k+1 < n < 2k — 3. Furthermore,
let V(R) = VoUW,V = {0p,10,...,(2k)o}, Vi = {01,11,...,(2k);} and
A=0pa=(k+1),b=0,,B=1.
Then R contains
(iv) pure 00-edges (0o, (2k)o) of length 1, and (0o, (¢ — p)o), (0o, (¢ —p +
1)0)» veey (00) (q+p)0) of lcngt.hs fl—P,q—TH'?» v q+p, and (001 (k+
1)0)' (001 (k+2)0), ey (OOv (k+q—p)0) oflcngl.hs ks k— l: vy (I+P+1,
and (0g, (k + g +p + 2)0), (0o, (k + g +p + 3)o), ., (09, (2k — 1)) of
lengths g—p—1,g—p-2,...,2, and
(v) pure 11-edges (0y, (k+1);) of length k and ((k+ 1)y, (k+2)1), ((k+
D1, (k +3)1), ..., (K + 1)1, (2k);) of lengths 1,2, ...,k — 1, and
(vi) mixed edges (ko, (k+1)) and (10,1,) of lengths 1 and 0, and (04, 1o),
(01,20), .., (01,(q — p — 1)o) of lengths 2k,2k — 1,...,39 + p + 2,
and (01’ (q +p+ 1)0)’ (Oh (q +p+2)0)s - (011 (k - 1)0) of lengths
3¢g-p3¢g-p-1,.,k+2 and (k+ 1)1, (k+g—p+ 1)), ((k+
D1, (k+g—p+2)o), ..., (k+1)1,(k+g+p+1)o) of lengths 3g+p+
1, 3q +p ’3(1 -p+ 1, and (00: 21)1 (00) 3l)$ eeey (001 kl)v (00) (k + 1)1)
of lengths 2,3, ...k, k + 1.

If we replace in both previous constructions the pure 11-edge ((k+1)1, (k+
g+1);) of length g by the edge (01, (k+g+ 1)) of length g, then we obtain
constructions for every n odd if 1 < n < k — 1 and for every n even if
k<n<2-4 0O

Lemma 3.7. A (2k,r,s,2)-caterpillar on 4k+2 vertices and with diameter
5 allows a blended p-labeling for every 2 < r, s < 2k and every k odd, k > 3.

Proof. By constructions. Let r=n+2and s=2k-nfor1 <n<2k-3
and let R be a (2k, n+ 2, 2k — n, 2)-caterpillar of order 4k + 2 and diameter
5and k =29+ 1.

Case 1. Let nbeeven, n—1=2p+1and 2 < n < k— 1. Furthermore,
let V(R) = uW,W = {0(), lo, ..., (2k)o}, Vi = {01,]1,...,(2’6)1} and
A=0pa=k,b=0y,B=1,.
Then R contains
(i) pure 00-edges (0o, (2k)o) and (1o, (k + 1)o) of lengths 1 and &, and
(0o, (k+2)0), (0o, (k+3)0), ..., (0o, (2k—1)o) of lengths k—1, k-2, ..., 2,
and
(ii) pure 11-edges (01, k) of length &, and (01, (k+2)1), (01, (k+3)1), ..,
(01, (k+q—p),) of lengths k—1,k—2, ...,q+p+2, and (0,, (k+g+p+
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2)1)) (Ol’ (k+q+p+3)l): veey (Ol: (2k)l) ol'lengt,hs q—p q—p_lr ey 1)
and (kh (k+q—-p+1)1)(k1, (k+q_p+2)l)) () (kla (k+q+p+ 1)1)
oflengths g —p+1,q—-p+2,...,q+p+1, and

(iii) mixed edges (ko, k1) of length 0 and (04, 1¢), (01, 2), ..., (01, (k—1)o)
oflengths 2k, 2k-1, ..., k42, and (0o, 1), (0o, 21), .., (Oo, k1), (0o, (k+
1);) of lengths 1,2, ..., k, k + 1.

Case 2. Let nbe odd, n—(k—1) = 2p+1 and k < n < 2k—3. Furthermore,
let V(R) = WU ‘/1: W = {00) 10, (2k)0}! vl = {01, 11, (2k)l} and
A =00,a=k1,b=01,B= 10.
Then R contains
(iv) pure 00-edges (0o, (2k)o) and (1o, (k + 1)o) of lengths 1 and &, and
(00, (g—p+1)0), (00, (g—p+2)0), .-, (Co, (g+p+1)o) of lengths g—p+
1,q-p+2, .., q+p+1, and (00! (k+2)0): (001 (k+3)0)1 ey (00’ (k+q_
p)o) of lengths k—1, k-2, ..., g+p+2, and (0o, (k+g+p+2)0), (0o, (k+
q+p+3)o), ..., (0o, (2k — 1)0) of lengths ¢ —p,g —p~1, ..., 2, and
(v) pure 11-edges (0,,k;) and (01, (2k),) of lengths k and 1 (ky, (k +
2)1), (k1, (kK +3)), ..., (k1,(2k — 1);) of lengths 2,3, ...,k — 1, and
(vi) mixed edges (ko, k;) of length 0 and (04, 19), (04, 20), ..., (01, (9 = p)o)
of lengths 2k,2k — 1, ...,3q+p+3, and (0, (9+p+2)0), (01, (g+p+
3)0), - (01, (k—1)0) of lengths 3g—p+1,3g9—p, ..., k+2, and (ki, (k+
q=p+1)o), (k1, (k+9—p+2)0), ..., (k1, (k+q+p+1)o) of lengths 3g+p+
2,3q+p+1,...,3¢g—p+2, and (00, 1), (00, 21); ooy (00, k1), (00, (k+1)1)
of lengths 1,2, ..., k, k + 1.

If we replace in both previous constructions the pure 11-edge (k;, (k4+¢+1);)
of length ¢+ 1 by the edge (04, (k+g+1)1) of length g+ 1, then we obtain
constructions for every n odd if 1 £ n < k — 2 and for every n even if
k-1<n<2k-4 0O

Lemma 3.8. An (r,2k,2,s)-caterpillar of order 4k + 2 and diameler §
allows a blended p-labeling for cvery 3 < r,s < 2k and every k even, k > 2.

Proof. By constructions. Let R be a (r, 2k, 2, s)-caterpillar of order 4k + 2
and diameter 5andlet r=n+land s=2k—-n+1for2<n <2k —2
and k = 2q. Furthermore, let V(R)=WUV,,Vp = {00, 1oy .0y (Qk)o}, W=
{01, 14, ..., (2]6)1} and A= (k+ 1);,a=09,b= 19, B = 0;.

Case 1. Let nbeodd, n—2=2p+1,and 3 <n < k+1. Then R contains

(i) pure 00-edges (0o, 19) and (0Op, ko) of lengths 1 and k, and further
00-edges (0o, (k + 2)0), (0o, (k + 3)0), ..., (0o, (2k — 1)p) of lengths k —
1,k-2,..,2,

(ii) pure 11-edges ((k + 1)1, 1;) of length k and (04, (k + 2)1), (01, (k +
M) (01,(k+ g —p)1) of lengths k — 1,k - 2,..,q+p+1, and
(O, (k+g+p+21), (01, (k+q+p+3)), ..., (01,(2k),) of lengths
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g-p—-1,9-p-2,..1, and finally 11-edges ((k+ 1);,(k+q—p+
1), ((k+1)1, (k+g9-p+2)h),....((k+1)1,(k+g+p+1);) of lengths
9-p.g—p+1,..,q+p, and

(iii) mixed O01-edges (0y,(2k)o) and ((k + 1)o, (k + 1)1) of lengths 1 and
0, and 0l-edges (0, lo), (01, 20), ...(01, (k — 1)o) of lengths 2k, 2k —
1, ..., k+2, and (0p, 2;), (00, 3, ), --., (Op, (k+1);) of lengths 2,3, ..., k+
1.

Case 2. Let nbeeven,n—(k+1)=2p+1,and k+2 < n < 2k—2. Then
R contains

(iv) pure 00-edges (0o, 1o) and (0Og, ko) of lengths 1 and k, and further 00-
edges (0o, (¢ — P)o), (0o, (g — P+ 1)o), ..., (0o, (g + P)o) of lengths g —
P, q—p+1, ey @D, and (001 (k+2)0)) (00: (k+3)0)1 ooy (00’ (k+q_p)0)
oflengths k—1,k-2,..,q+p+1, and (0p, (k+g+p+2)o), (0o, (k+
g+p+ 3)0), sy (00: (2k - 1)0) of]engths q9—=p-— l»q -D- 2,...2,

(v) pure 11-edges ((k +1)1,1,) of length k and 11-edges ((k + 1)1, (k +
2)1)) ((k + l)l: (k + 3)1)v ey ((k + 1)11 (Zk)l) of ]engths 11 21 eeoy k- 1:

(vi) mixed 0l-edges ((k+1)1,(k+1)o) and (0,, (2k)o) of lengths 0 and 1,
and (04, 1p), (01, 20), ---, (01, (g—p—1)o) of lengths 2k,2k -1, ..., 3¢+
P+2, and (01’ (Q+p+1)0): (Ol: (Q+P+2)0), X3} (01: (k—l)O) of ]engt‘hs
3(]—}7, 3q—P— 1., k+21 and ((k+1)1, (k+q'—p+l)0): ((k+ 1)1: (k+
a-p+2)0),-, ((k+1)1,(k+qg+p+1)) of lengths 3g+p+1,3¢g+
Pseeny 3?"P+ 1, and ﬁnany Ol'edges (OOa 21 ): (00; 31)a ooy (001 (k+ l)l)
of lengths 2,3, ...,k + 1.
If we replace in both previous cascs the pure 11-edge ((k+ 1)1, (k+q+1)1)
of length ¢ by the edge (04, (k + q + 1)1) ol length q, then we obtain the
construction for every n even, when 2 < n < k, and for every n odd, when
k4+1<n<2-3. 0O

Lemma 3.9. An (r,2k,2, s)-caterpillar of order 4k + 2 and diameter 5§
allows a blended p-labeling for every 3 < r,s £ 2k and every k odd, k > 3.

Proof. By constructions. Let R be a (r, 2k, 2, s)-caterpillar of order 4k + 2
and diameter 5andlet r=n+lands=2k—n+1for2<n <2k-2and
k = 2q + 1. Furthermore, let V(R) = Vo U V;, Wy = {0p, 10, ..., (2k)0}, Vi =
{01, 11, veey (2k)1} and A = kl,a = Oo,b = lo, B= 01.

Case 1. Let nbeodd, n—2=2p+1,and 3 <n < k+2. Then R contains

(i) pure 00-edges (Og, 1o) of length 1, and further 00-edges (0o, (k +
1)o), (0o, (k + 2)o), ..., (0o, (2k — 1)o) of lengths k, k ~1,...,2,

(ii) pure 11-edges (0y, (k+1)1), (01, (k+2)1), ..., (01, (k+g—p)1) of lengths
k-1,k-2,..,q+p+2,and (0;,(k+g+p+21), (01, (k+q+p+
3)1), .. (01,(2k);) of lengths g—p,gq—p—1,...,1, and finally 11-edges
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(k;,(k+q—p+1)1),(k1,(k+q—p+2)1), °--v(kl)(k+Q+p+ l)l)
of lengths g—p+1,9—p+2,...,9+p+1, and

(iii) mixed Ol-edges (ki, (2k)o) and (ko, k1) of lengths k + 1 and 0, and
0Ol-edges (01, 10), (01, 20), ...(01, (k—1)o) of lengths 2k, 2k—1, ..., k+2,
and (0p, 1,),(0g,2;), ..., (Og, k1) of lengths 1,2, ..., k.

Case 2. Let nbeeven,n— (k+2)=2p+1,and k+2 < n < 2k —2. Then
R contains

(iv) pure G0-edges (Op, 1o) of length 1 and further 00-edges (0o, (g — p +
1)0)! (00: (q—P+2)0), very (00: (Q+p+ 1)0) of Iengt‘hs 9—p+ llq -p+
2’ wnq+p+ 1, and (001 (k + 1)0)1 (00) (k + 2)0)! sy (00» (k +q - P)O)
of lengths k,k —1,...,q+ p+ 2, and (0o, (k + ¢+ p + 2)0), (0o, (k +
g+p+ 3)0)) ey (00: (2k - 1)0) of Iengt;hs 9~-p,q-p-1,..,2,

(v) pure 1l-edges (ky, (k + 1)1), (k1, (k + 2)1), ..., (k1, (2k);) of lengths
1,2,..,k,

(vi) mixed Ol-edges (ky, ko) and (k1,(2k)o) of lengths 0 and & + 1, and
(01,10),(01,20), ..., (01, (g — p)o) of lengths 2k,2k — 1,..., 3¢+ p + 3,
and (0y,(q+p+ 2)o), (01, (q +p+ 3)0), vy (01, (k — 1)o) of lengths
3¢-p+1,3¢g-p,...k+2,and (k;,(k+qg—p+1)), (k1, (k+g—p+
2)0), -.-» (k1, (k+q+p+1)o) of lengths 3g+p+2, 3g+p+1, ..., 3g—p+2,
and finally 0l-edges (0o, 1), (0Op, 21), ..., (0o, k1) of lengths 1,2, ..., k.

If we replace in both previous cases the pure 11-edge (k;, (k + g+ 1);) of
length ¢ 4 1 by the edge (04, (k + ¢ + 1)1) of length ¢ + 1, then we obtain
the construction for every n even, when 2 < n < k + 1, and for every n
odd, whenk+1<n<2k-3. O

Lemma 3.10. An (r,2k, s,2)-caterpiller of order 4k + 2 and diameter 5
allows a blended p-labeling for every 3 < r,s < 2k and every k even, k > 2.

Proof. By constructions. Let R be a (r, 2k, s, 2)-caterpillar of order 4k + 2
and diameter 5andlet r=n+land s=2k—n+1for2<n <2k -2
and k = 2¢. Furthermore, let V(R) = VoUW, Vg = {0y, 1o, ..., (2k)o}, Vi =
{01, ) ST (2k)1} and A= (k+ 1)1,a=00,=0,,B = (k + 1)o.

Case 1. Let nbeodd, n=2p+1,and 1 <n <k —1. Then R contains

(i) pure 00-edges (0o, ko) and ((k=+1)o, (k+g-+1)o) of lengths k and ¢, and
further 00-edges (0o, (k+2)0), (0o, (k+3)0), ..., (Oo, (k+q)o) of lengths
k—la k_2a seey q+lv and (001 (k+Q+2)0)l (00) (k+Q+3)0)’ teey (001 (2k)0)
of lengths g - 1,4 -2, ...,1,

(ii) pure 11-edges (04, k1) of length k and (04, (k+2),), (0, (k+3)1), s
(01,(k+q—p)1) of lengths k— 1,k —2,...,q+p+1, and (01, (k+ g+
p+2)l)s (011 (k+(1+P+3)l), ey (Oh (Qk)l) oflengths q—p- liq_p_
2,..., 1, and finally 11-edges ((k+1), (k+q—p+1),), (k+1)1, (k+q—
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p+2)1), .., ((k+1)1, (k+9+p+1),) of lengths g—p,g—p+1, ...,9+p,
and

(iii) mixed Ol-edges (0o, 01), (0o, (k + 1),) and (0, (k + 1)o) of lengths

0, k+1 and k, and Ol-edges (04, 1g), (04, 20), ...(01, (k—1)o) of lengths
2k,2k - 1,...,k+2, and (0g, 11), (00,21), --., (0p, (k — 1)) of lengths
1,2,..,k—1.

Case 2. Let nbeodd, n — (k—1)=2p,and k+1<n <2k —-3. Then R
contains

(iv)

(v)
(vi)

pure 00-edges ((k + 1)o, (k + g + 1)o) and (Op, ko) of lengths q and
k, and further 00-edges (0o, (¢ — P)o), (0o, (¢ — P + 1)o), ... (Co, (7 —
1)o) of lengthsqg —p,g —p +1,...,¢ — 1, and (0o, (¢ + 1)o), (Co, (¢ +
2)o), -.» (00, (g + p)o) of lengths ¢ + 1,9 +2,...,q + p and (0o, (k +
2)o0), (0o, (k+3)0), -y (0o, (k+g—p)o) of lengths k=1,k=2, ..., g¢+p+1,
and (0o, (k+q+p+2)o), (0o, (k+9+p+3)0), ..., (0o, (2k)o) of lengths
g-p-l9-p-2,..,21,

pure 11-edges (03, k1) of length & and 11-edges ((k + 1)1, (k + 2)1),
((k+ 1)1, (k +3)1), -, ((k +1)1,(2k)1) of lengths 1,2, ...,k -1,

mixed 0l-cdges (0y,00) and (01,40) of lengths 0 and 3q + 1 and
(Oo, (k + 1)1) and (01, (k + 1)) of lengths k + 1 and k. Further
(011 10)1 (01120): seny (01’ (Q—P—l)o) oflcngt,hs Zk: 2k— lv reny 3(I+P+2,
and (01) (q +p + 1)0)) (011 (Q +p+ 2)0)) ey (011 (k - 1)0) of lengt‘hs
3¢-p,3q—-p—1,...,k+2, and ((k+1)1, (k+g—p+1)o), ((k+1)1, (k+
g—p+2)o), -, (k+1)1, (k+q)o) of lengths 3g+p+1,39+p, ..., 39+2,
and ((k+ 1)1, (k+q+2n), (k+ 11, (k+q+3), .. (k+ 1)1, (k +
q+p+1),) of lengths 3¢,3¢—1,...,3¢ — p+ 1, and finally 01-edges
(00,11),(00,21), ..., (Vo, (k — 1)1) of lengths 1,2, ...,k — 1.

If we replace in both previous cases the pure 11-edge ((k+1)1, (k+g+1)1)
of length g by the edge (01, (k + g + 1)1) of length ¢, then we obtain the
construction for every n even, when 0 < n < 2k - 4.

Case 3. Let n=2k—-2and A=0;,a=00,b=k;,B=(k+1)o. Then R
contains

(vii)

(viii)

(ix)

pure 00-edges (0o, 10), (0o, ko) and ((k + 1)o, (k + g+ 1)o) of lengths
lv k and 9, and (001 (k+2)0): (00’ (k+3)()), ey (00$ (k+q)0) of ]engt‘hs
k—1,k=2,...,q+1, and (0o, (k+g+2)0), (Oo, (k+g+3)0), ..., (0o, (2k—
1)o) of lengths ¢ — 1,9 - 2, ..., 2,

pure 11-edges (01, (k + 1)1,), (01, (k + 2)1), ..., (01, (2k)1) of lengths
k,k-1,..,1, and

mixed Ol-edges ((k + 1)o, k1) and ((2k)o, k1) of length 2k and k + 1,
and (04, 20), (01, 30), ---, (01, (k—1)o) ol lengths 2k —1,2k -2, ..., k+2,
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and (0g,01), (0o 11), ..., (0g, k1) of lengths 1,2,...k. O

Lemma 3.11. An (r, 2k, s,2)-caterpillar of order 4k 4+ 2 and diameter 5
allows a blended p-labeling for every 3 < 7,8 < 2k and cvery k odd, k > 3.

Proof. By constructions. Let R be a (r, 2k, s, 2)-caterpillar of order 4k + 2
and diameter 5andlet r=n+lands=2k-n+1for2<n <2k—-2and
k = 2q + 1. Furthermore, let V(R) = Vo U Vi, Vp = {0p, lo, ..., (2k)0}, V1 =
{01,1,,...,(2k);} and A= k;,a =00,b =01, B = ko.

Case 1. Let nbeodd, n=2p+1,and 1 < n < k. Then R contains

(i)

(ii)

pure 00-cdges (ko, (k+g+1)o) of length ¢+ 1, and 00-edges (0o, (k +
1)), (0o, (k+3)o), ---, (0o, (k+¢)o) of lengths k—1,k—2, ..., g+2, and
(001 (k+Q+2)0): (00) (k+Q+3)0)v vey (00: (2k)0) Of]engths q, q_lv e 1,

pure 1l-edges (01, (k + 1)1), (01, (k + 2)1), ..., (01, (k + ¢ — p)1) of
lengths k, k—~1, ...,g+p+2, and (01,(k+g+p+2)1), (01, (k+g+p+
3)1),...,(01,(2k)1) of lengths g—p,g—p—1,...,1, and finally 11-edges
(ki,(k+q=p+1)1),(ki,(k+9=p+2)h),...(k1,(k+g+p+1)1)
of lengths g—p+1,9—p+2,..,9+p+1, and

(iii) mixed 0l-edges (0y, 1o), (01, 20), ---, (01, ko) of lengths 2k,2k — 1, ...,

k+ 1) and (00301)3 (00: 11)1 (00121)1 veey (OOs kl) of lengt'hs 07 1:21 s k.

Case 2. Let nbe odd, n—k =2p, and k+2 < n < 2k —3. Then R contains

(iv)

(vi)

pure 00-edges (ko,(k + g + 1)o) of length ¢+ 1 and (0, (¢ — p +
1)0)1 (00) (q =pP+2)o) s (00’ qo) of lengths q-p+l,g—-p+2,..,4q,
and (0o, (¢ + 2)o), (0o, (g + 3)0), .-, (0o, (g + p + 1)o) of lengths ¢ +
2,9+3, ...,q+p+1 and (0o, (k+1)o), (0o, (k+2)0), ..., (O, (k+9—p)o)
of lengths k,k —1,...,q +p+2, and (0p, (k + g + p + 2)0), (0o, (k +
g+ p+ 3)o), ..., (0o, (2k)o) of lengths g —p,g—p~-1,...,1,

pure 1l-edges (ki, (k + 1)), (k1,(k + 2)1),..., (k1,(2k);) of lengths
1,2, ...k,

mixed Ol-edges (0,,00) and (0;,(q + 1)) of lengths 0 and 3¢ + 2.
Further (01, 1p), (01, 20), ..., (01, (g—p)o) of lengths 2k, 2k ~1, ..., 3g+
P+ 3s and (01: (q +p+ 2)0)1 (01’ (q +p+ 3)0); ey (01’ kO) of lengt;hs
3g—p+1,3¢—p,....k+1,and (k1,(k+q—p+1)o), (k1, (k+g—p+
2)0)s -y (K1, (k +q)o) Of lengths 3g+p+2,3¢+p+1,...,3¢+ 3, and
(kh (k+Q+2)l)) (kla (k+Q+ 3)1)) oy (k], (k+q+p+ l)l) oflengths
3g+1, 3q, ..., 3g—p+2, and finally 01-edges (0o, 1), (0, 21), .., (0o, k1)
of lengths 1,2, ..., k.

If we replace in both previous cases the pure 11-edge (k;, (k + g + 1);) of
length ¢ + 1 by the edge (0y, (k + ¢ + 1)1) of length g + 1, then we obtain
the construction for every n even, when 0 < n < 2k — 4,
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Case 8. Let n=2k—-2and A=0,,a=0p,b=k,B=(k+1). Then R
contains

(vii) pure 00-edges ((k + 1)o, 1o) of length k and (0o, (k + 2)o), (Oo, (k +
3)0), .. (00, (2k)o) of lengths k — 1,k - 2,...,,1,

(viii) pure 11-edges (ki1, (k+qg+1)1) of length ¢+1 and (01, (k+1)1,), (01,
(k+2)1),...,(01, (k + @)1) of lengths k,k — 1, ...,g+ 2, and (04, (k +
q+2)1), (01, (k+ g+ 3)1), ..., (01,(2k)1) of lengths ¢, ¢ — 1, ..., 1, and

(ix) mixed 01-edges ((k+1)o, k1) of length 2k and (0,, 2), (04, 3p), ..., (01,
ko) oflengths 2k-1,2k—-2,....,k+1, and (00, 01), (00, 11), ey (00, k])
of lengths 1,2,...,k. O

Lemma 3.12. A (2,2k,7,s)-calerpillar of order 4k + 2 and diameter 5
allows a blended p-labeling for every 2 < r,s < 2k — 1 and every k even,
k>2

Proof. By constructions. Let r =n+2ands=2k—nforl1 <n <2k-3.
Furthermore, let R be a (2, 2k, n+ 2, 2k — n)-caterpillar of order 4k +2 and
diameter 5 and k = 2q.

Case 1. Let nbeodd, k+1 <n < 2k-1, and n—k = 2p+1. Furthermore,

let V(R) = Vou W, Vo = {0g,1lo,...,(2k)o}, Vi = {01,11,...,(2k)1} and

A=(k+1)o,a=00,b=0,,B= (k+1);.
Then R contains

(i) pure 00-edges (0o, (k + 1)o) and ((k + 1)o, (k + g + 1)o) of lengths
k and q, and (00) (k + 2)0)v (00) (k + 3)0)’ (U] (00: (k + q)O) of Ieng“hs
k-1, k"za ey Q+1| and (OO: (k+q+2)0)’ (OOs (k+q+3)0)s ey (001 (2k)0)
of lengths g —1,¢-2,...,1, and
(i) pure 11-edges (O, (k+1)1) of length k and (04, (k+g—p+1)1), (01,
(k+9—p+201), ..., (01, (k+q+p+1)) of lengths g+p, ¢+p—1,...,9—p,
and ((k+1)1, (k+2)1), ((k+1)1, (k+3)1), ..., (k+1)1, (k+q—p)1) of
lengths 1,2, ...,q—p—1, and ((k+1)1,(k+q+p+2h), ((k+1)),(k+
g+p+3n), ... (k+1)1,(2k),) ol lengths g+p+1,9+p+2,.... k-1,
and
(iii) mixed edges (0p,01), (00, 11),...,(0p, ki) of lengths 0,1,...,k and

(01, 10), (01, 20), ..., (01, ko) of lengths 2k,2k — 1, ..,k + 1.

If we replace the pure 11-edge (0;,(k + ¢ + 1);) of length ¢ by the edge

((k+ 1)1, (k + g+ 1);) of length g, then we obtain the constructions for

every neven ifk <n<2k-2.

Case 2. Let nbeeven, 2 < n < k, and n+ 2 = 2p. Furthermore, let

V(R) =WUW, V= {00,10....,(2k)o},V1 = {01,11,...,(2k)1} and A =

(k+ 1)0:0' =001b = OI:B = (k+ l)l
Then R contains
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(iv) pure 00-edges (Og, (k + 1)g) and {(k + 1)o, (k + ¢ + 1)g) of lengths k
and g, and (001 (q —P)o), (001 (q -p+ 1)0), ceey (001 (q - 1)0) of ]engt‘hs
9-pq—p+1,..,9—1, and (0o, (g+ 1)o), (0o, (g + 2)0), -, (0o, (¢ +
plo) of lengths ¢ + 1, + 2,...,q + p, and (0p, (k + 2)o), (Oo, (k +
3)o), .-, (0o, (k + g — p)o) of lengths k — 1,k —2,..,g+p+1, and
(00: (k +q9+p+ 2)0)1 (001 (k +9+p+ 3)0)y ey (001 (2k)0) of ]engths
g-p-1,9—p-2,..,1, and

(v) pure 11-edges (0,, (k+1),) of length k and ((k+1);, (k+2),), ((k+
D1, (kK +3)1), ..., ((k + 1)1, (2k)1) of lengths 1,2, ...,k ~ 1, and

(vi) mixed edges (01, g0) and (0;,ko) of lengths 3¢+ 1 and k + 1, and
(0p,04), (0g, 14 )y ..y (Op, k1) of lengths 0,1, ..., k, and (01, 1p), (01, 20),
vy (01,(g—p = 1)o) of lengths 2k, 2k - 1,...,3¢ +p+2, and (0, (¢ +
p+ 1)0), (01,(g + p + 2)o), ---, (01, (k — 1)o) of lengths 3¢ — p,3q —
p—1,..k+2 and (k+1)1,(k+g—p+1)o)((k+ 1)1, (k+q—p+
2)0), -+ ((k+1)1, (k+4q)o) of lengths 3g+p+1, 3¢+p+2, ..., 3¢g+2, and
((k+1)1, (k+q+2)0)((k+1)1, (k+g+3)0), ..., (k+1)1, (k+q+p+1)o)
of lengths 3¢,3¢ - 1,...,3¢ —p + 1.

If we replace the pure 11-edge ((k+1)1,(k+q+1);) of length ¢ by the edge
(01, (k + g + 1)) of length g, then we obtain the constructions for every n
oddif3<n<k+1.

Case 8. Let n = 1. Furthermore, let V(R) = oUW,V = {00, 10, ...,
(2k)o}, Vi = {01, 14, ...,(2k)1} and A = (k + 1)o,a = 00,b = k1, B = 0.
Then R contains
(vii) pure 00-edges (O, (k + 1)o) and ((k + 1)o, (k + g + 1)) of lengths
k and q, (0o, (k + 2)o), (0o, (k + 3)0), ..., (0o, (k + q)o) of lengths k —
1, k_2v g+, and (001 (k+Q+2)0)| (007 (k+q+3)0)v s (00, (2k)0)
of lengths g —1,¢—2,...,1, and
(viii) pure 11-edges (04, k) of length k and (0y, (k+2);), (01, (k+3)1), ...,
(01,(2k),) of lengths k — 1,k - 2,...,1, and
(iX) mixed edges (kla kO) of lengt.h 0 and (001 11): (00a21): () (OU,kl): (00,
(k+ 1)1)) of lengths 1,2, ..., k,k+1, and (04, 1p), (01, 20), o0, (Oy, (k=
1)o) of lengths 2k,2k —1,...,k+2. O

Lemma 3.13. A (2,2k,r,s)-caterpillar of order 4k + 2 and diameler §
allows a blended p-labeling for cvery 2 < r,s < 2k — 1 and every k odd,
k>3

Proof. By constructions. letr=n+2ands=2k—nforl1 <n < 2k-3.
Furthermore, let R be a (2, 2k, n+2, 2k — n)-caterpillar of order 4k +2 and
diameter 5 and &£ = 2q + 1.

Case 1. Letnbeeven, k+3 < n < 2k, and n—(k+2) = 2p+1. Furthermore,
let V(R) =WuUuW,VW = {0(), loy .oy (2k)0}, Vi = {01,]1, ey (Zk)]} and
A =’Co,a=00,b=0],B= kl'
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(M

(i)

(i)

Then R contains

pure 00-edges (0p, ko) and (ko, (k + q + 1)o) of lengths &k and ¢ + 1,
and (0, (k + 2)o), (g, (k + 3)0), .-, (Oo, (k + q)o) of lengths k — 1,k —
2,..,q+2, and (0o, (k + g + 2)o), (0o, (k + g + 3)o), ..., (0o, (2k)o) of
lengths ¢,q - 1,...,1, and

pure 11-edges (04, k1) and (04, (2k),) of lengths k and 1, and (0,, (k+
g=p+11),(01,(k+g—p+2h),..,(01,(k+g+p+1))) of lengths
q+p+ 1, q+p, ..., q—p+1, and (kh (k+2)1)1 (kh (k+3)1)a seey (kl’ (k""
q —p)1) of lengths 2,3,...,q —p, and (k1, (k + ¢ +p+ 2)1), (ky, (k +
g+p+3h),....(k1,(2k = 1),) of lengths g+p+2,9+p+3, ...,k -1,
and

mixed edges (0g,01), (0o, 11), ---, (0o, (k= 1)1), (0o, (k+1)1) of lengths
0) 1,.., k- l» k+1 and (01: 10)’ (01, 20)’ veey (Ola (k— 1)0); (oll (k+ 1)0)
of lengths 2k, 2k — 1, ...,k + 2, k.

If we replace the pure 11-edge (0;, (k + g+ 1);) of length g+ 1 by the edge
(k1,(k+q+1)1) of length g+ 1, then we obtain the constructions for every
noddifk+2<n<2k—-1.

Case 2. Let nbeeven, 4 <n < k+1,and n = 2p+ 1. Furthermore,
let V(R) = WUWW = {00,10,...,(2’&1)0},‘/1 = {01,11,...,(2]‘:)‘} and
A =ko,a=00,b=01,3=k|.

(iv)

(v)
(vi)

Then R contains

pure 00-edges (09, ko), (ko, (k+q+1)0) and (0o, (2k)o) of lengths k, g+
1 and 1, and (0g, (g ~p+ 1)0), (O, (g = p + 2)0), ---, (0o, g0) of lengths
q-p+1,9—-p+2,..,q and (0g, (g + 2)0), (o, (¢ + 3)o), .-, (Do, (g +
p+1)o) of lengths g+2,9+3, ...,q+p+1, and (0o, (k+2)o), (0o, (k+
3)), .., (O, (k + g — p)o) of lengths k — 1,k - 2,...,9+p + 2, and
(00’ (k+Q+P+2)0). (001 (k+Q+p+3)0)1 ey (001 (2k - 1)0) of lengths
q9—-p,q—-p—-1,..,2, and

pure 11-edges (04, k1) and (04, (2k),) of lengths k and 1, and (k;, (k+
21), (k1, (k + 3)1), ..., (k1,(2k — 1)) of lengths 2,3,...,k — 1, and
mixed edges (01, (g+1)o) and (0y, (k+1)o) of lengths 3¢+2 and k, and
(001 Ol)v (OOa ll)v seny (00, (k - l)‘)l (001 (k + l)l) of lengths 0| 1., k—
1’k +1, and (Oly IO)a (le 20)’ veey (01’ (q - P)o) of ]engths 2k, 2k -
1: seey 3q+p+3. and (01: (’I+P+2)0)' (Ols (Q+P+3)0)s seey (01, (k"'l)O)
of lengths 3g—p+1,3q9—p, ..., k+2, and (k1, (k+q—p+1)o), (k1, (k+
g—p+2)o), ..., (k1, (k+g)o) of lengths 3g+p+2,3¢g+p+1,...,3¢+3,
and (ky,(k + g + 2)o)(k1, (k + g + 3)o), .-, (k1, (k + g + p + 1)o) of
lengths 3¢ + 1,3q,...,3g —p+ 2.

If we replace the pure 11-edge (k1, (k+ ¢+ 1)1) of length g+ 1 by the edge
(01, (k+q+1);) of length ¢+ 1, then we obtain the constructions for every
noddif5<n<k+2.
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Case 8. Let n = 1. Furthermore, let V(R) = Vo UV, Vp = {0, 1o, ...,
(2k)0}, V1 = {01, 11,0 (2k)1} and A = ko,a = 0o, b= (k + 1)1, B = 0;.
Then R contains
(vii) pure 00-edges (0o, ko) and (ko, (k + ¢ + 1)) of lengths k and ¢ + 1,
and (0o, (k +2)o), (0o, (k +3)0), ..., (0o, (k + g)o) of lengths k — 1,k —
27 g+ 2, and (00’ (k +q+ 2)0)' (00’ (k +q+ 3)0)1 ooy (00: (Qk)o) of
lengths g,¢ —1,...,1, and
(viii) pure 11-edges (01, (k + 1)1), ({01, (k + 2)1), ..., (01, (2k);) of lengths
k,k-1,..1, and
(ix) mixed edges ((k + 1)1, (k + 1)o) of length 0 and (09, 11), (0n,21), ...,
(00: kl ): (00’ (k+1)l )) Orlengt’hs 1, 2! v k’ k+]: and (01) 10): (0], 20)1
.y (01, (k = 1)o) of lengths 2k,2k — 1, ...,k + 2.

Case 4. Let n = 3. Furthermore, let V(R) = Vo UV, Vp = {0g, 1o, ...,
(2k)0}, Vi= {01, 1y, ...y (2k)]} and A= kg,a=0p,b= (k +1),,B=0,.
Then R contains
(x) pure 00-edges (0p, ko) and (ko,(k + g+ 1)o) of lengths k and g + 1,
and (0o, (k + 2)0), (0o, (k+ 3)0), .-, (Oo, (k + q)o) of lengths k — 1,k —
2,.., q+ 2) and (00! (k +q9+ 2)0)! (001 (k +q+ 3)0)v ooy (00| (2k)0) of
lengths q,¢ — 1, ...,1, and
(xi) pure 11-edges ((k+1)1, (k+g+1)1) and ((k+1)1, (k+g+2);) of lengths
gand ¢+1, and (0y, (k+1),), ((01, (k+2)1), ..., (01, (k+¢)1 ) of lengths
k: k-1, () q+2v and (Oh (k+(I+3)l)s ((01 ' (k+q+4)1)7 ) (01’ (2k)1)
oflengths g—1,¢-2,...,1
(xii) mixed edges ((k + 1)1, (k + 1)o) of length 0 and (0g,1,), (00,21), ...,
(0o, k1), (00, (k + 1)1)) of lengths 1,2,...k,k + 1, and (04, 1o),
(01, 20), r (01, (k —1)o) of lengths 2k, 2k - 1,...,k + 2.

Case 5. Let n = 2. Furthermore, let V(R) = Vo U V|,V = {0p, 10, ...,

(2’6)0}, V] = {01, 11, veey (2’:))} and A = k(),a = ()(), b= 0], B= k].
Then R contains

(xiii) pure 00-edges (0g, 1o), (Un, 20), .-, (Op, ko) of lengths 1,2, ..., k, and

(xiv) pure 11-cdges (01, k1), (04, (k + @)1 )(Or, (k + ¢ + 2)1) and (k1, (k +
g+1)1) of lengths k, g+ 2,9 and g+ 1, and (ky, (k + 1)1), ((k1, (k +
2)1)s .0 (b1, (K + g —1)y) of lengths 1,2,...,q — 1, and (ky,(k + ¢ +
), ((ky, (k+q+4)1), ..., (k1,(2k—1)1) of lengths g+3, g+4, ..., k—1,
and

(xv) mixed edges (ko, (2k);) of length k and (0o, 1), (0p,2,), ..., (Og, (k —
1)1) of lengths 1,2, ..,k — 1, and (ky, (k + 1)o), (k1, (k + 2)o), ..., (k1,
(2k)o) of lengths 2k,2k - 1,...,k+1. O

By now we have in fact proved Theorem 2.1, as we have covered all
cases. We statce the proof formally below.
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Proof of Theorem 2.1.

10.

(1) An (r,s,t,2)-caterpillar of order 4k + 2 and diameter 5 does not
factorize Kyk42 for every r < 2k if k > 2. It follows from Theorem
3.1.

(2) A (2k,2,r,s)-caterpillar of order 4k + 2 and diameter 5 allows a
blended labeling and therefore it factorizes Kyi 2 forevery2 < r,s <
2k and k > 2. It follows from Lemma 3.5.

(3) A (2k,r,2,s)-caterpillar of order 4k + 2 and diameter 5 allows a
blended labeling and therefore it factorizes K442 forevery2 < r,s <
2k and k > 2. It follows from Lemma 3.4.

(4) A (2k,r,s,2)-caterpillar of order 4k + 2 and diameter 5 allows a
blended labeling and therelore it factorizes Kgi2 forevery2 < r,s <
2k — 1 and &k > 2. It follows from Lemmas 3.6 and 3.7.

(5) A (2,2k,r,s)-caterpillar of order 4k + 2 and diameter 5 allows a
blended labeling and therclore it factorizes Kqgyu forevery2 < r, s <
2k and k > 2. It follows from Lemmas 3.12 and 3.13.

(6) An (r,2k,2, s)-caterpillar of order 4k + 2 and diamcter 5 allows a
blended labeling and therelore it factorizes Kqr42 forevery2 < r,s <
2k — 1 and k > 2. It follows from Lemmas 3.8 and 3.9.

(7) An (r, 2k, s, 2)-caterpillar of order 4k + 2 and diameter 5 allows a
blended labeling and therefore it factorizes K4, forevery2 < r,s <
2k — 1 and k > 2. 1t [ollows from [.emmas 3.10 and 3.11.

a
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