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Abstract: Given a connected graph G with n vertices, a routing R is a collection of n(n-1) paths,
one path R(xy) for each ordered pair x, y of vertices. A routing is said to be verfex/edge-
antisymmetric, if for every pair x, y of vertices, the paths R(x,y) and R(y,x) are internally
vertex/edge-disjoint. Compared to other types of routing found in the literature, antisymmetric
routing is interesting from a practical point of view because it ensures greater network reliability.
For a given graph G and routing R, the vertex/edge load of G with respect to R is the maximum
number of paths passing through any vertex/edge of G. The vertex/edge-forwarding-index of a
graph is the minimum vertex/edge load taken over all routings. If routing R is vertex/edge-
antisymmetric we talk about antisymmetric-indices. Several results exist in the literature for the
forwarding-indices of graphs. In this paper, we derive upper and lower bounds for the
antisymmetric-indices of graphs in terms of their connectivity or minimum degree. These bourds
are often the best possible. Whenever this is the case, a network that meets the comresponding
bound is described. Several related conjectures are proposed throughout the paper.

1. Introduction

The vertex-forwarding-index was introduced by Chung et al. in [1] to formalize
problems arising in the forwarding of information in networks of processors.
Since then, it has attracted considerable attention and several variations of it
emerged. Bounds on the forwarding-index of general routings were derived in
[2}, [3], [6], [7]. The forwarding-index of directed networks was dealt with in
[8]. The special type of consistent routing was considered in [5]. Constructions
of networks with high degree of symmetry and relatively small vertex-
forwarding-index were shown in [9). In [10] it was shown that the problem of
deciding whether the forwarding-index of a network is smaller than a specific
number is NP-complete. Given a connected graph G with n vertices, a routing R
is a collection of n(n-1) paths, one path R(x,y) for each ordered pair x, y of
vertices. In this paper, we introduce a new type of routing called antisymmetric
routing. The idea is that for each pair x, y of vertices, the paths R(x,y) and
R(y,x) are vertex- or edge-disjoint. A vertex-antisymmetric routing of a graph
G, denoted

T The order of the authors is purely alphabetical
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by R, is a set of n(n-1) paths, one path R (x,y) for each ordered pair x
and y of vertices, such that paths R, (x,y) and R (y,x) are internally
vertex-disjoint. Similarly, in an edge-antisymmetric routing, denoted by R,,.

paths R, (x,y) and R,,(y,x) are edge-disjoint for each ordered pair x, y of
vertices. Obviously, each edge (x,y) gives rise to two internally vertex-disjoint
paths: (x,y)and (y,X) inducing no charge. Therefore, whenever vertex-

antisymmetric routings are considered, we will not be concerned with routing
the edges of the graph. Compared with other routings found in the literature,
antisymmetric routing is interesting from a practical point of view, because it
ensures greater network reliability. From a theoretical point of view, we notice
that 2-connectivity/2-edge-connectivity is a trivial necessary condition for the
existence of vertex/edge-antisymmetric routings in a graph. Furthermore, we
know that defining antisymmetric routings in directed graphs is NP-complete,
since deciding whether or not any two specified vertices of a digraph belong to
the same cycle is an NP-complete problem [4]. The same problem is
polynomial for undirected graphs, since it is equivalent to constructing a
cycle/closed-walk that contains each pair x, y of vertices. The load
&(G,R,x)or (G, R,e) of a vertex x or an edge e, with respect to routing
R, is the number of paths of R containing vertex x (internally) or edge e,
respectively. If R is a routing for which the sum of the path lengths of R(x,y)
and R(y,x) is the minimum possible for each pair x, y of vertices, then the

comesponding vertex, edge load is denoted by &,.(G,R,x), and
z,(G,R,e), respectively. The vertex-forwarding-index, denoted by £@G),

and the edge-forwarding-index, denoted by 7Z(G), of G are defined as the

minimum, taken over all possible routings, of the maximum vertex, edge load,
respectively. The forwarding-indices of minimum-length routings are denoted

by £, (G) and 7,,(G). Thus:

£(G) =min, max, §(G, R, x);

£ (G)=min, max, &, (G, R, x) ; #(G) = min, max, Z(G, R,e);
7z (G) =min, max, 7,,(G,R,e).

If we consider vertex/edge-antisymmetric routings, we talk about vertex/edge-
antisymmetric-indices, and we denote them by &,(G), 7,,(G), £,.(G),

and 7,,(G). The antisymmetric-indices of minimum length antisymmetric
routings are denoted by &, .(G)., %,, ,(G), &,,,.(G),and 7, (G).
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All the upper bounds that hold for antisymmetric-indices hold true for
forwarding-indices as well.

In the sequel, G(V,E) denotes a simple (i.e., without multiple edges) undirected
graph on n vertices with vertex set V(G) and edge set E(G). Throughout, we let
n denote the number I1V(G)! of vertices. By c(x,y), w(x,y) we denote the length
of the shortest-cycle, shortest-closed-walk, respectively, containing vertices x
and y. We let N(x) denote the set of neighbors of vertex x. We say that a graph
G is k-connected, if the removal of less than k vertices always results in a
connected graph. The definition of k-edge-connectivity is analogous. For a
graph G and a vertex x of G, G-x will denote the graph obtained from G by
removing vertex x. Extensive use is made in our proofs of the well known result
stated in the following lemma (whose proof is omitted):

Lemma 1.1 Every 2-connected graph G of minimum degree 623 has a vertex
X such that G-x is 2-connected.

The remainder of this paper proceeds as follows: In Sections 2, 3, 4, 5, we
derive upper and lower bounds on the antisymmetric-indices for 2-connected
graphs, 2-edge-connected graphs, k-connected graphs and graphs with given
-minimum degree, respectively. Related conjectures are proposed throughout the

paper.

2. Bounds for 2-connected graphs

In this section, we establish lower bounds on the antisymmetric-indices of 2-
connected graphs.

Proposition 2.1 Let G be a 2-connected graph of order n2 3. Then
1 (me2
= ¥ (xy)-0<£,0)<E,, ) B2

2" xV yeV,yzx 2

Proof: Since the minimum over all antisymmetric routings is less than or equal
to the minimum over minimum-length antisymmetric routings only, we have

obviously: &,(G)<&, . (G). The maximum number of routes passing

'a,m
through a vertex x in a vertex-antisymmetric routing is at most half the total
number of ordered pairs, excluding the pairs containing x. Thus,
n(n-1)-2(n-1 n—-1)(n—-2
2 2

bound, we notice that for every ordered pair x, y of vertices, c(x,y)-2 is the

Concerning the lower
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minimum load induced on all vertices of G from the paths R, (x,y) and
R, (y,x). So the total load induced on G by any antisymmetric routing is at

least Z Z (c(x,y)—2). In the best of cases this load is equally
xeV yeV,yzx

dislributed among the vertices of G, so that it is greater than or equal to

L3 Y c@m-2.

n xcV yeV,y#x
Equality to this lower bound is attained if and only if there exists an
antisymmetric routing of shortest cycles that induces a uniform load on the
vertices of G.
QED

The following proposition is the edge-counterpart of Proposition 2.1. We omit
its proof since it is identical to that of Proposition 2.1.

Proposition 2.2: Let G be a 2-connected graph of order n2>3. Then

W< G <x. (G)<r=D
2|E(G)|&Zv',ev2,:axc(x N2 (G, (C)S—

We now improve the upper bound given in Proposition 2.1 for the vertex-
antisymmetric index of 2-connected graphs. The upper bound given below is

attained for the cycle C, .

Theorem 2.1: Let G be a 2-connected graph of order n23. Then

(n—2)(n-3)
¢..(G) S——2 .

Proof: The proof proceeds by induction on n. The base of the induction is
trivially satisfied for all 2-connected graphs of order 3 and 4, which are

basically the cycles C; and C,, and the graph obtained from C, by inserting
a chord. In order to verify the induction step we distinguish two cases
depending on the minimum degree of the graph:

1. Suppose that the minimum degree of G is & 2 3. In this case, from Lemma
1.1, there is a vertex x such that G'=G —Xxis 2-connected. From the
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induction hypothesis, there is a routing R', of G’ satisfying
fm(G',R'm)S————("_g')z("-d') ™

From routing R',, of G’, we construct a routing R, of G as follows:

For all pairs of vertices in G, excluding pairs with vertex x, the pathin R, is
used. The routes from vertex x to all other vertices are chosen as follows: From
vertex Xto every vertex vV of G—x—N(x), take two vertex-disjoint paths

of G for (antisymmetric) routes. From the remark of the introduction, we need
not be concerned with the routes from X to its neighbors. Thus, the extra load

introduced on a vertex of G due to the routes with endpoint in Xx is at most

n-3. Thus,
ffw(G)Sfm(G',R'm)+(n_3)59:_:7’%—_4)+n_3=(n—2)(n—3)

2

There is no path passing through vertex x , thus &, (G,R,,,x) =0.
2. Suppose now that the minimum degree is 0 =2. Let X be a vertex of G
with degree 2 and set of neighbors N(x) ={ Y, z} . Consider the graph G'

obtained from G by removing vertex x, and inserting edge (y,z), if that
edge does not already exist. Clearly, G' remains 2-connected, and from the
assumption of the induction, there is a routing R',, on G' such that (¥) is

true. From routing R',, on G', we obtain a routing R, on G as above,
except that if a path of R',, passes through edge (¥,z) of G' (which may

not exist in G ), it is forwarded through vertex x. The extra load introduced
on a vertex of G —x is obviously #—3, as in the preceding case. The load
introduced on vertex X is no more than the load of one of its neighbors, say
Y, plus the number of paths with endpoint at y that pass through edge (y,z).
The number of paths with endpoint at y that pass through (y,z) is 7 —3 at most
(we exclude the paths from y to itself and to its neighbors in G, of which
there are two, at least). :

E.D

Thus, fm(G,R,x)Sfm(G',R‘)+n—3s(";2)2("_“2_Q'
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3. Bounds for 2-edge connected graphs

Proposition 3.1 Let G be a 2-edge-connected graph of order n 2 3. Then

W G <x. ()<=
2|E(G)|,§,E§¢,W(" NSOV, (G)S—

Proof: Similar to that of Proposition 2.1.

Theorem 3.1: Let G be a 2-edge-connected graph of order n23. Then
n—-1
(. (GO < (n-D(n-2)- l 5 J

Proof: To prove the bound, consider the following antisymmetric routing:
For each ordered pair x, y of vertices, if (x, y)ﬁ E(G), then the paths

R, (x,y)and R, (y,x)are defined arbitrarily. Otherwise, we set
R,,(x,y)=(x,y) and we define R, (y,x) arbitrarily. Let « be any vertex
of G. Furthermore, let G'I,GZ,...,G‘p , be the connected components of G-u.

Since G is simple and 2-edge-connected, each component G, has at least two

n
vertices, hence, p < lTJ . Since the paths between adjacent vertices of G-

u do not introduce extra load on u it follows that

& (G,R,.u)S(n—-1)(n-2)- f|E(G,.)|

i=1
<(n-1)(n—2)—(n—1- p). Using the upper bound on p, we obtain the

bound of the theorem.
QED

In fact the only property used in the proof of the theorem is that for every edge
(x, y) of G, either the ordered pair (x, y)is routed along the edge (x, y)

(that is, R, (x,y)=(x,¥)), or (y,x) is. This property is clearly satisfied
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for every minimum length antisymmetric routing. Therefore, the inequality

& om(@<(n-1(n—2)- [ 21 J holds as well.

n —
The upper bound in Theorem 3.1 is attained for the graph consisting of
disjoint edges, another vertex x and all edges between x and the endpoints of

n-1
the initial disjoint edges.

In all the propositions and theorems of sections 2 and 3 equalities with the
lower bounds are attained if and only if there exist antisymmetric routings of
shortest-cycles/shortest-closed-walks that load all vertices/edges of the graph
equally.

4. Bounds for graphs of given connectivity

In this subsection, we give upper bounds on antisymmetric-indices of k-
connected graphs. If G is 2-connected, then by Theorem 2.1,

(n-2)(n-3)
£.(G)< Y

k 2 3, we propose the following conjecture.
Conjecture 4.1 Let G be a k-connected graph of order n>k +12>4.

Then fm(G)s[("'k)(’:"k'l].

This bound is attained for the complete bipartite graph K ki + SOME support

, and this bound is attained for the cycle C,. For

to the above conjecture may be found in the following theorem.

Theorem 4.1: Let G be a k-connected graph of order n 2k +123. Then
n(n 1) n
£.(G)<

—_—tn—-——.
2| X k
2 2
k1l o :
Proof: Set m = E . Since G is k-connected, for every vertex x and every set

of m vertices y,, ¥,,..., ¥,, there exist m cycles C,,C,,...,C,, such that for
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every 1<i<m, C,contains x and y,and for every j#i,
V(C)NV(C) ={x} . To see this, it suffices to replace each vertex y; of §
by two new vertices y;,y and add the edges (y},v) and (y,2 ,v) for all
edges (y;,v)€ E(G). Clearly, the resulting graph is still k-connected. Then
by Menger's theorem, there exist 2m internally vertex-disjoint paths connecting
X10 Y, Y2, ¥hsY2sees Yoo Y2 . These paths define the cycles C,,C,,-..,C,,
in G. An antisymmetric routing can now be defined on G as follows:

The vertices of G are labeled v,,v,,...,V,. For i:=2,...,n , we apply the
following step: partition the set of vertices V,,V,,...,V;; into arbitrary subsets

of cardinality m each (except possibly for one of them of cardinality less than
m) and for each such subset, construct m cycles linking v; to the subset as
above. Clearly, this defines an antisymmetric routing on G.

Let us denote by fi the maximum load induced on any vertex of G at step i of
the above procedure Clearly,

g < f“' + f(i-=1), where f(i—1)=0 ifi-1 is a multiple of m else

fi-1)=1.
Calculating £" recursively, we get the bound of the theorem. Q.E.D

Using arguments very similar to those in the proof of Theorem 4.1, we derive
the following theorem.

Theorem 4.2: Let G be a k-connected graph of ordern, n2k+123. Then
7, (G)< nn-1)
k
21 =
|, 2 J

As every vertex-antisymmetric routing is also edge-antisymmetric, we get the
following corollary.

Corollary 4.1 Let G be a k-connected graph of order n2k+123. Then
fm(G)S"("_DM-EJ (G)<n(n D,

i [
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In the following conjecture we propose upper bounds on 7,,(G) and 7%, (G)

for k-connected graphs G with kK = 3. Some support to this conjecture can be
obtained from the above results. Recall that if G is 2-connected, then, from

n(n-1
Proposition 2.2, we know that 7, (G) < ( 5 ) .

Conjecture 4.2: Let G be a k-connected graph of order n, n=>2k+123.
Then
2

n nz
7, (G)< lrﬁl, and ﬂ'ea(G) < "—27;" .

The bounds of this conjecture are attained for the graph consisting of two
complete subgraphs of equal orders and a matching of k edges between them.

We conclude this section with the following conjecture for fm’m and fm.m .

Conjecture 4.3: Let G be a k-connected graph of order n22k+2 and
k 23. Then:

£, (G)<r=Dn=2) = 2Ae-2(n-D
(n-D(n—2)-2(k—2)(n-1)

2

d

Seam(G) S

If true, this conjecture would be the best possible as shown by the generalized
wheel W’ of order p+1. This graph consists of a cycle of length p , an extra
vertex called the center joined to all the vertices of the cycle, and each vertex of
the cycle is linked to all the other vertices of the cycle at distance less than r.
Clearly, W,”is k-connected, with k =2r+1.

S. Graphs with given minimum degree

In this section, we prove upper bounds on the antisymmetric-indices of graphs
with minimum degree & for the particular case when & =3. A conjecture is
formulated for the general case, which, if true, would yield be the best upper
bound. The following straightforward lemma turns out to be helpful in our
proof.

It mainly states that, in any attempt to prove the conjecture below, we need not
be concerned with the vertices of degree O .
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Lemma 5.1 Let G be 2-connected graph of minimum degree &, and x a vertex
of degree O. Then, for every antisymmetric routing R of G, we have:

(n-2)(n-0-1)
f(G,R,x)S[ 5 -l

Proof: Clearly, £(G,R,x) < e(E) —(n—-1-0), where e(-G—) stands for
the number of non-adjacent pairs of vertices in G. Bounding e(E) from above

n(n-9-1) - :
by —2- and substituting appropriately, we get the bound of the
lemma.
QE.D

Theorem 5.1 Let G be a 2-connected graph of order n with minimum degree 3

and n2 4. Then .fm(G)s[(";z)z(f—ﬁ].

Proof: To begin with, let us introduce some more definitions for the purposes
of the proof. Let us say that an edge (i, j) is essential if its removal from G

either destroys the 2-connectivity of G, or causes the minimum degree to
decrease by a unit. Let us say that a graph is critical if all its edges are essential.
The proof proceeds by induction on n. Let then G be a graph as in the theorem.
Since removing edges from G can only deteriorate its antisymmetric forwarding
index, we may suppose without loss of generality that G is critical. Let then x
be a vertex of G such that G-x is still 2-connected (the existence of such a
vertex is granted by Lemma 1.1). Since the case when x has degree n-2 or
more is easily seen to imply that the antisymmetric forwarding index is of G is
equal (up to a unit) to that of G-x, we may suppose that two vertices at least are
not neigbors of x. This latter assumption, combined with the 2-connectivity of
G, clearly implies that x has two vertex-disjoint paths of length two, xyu and
xy’v, from x to two vertices u and v, none of which is a neighbor of x.
Throughout this proof, vertices y and y’ will be referred to as the “attaching
points of x”.

With these general assumptions in mind, we distinguish now two cases
depending on whether or not the degree of x is greater than three.

Case 1: d(x) 24
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As the connectivity of G is not affected by the removal of any edge xy and the
of edges of G are all essential, the neighbors of x must all have degree 3. Let y
be an attaching point of x as above. Now, as y has three neighbors, two of
which (x and «) are not neighbors of x, vertices x and y have no more than one
common neighbor, say w (if any). Now, delete vertex x and add all edges zy, for
all neighbors z of x other than w. Moreover, if w exists, we create the edge uw

as well. Clearly, the resulting graph G, has order n-I and still has minimum
degree 3. From the assumption of the induction, there is an antisymmetric
routing R, of G, such that:

éG,,R)< l'_(n;:’t)zin—_S)-‘ .Now, R, is extended to a routing R of G in

three steps, as follows:
Step 1:
(1) Delete all artificial edges (That is, the edges of Gx that are not in G)

(2) For every route P of R, that uses an artificial edge of type (y,?),

substitute the path yxt for edge (y,¢)in P

(3) For every route that uses artificial edge (u,w),substitute the path uyw for
edge uwin P

All that remains to be seen now is how to define the routes of G corresponding
to the artificial edges of G, , along with the routes from x to all other vertices.

The purpose of the next two steps is to deal with each of these types of routes
separately.

Step 2:

(1) Partition the set of d(x)—2 artificial edges of type (y,) into pairs of
cardinality two each (except possibly for one subset of cardinality one, if d(x)-
2 is odd)

(2) For every pair {( ¥,), (3,2, )} of artificial edges in the partition, find two
(internally) vertex-disjoint paths F, and P, in G-x linking y to #, and t,.Such
a pair of paths exists, of course, because G-x is 2-connected. Next, extend F,
(respectively F,) into a cycle Cl of G (respectively Cz) by linking y to
(resp. 7, ) along the path yxf, (resp. yxZ,). Observe that the two cycles have
only vertex y in common (which happens to be of degree 3) and both define
antisymmetric routes from y to /, and £, respectively.

(3) To route artificial edge (w,w) in G in case that w exists, find any path P from
u to w which does not pass through y in G-x. Recall that G-x is 2-connected, so
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P exists. Define then P as a route from u to w in G and the path wyxu as the
route from w to u in G.

Step 3:

For every vertex ¢ that is not a neighbor of x, find a cycle C in G containing x
and ¢, and define C as an antisymmetric route from x to ¢. Observe that we have
a total of n-d(x)-1 antisymmetric routes in this step.

At termination of the third step, we get an antisymmetric routing R of G whose
load on some vertex ¢ are counted as follows. Observe first that since the
vertices of degree 3 are taken care of by Lemma 5.1, the neighbors of x need
not be considered in this case. So, let  be a ‘ron-neighbor’ of x. Then, in the

d(x)-2]
2

worst case, f is charged the load [ +1 from Step 2. As for Step 3,

it induces an additional load of #—d(x)—2 on ¢ in the worst case (recall that

t is not a neighbor of x, so one of the routes of Step 3 does not charge ¢ : the
route from x to 7). Step 1 does not create any charge whatsoever. In conclusion
the total charge on ¢ is no more than:

f(GsRat) S[ +l, which

can be written as:
£(G,R,1) S[&z("—s)]m-z—l_d—(lej (**)

Now, bounding d(x) from below by 4 and substituting in (**), we get the bound
of the theorem.

(n—3)(n—-5)
2

]+n-2—d(x)+[i(—%:—2—]

The other case and subcases being fairly similar to Case 1, their proofs are only
sketched in some cases. .

Case 2: d(x)=3

Let X , X 5  be the set of neighbors of x. We distinguish now
several subcases depending on the structure of N(x).

Subcase a: No neighbor of x has degree 3
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Then G-x has minimum degree 3. Applying the assumption of the induction and
using Step 3 as in Case 1 gives us the bound of the theorem.

Subcase b: Two pairs of neighbors of x are not edges of G

Suppose without loss of generality that both G!F%'e and R' are not edges of G.
Denote by () the graph obtained from G-x by adding the missing edges
X and (x,,x;). Clearly, G, is 2-connected with minimum degree 3.

From the induction assumption, there is a routing R, for G_ such that
n-3)(n—35
&(G.,R) S[g—);—l] Now, as in the previous case, R_ is

extended to a routing R of G following the same steps 1-3. The count of the
loads on vertex ¢ runs as follows:

If ¢ is not a neighbor of x, it receives a load of n-5 from Step 3 and one extra
charge from Step 2, in the worst case. Hence, the total load on # would not

((n—%’_ﬂ
2

exceed +n—4, which falls within the bound of our

theorem. Unlike the previous case however, we have to consider the case when
t is a neighbor of x. In that case precisely, Step 2 induces no charge on ¢ at all,
while Step 3 may charge ¢ up to n-4. Thus, once again, the total load does not
exceed the bound of the theorem.

Subcase c: All the neighbors of x have degree 3

Following Subcase a, let us suppose that no two pairs of neighbors of x are not
edges of G. Let us suppose then, without loss of generality, that both pairs

XX, and x,x; are edges of G (the reader should convince himself that this is
indeed the negation of Subcase a, since x has only three neighbors). Notice that
X, being of degree 3, it has no neighbor outside of {x,x,,%,}. So, x,and x,

are the two attaching points of x, as mentioned above. Therefore, the pair X, X,
is not an edge of G. The rest is similar to the proof of Case 1: vertex x is
deleted; edges (x,,X;) and (x;,u) are added to G-x to form a new graph

G._, to which the induction assumption is applied. Next, the same stepé are

X

executed as in Case 1, except for the following modification of Step 2:

(Modified) Step 2:
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(1) Route the pair X,X; in G using the cycle X,XX;X,X,.

(2) To route the artificial edge (xl,u) in G, find a path P in G-x that does not
pass through X, and then form the return route from u to X, along the path
ux,x, . The existence of P is granted from the fact that G — x is 2-connected.

Thus modified, Step 2 induces only a unit load on vertex ¢, whenever ¢ is not a
neighbor of x. Therefore, whenever ¢ is not a neighbor of x, the total load on ¢ is

[(n-—3)(n-5)]
2

no more than +n—4, just as in the preceding case. On the

other hand, all the neighbors of x being of degree 3, the load of any of them
should not exceed the bound of the theorem, as stated in Lemma 5.1, which
proves the case.

Subcase d: Two neighbors of x have degree 3

Let x, and X; be the attaching points of x, as mentioned above. Recall that the
attaching points of x are neighbors of x. Now, as x has two neighbors of degree
3, one of its attaching points (say X, ) must have degree 3. It follows that x,x;

is not an edge of G. Let u be a neighbor of x, other than X, X;, X;, as follows
from our definition of an attaching point. Now, the rest of the proof for this
case is identical to the previous: vertex x is deleted; edge (x,,x;) is added. If
x, has degree 3 in G, edge (x,,u) is added to G-x as well, and again, we go

through the same steps as in Subcase b. A careful analysis of the inequalities
involved in the previous shows that they carry over to this case as well.

Subcase e: Exactly one neighbor of x has degree 3

Suppose that X, is the unique neighbor of x of degree 3. If either pair of

XX, or X X, is not an edge of G, then deleting x and adding the appropriate

edge (whichever is missing in G among the two pairs), yields a 2-connected
graph of minmum degree 3. Applying induction as in the previous cases, would
lead us to the same conclusion again. So, let us suppose that both pairs

x,x, and X,x, are edges of G. Now, a close look into the case shows that the

pair X,X, should not be an edge of G (otherwise, it would be non-essential,
contradicting the fact that G is critical). On the other hand, observe that if we
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remove both x and x, from G and create edge (x,,X,), we obtain a 2-

connected graph G'of minimum degree 3. From the assumption of the
induction, there is an antisymmetric routing R'of G'such that

&G R S[—m;flé’ﬂ] . Again, we apply the same steps as in Case 1,
namely:

Step 1:
(1) Delete all artificial edges

(2) For every route P of R’ that uses artificial edge (x,, x3) , substitute the path

x,xx, for edge (x,,x,) in P
Step 2:
To route the pair X,X, in G, find a path from X, to X, in G—{x,xl}, and

use path x,xx, as a return route.

Step 3:

For every vertex t that is not a neighbor of x, find two cycles C and C’
respectively in G (which need not necessarily be vertex-disjoint in any way)
containing x and ¢ (respectively X, and 7). Define C and C’ as the

antisymmetric routes from x to  and from X, to ¢, respectively.

Now let us count the loads induced by the so-constructed routing R on any
vertex ¢. If ¢ is not a neighbor of x, Step 2 induces a unit charge on ¢ at most.
Step 3 induces a charge of 2(n-5) in the worst case. Hence, t is charged no

l-(n—4)(n—6).’
2

more than +2(n—5)+1, which satisfies the bound of the

theorem. On the other hand, if ¢ is a neighbor of x other than X, , then Step 2

induces no charge on ¢ at all, whereas Step 3 induces a charge of 2(n-4).
Therefore, the total load of ¢ does not exceed

(n—4)(n—-6) 4= (n—2)(n—4)
[————,2 ]+2(n 4) [———————2

(X, and x) all have degree 3, and their charge should therefore not exceed the

bound of the theorem, which completes the proof.
QED

-,. The other vertices

Now, we can formulate our conjecture.
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Conjecture 5.1:  For every 2-connected graph of minimum degree J,

(n-2)(n-5-1)
¢u(@)s| @=20=0D)

If true, the conjecture would yield the best possible upper bound in terms of the
minimum degree. Indeed, let n, O and m be three non-zero integers satisfying
n=m(5—1)+2. Now, let G be the graph consisting of m copies of the

complete graph K, , two extra vertices x,y and all edges between each of x, y
and each K | . In the resulting graph G, the load on either of x or y is equal to
m@@-D(n—-(6-D-2 _(n-2)(n—-95-1)

2 2 ’

This extremal graph also shows that our theorem is the best possible when the
minimum degree is 3.

The remainder of this section deals with edge-antisymmetric forwarding indices
of 2-connected graphs with minimum degree &. Obviously, edge-
antisymmetric routings are likely to be more congested than their vertex-
antisymmetric counterparts, because, for one thing, we have the additional
burden of routing the edges of G. So, the number of edges of G is expected to
contribute substantially toward the count of charges on any given vertex. Still,
our intuition here is that, on the average, an edge should contribute only half a
charge on any vertex, as suggested by the forthcoming theorem. On the other
hand, we feel that the requirement that our routes be only edge-disjoint is not of
much help when it comes to minimizing the load on any vertex. In fact, we
expect a good edge-antisymmetric routing to be vertex-antisymmetric as well
(or close to being so), as in the proof of the following:

Theorem 5.1 Let G be a 2-connected graph of order n. Then

£.G)< n(n—l)_lE(G)I.

2 2

Proof: The proof proceeds by induction on n, along the same lines as in the
foregoing. The base of the induction is trivially verified. Let & be the
minimum degree of G. Let us first suppose that =2, and set
N (x)={ A z}, for some vertex x of degree 2. Consider the graph G’

obtained from G by removing x and adding the edge e=(y,z), if it is missing in
G. As G’ is 2-connected, let R’ be an edge-antisymmetric of G’ such that
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-D(n- EG
(n l)z(n 2) —| ( ')l . Then R’ is extended to a routing R

(G R < >

of G in much the same way as we did before:

(1) Delete the artificial edge (y,z) when applicable,

(2) For every route P of R’ that uses the artificial edge e (if any), substitute the
path yxz for e

(3) Use a cycle C containing y and z as an antisymmetric route from y to z

(4) For every vertex u other than x, find an arbitrary cycle containing x and u,
and use it as an atisymmetric route from x to u.

Now, let t be any vertex. If 7 is not a neighbor of x, then step 3 induces the
charge n-2 (at most) on ¢, while step 4 may introduce one extra charge on 7. On
the other hand, if ¢ is a aneighbor of x, step 4 induces the charge n-I (at most)
on ¢, and step 4 introduces no charge at all on 1. Therefore, the total charge on

any vertex of G is no more than:
£.(G,R)< (”"l)é”"z)—w(f)lm-l

Using inequality |E G ')I < IE (G)l , we get the bound of the theorem.

Supppose now that & =3, and let x be a vertex such that G-x is 2-connected,
as stated in Lemma 1.1. Then G-x has an edge-antisymmetric routing R”
satisfying the assumption of the induction. We extend R” into an edge-
antisymmetric routing R of G as follows:

(a) For every vertex t& N(x) U{x} , find a cycle C(t) containing x and ¢ and

use it as an antisymmetric route from x to ¢
(b) Pick a particular cycle C(Z,) from the cycles of (a), and let y and z be the

two neighbors of x in C(#,) . Next, partition the set N(x) into (ordered) pairs
of vertices W,w,, W,W,,...,etc, with w;, =y and w, =z (if some vertex w
of N(x) is left over because of IN (x)l being odd, we include singleton {w} in
the partition as well).

(c) For every pair S, = {WZi—lWZc‘} of the partition described in (b), consider
any vertex ¢ € N(x) such that g¢& S;. Such a g exists, since x has degree at
least 3. Then, in G-x , find two internally vertex-disjoint paths F, and P, from
W,;_, to g and from g to W,,, respectively. Such a pair exists because G-x is 2-
connected.
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Now, we define the edge-antisymmetric routes for the edges (x, Wz.'-n) and
(x,w,;) as follows:

R(x,w,,_,) = xw,, , (the edge itself is used as a route from x to w,, ,
R(wy_1,x) =Bx, R(x,w,;) = xw,;, and R(w,;,x)=F,x

(d)If {w} is the unique singleton of the partition, find a path P’ in G-x from
w to W, that does not contain W, (which is clearly possible from the 2-

connectivity of G-x).

Now, le us count the charges on a vertex #. If ¢ is not a neighbor of x, the charge
induced by (a) is n-d(x)-1 at most, since the antisymmetric route from x to ¢
does not charge ¢. The cumulated charge induced by (c) and (d) is no more than

[d(x)
2

-I, since each member of the partition, including the singleton, may

introduce no more than a unit charge on any vertex. Thus, the cumulated charge
of (a), (c) and (d) is less than or equal to

n—-d(x)-1+ ‘Vd—(zﬂ-l <Sn-d(x)+ [%J . Therefore, the total charge
on ¢ does not exceed:
(n- 1’;" -2 |E (Gz‘ N e d(x)+ l@ J . Using equality

IE (G)I = |E(G—x)|+d (x), we get the bound of the theorem. On the other
hand, if ¢ is neighbor of x other than W, or w,, then one antisymmetric route
from (a) at least (namely, C(#,) )does not charge . Therefore step (a) induces
charge n—d(x)—1 at most on ¢. All the other charges being equal, we get the
upper bound of the theorem. Now, if £ =w,, it is easily seen that the ordered

pair W, W, in the above partition does not charge W, (although it charges w;, ).
d(x
Therefore, the charge of (c) and (d) on W, does not exceed l,%J , while (a)

induces the load n—d(x), and the same bound follows. Finally, if ¢ =w,,
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step (d) does not induce a charge on ¢, and therefore, (c) and (d) induce no

d(x)

more charge on 7 than [ J, and the bound of the theorem follows again.

QED

We conclude this section with the following corollary:

Corollary 5.1: For any 2-connected graph G with minimum degree O, we
o

nn-1—-)
2

have fm G)<
2

Consistent with our feeling that in edge-antisymmetric routings edges do
contribute a substantial charge on any vertex (to the tune of half a charge per
edge), we suspect that the best upper bound should take the form:

2
n® on
————0(n) where the non-negative constants involved in O(n) are

2
absolute. If true, the bound of our corollary would be nearly optimal.
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