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Abstract

Let m2(N, q) denote the size of the largest caps in PG(N, q) and
let m5(N,q) denote the size of the second largest complete caps in
PG(N,q). Presently, it is known that m2(4,5) < 111 and that
m2(4,7) < 316. Via computer searches for caps in PG(4,5) using
the result of Abatangelo, Larato and Korchmaros that m5(3,5) = 20,
we improve the first upper bound to m2(4,5) < 88. Computer
searches in PG(3,7) show that m5(3,7) = 32 and this latter result
then improves the upper bound on m2(4,7) to ma(4,7) < 238. We
also present the known upper bounds on m2(N,5) and ma(N,7) for
N>4.

1 Introduction

An n-cap in the projective space PG(N, q) of dimension N over the finite
field of order g is a set of »n points, no three of which are collinear. A cap
is called complete when it is not contained in a larger cap of the same pro-
jective space. The largest size of caps in PG(N, q) is denoted by mq(N, q).
The size of the second largest complete caps in PG(N,q) is denoted by
ma(N, g). Thus any n-cap with n > m5(N, g) can be extended to a cap of
size ma(N, q).

Presently, only the following exact values of ma(N, g) are known. In
PG(2,q), q odd, there are at most (g + 1)-caps [8]. In PG(2,q), ¢ even,
there are at most (g + 2)-caps [8]. In PG(3,q), ¢ > 2, the maximal size of
a cap is ¢* +1 [8, 32], and in PG(N, 2), the maximal size of a cap is 2V [§].
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In some spaces PG(N, q), a complete characterization of the ms(N, q)-
caps is known. Namely, in PG(2, q), ¢ odd, every (q + 1)-cap is a conic
(33, 34]. In PG(2,4q), g even, ¢ > 16, distinct types of (g + 2)-caps exist;
see [27] for a list of the known infinite classes of (g + 2)-caps. In PG(3, q),
q odd, every (g? + 1)-cap is an elliptic quadric [3, 30). In PG(3,q), ¢ = 2*,
h odd, h > 3, at least one type of (g2 + 1)-caps different from the elliptic
quadrics exists, called the Tits ovoid [38). In PG(N, 2), every 2"-cap is the
complement of a hyperplane [35].

Apart from these results which are valid either for arbitrary ¢q or for
arbitrary dimension N, some sporadic results are known. Namely, the
maximal size of a cap in PG(4, 3) is 20 [31], the maximal size of a cap in
PG(5,3) is 56 [20], and the maximal size of a cap in PG(4, 4) is 41 [14].

Regarding the characterizations, exactly 9 types of 20-caps exist in
PG(4,3) [22], the 56-cap in PG(5, 3) is projectively unique [21], and there
are exactly 2 distinct types of 41-caps in PG(4,4) [13].

In the other cases, only upper bounds on the sizes of caps in PG(N, q)
are known. We refer to [27] for a list of the known results. We also wish
to state the following result published in [4, 5] which gives the best upper
bounds on the size of caps in PG(N, g), for large enough N.

Theorem 1.1 Forg >3 and N >3,

v N+1

3.N
ma(N,q) S ¢ - —55

N-1,
+ AN -1

The following tables show for small values of g and N the known values
of my(N,q). Table 1 is [27, Table 2.4]. For the exact references for Table
1, we refer to [27, Table 2.4].

[ ¢
[ m5(2,9)
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Table 1: m5(2, q) in small planes

g|3 4 5 7

N

3 8 14 20 32
4 19 40

5 48

Table 2: my(N,q)



For the values of Table 2, we refer to [17] for (N,q) = (3,3), [25] for
(N,q) = (3,4), 1] for (N,q) = (3,5), [37] for (N,q) = (4,3), [16] for
(N, q) = (4,4), and [2] for (N, q) = (5,3). The latter value mj(3, 7) 32is
presented in this article (Theorem 3.5).

Apart from these results, it is also known that

(1) my(2,22h) = 224 — 2h 4 1 for A > 1 [7, 18, 28],
(2) mh(N,2) = 2V-1 4 2V=3 N > 3 [10].
There exists a 66-cap in PG(4, 5) [15], and a result of Gronchi {1 9] shows
that mo(4, 5) < 111. So presently,
66 < mo(4,5) < 111.

We will lower the upper bound to 88 by using computer searches using
geometrical arguments which include the result of Abatangelo, Larato and
Korchmadros that m5(3,5) = 20 [1). This then leads to

66 < ma(4,5) < 88.
Presently, from [15, 19],
132 < ma(4,7) < 316.
We will improve this to
132 < ma(4,7) < 238.

We obtain this improvement by using computer searches which deter-
mine the precise value of m5(3,7). Our computer searches show that

my(3,7) = 32

2 Caps in PG(N,5)

Presently, the following results on caps in PG(3,5) and PG(4, 5) are known:

(a) since my(3, 5) = 20, every 21-cap in PG(3,5) is a subset of an elliptic
quadric, and

(b) 66 < ma(4,5) < 111.

We will improve the upper bound on m3(4, 5) to mo(4,5) < 88. This
upper bound will be obtained by eliminating the existence of 89-caps in
PG(4,5) by means of computer searches.

We first prove a number of results which are useful for the computer
searches.



Lemma 2.1 For every 19-cap in PG(3,5), there is a plane intersecting
this cap in a conic.

Proof: Assume that K is a 19-cap such that every plane intersects K in
at most 5 points. Then an elementary counting shows that every bisecant
to K lies in exactly one plane sharing 4 points with K and in five planes
sharing 5 points with K. This implies that the number of bisecants must
be a multiple of 6 which is the number of bisecants in a 4-plane.

But the number of bisecants to a 19-cap is 171 and this is not a multiple
of 6. O

Lemma 2.2 For every 84-cap in PG(4,5), there is at least one plane in-
tersecting this cap in a conic.

Proof: Through every bisecant to a 84-cap K, there is at least one plane
intersecting this cap in at least 5 points. Denote this plane by 7. Consider
the six solids through 7. Then there is at least one solid through 7 sharing
at least 19 points with K. The preceding lemma now shows that there is
at least one plane sharing a conic with K. a

Let K be a cap in PG(4,5), let 7 be a plane intersecting K in a conic,
and let 7; and w2 be two solids through 7 both sharing at least 21 points
with K. These solids intersect K in subsets of elliptic quadrics. Denote
these two elliptic quadrics in #; and my respectively by @; and Q.

These two 3-dimensional elliptic quadrics @, and Q» define a pencil
of six 4-dimensional quadrics pairwise intersecting in @Q; U @2. We now
determine which quadrics precisely occur within this pencil.

Lemma 2.3 The two 3-dimensional elliptic quadrics @1 and Q2 in the
solids m) and my define a pencil of siz 4-dimensional quadrics consisting
of the solid pair m U my, three non-singular parabolic quadrics, and two
cones with base a non-singular 3-dimensional elliptic quadric and a point
as vertezr.

Proof: These two elliptic quadrics @; and Q2 together contain 26 420 =
46 points since they intersect in a conic. One of the quadrics in the pencil
defined by @, and Q5 is m; U e containing 281 points.

Now |PG(4,5) \ (m U mp)| = 500.

Assume that, besides 7; U w2, the pencil defined by @, and Q2 contains
z non-singular 4-dimensional parabolic quadrics and y cones with base a
non-singular 3-dimensional elliptic quadric and a point as vertex. Then

z+y = 3
z(156 — 46) +y(131 —46) = 500,
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where 156 is the cardinality of a non-singular 4-dimensional parabolic quadric
and where 131 is the cardinality of a cone with base a non-singular 3-
dimensional elliptic quadric and a point as vertex.

This implies (z,y) = (3,2). o

We now state a lemma involving a particular size for the cap K. The
main goal of this lemma is to present some of the ideas used in the computer
searches, and to motivate the following subsections. The ideas of this lemma.
will also be used for other sizes of caps. We will present these analogous
results, by referring to this lemma.

Lemma 2.4 Let K be a 67-cap in PG(4,5) intersecting at least one plane
7 in a conic. Let S| and Sy be two solids through m with |S1 N K| > 24 and
|S2 N K| > 21, and let Q, and Q2 be the two elliptic quadrics containing
the intersections SN K and So N K.

Then there exists a 4-dimensional non-singular parabolic quadric Q through
Q1 and Q2 containing at least two points of K \ (S1USz) if |S1 N K| = 26,
and containing at least one point of K \ (S1U S2) if |S) N K| € {24,25}.

Proof: Suppose that |S;N K| = 26, then |[(Q;UQ)NK| =z >26+15=
41.

A quadratic cone with base a non-singular 3-dimensional elliptic quadric
Q7 (3,5) has at most 52 points in common with K, so the two quadratic
cones in the pencil defined by @, and Q- contain at most z+2(52—-z) < 63
points of K. So at least 4 points of K lie on one of the parabolic quadrics
contained in the pencil. So one of those three parabolic quadrics contains
at least 2 points of K \ (Q1 U Q2).

A similar argument discusses the case |S) N K| € {24, 25}. o

For a 4-dimensional parabolic quadric Q through @; U @5, the set Q \
(@1UQ2) contains 156 —46 = 110 points. So, when performing a computer
search for such a 67-cap K, we need to find at least 1 or 2 points of K
within a set of 110 points.

We now describe the starting configurations for the computer searches
which will eliminate the existence of particular caps K in PG(4, 5), inter-
secting at least one plane 7 in a conic, and such that at least two solids
through = intersect K in at least 21 points.

2.1 Two general starting configurations

Consider a non-singular 4-dimensional parabolic quadric @ = Q(4,5) and
consider a plane w intersecting @ in a non-singular conic. This plane is the
polar plane of a bisecant or external line to Q [26, Theorem 22.6.6]. This

11



shows that under the group PGO(5, 5) stabilizing Q, there are exactly two
orbits of planes intersecting Q in a non-singular conic.

A plane 7 intersecting @ in a non-singular conic corresponding to a
bisecant polar line of Q, lies in six solids intersecting @ in respectively
two tangent cones, two elliptic and two hyperbolic quadrics. A plane =«
intersecting @ in a non-singular conic corresponding to an external polar
line of @, lies in six solids intersecting @ in respectively three elliptic and
three hyperbolic quadrics.

2.2 A plane corresponding to a bisecant polar line

Let Q@ : X12 — XoX2+ X3X4=0. Let w: X3 = X4 =0, then 7 is the polar
plane of the bisecant {es = (0,0,0,1,0),e4 =(0,0,0,0,1)) to Q.

Let C = #NQ, then C lies in two elliptic quadrics, namely in the elliptic
quadrics

X3 = 2X,
X? — Xo X2 + 2X42 = 0,
and
X3 = 3X,
X12 —XoX2+3X42 = 0.

Using the subgroup G of the stabilizer group PGO(5, 5) which fixes the
pair {e3,e4} and @Q, it is possible to assume that |K N (X3 — 2X, = 0)| >
|K N (X3 —3X; =0)| > 21.

2.3 A plane corresponding to an external polar line

Let Q: X}? — XoXo+ X? —3X3 =0. Let 7 : X3 = X4 =0, then = is the
polar plane of the external line {e3, e4) to Q.

Let C =7 NQ, then C lies in three elliptic quadrics contained in Q.

The subgroup G of PGO(5,5) which fixes the line {e3,e4) and fixes
the quadric @ acts as the symmetric group S3 on the three hyperplanes
my, 2, 3 through = intersecting € in an elliptic quadric. So it is possible
to select the two hyperplanes 7; and w2 through #« for which |[K N m;| >
|K Nmg| > |K N wg|, without losing generality.

For 7, : X4 = 0 was selected and for 7 : X3 = Xj.

2.4 The computer search results

The preceding ideas were used to perform a computer search for caps in
PG(4,5). This led to the following results.
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Theorem 2.5 (a) There is no 67-cap K in PG(4,5) for which there exist
two solids Sy and Sy, where # = S1 N Sy has a conic in common with K,
where Sy has at least 24 points in common with K and where So has at
least 21 points in common with K.

(b) There is no 84-cap K in PG(4,5) for which there exist two solids
S; and Sy, where T = Sy N Sy has a conic in common with K, and where
Sy and Sy have at least 21 points in common with K.

These latter computer searches used the ideas of Lemma 2.4. Let
Q~(3,5)1 be the elliptic quadric containing K N S} and let Q~(3,5)2 be
the elliptic quadric containing K N Sy. In Case (a), it was possible to as-
sume that there is a parabolic quadric through @~ (3,5); and Q~(3,5),
containing at least 2 points of K \ (S US?). In Case (b), it was possible to
assume that there is a parabolic quadric through @~ (3,5); and Q@ (3, 5)2
containing at least 6 points of K \ (S$1 U S2).

We now present further computer search results. We first explain a
particular notation.

Let K be a cap of PG(4, 5) intersecting at least one plane 7 in a conic.
Let S1,...,Se be the hyperplanes through «. Assume that |S; N K| = s;.
Then we say that K contains a conic plane of type (s1,... , 8s)-

Note that by Lemma 2.2, every 84-cap intersects at least one plane in
a conic.

Theorem 2.6 In PG(4,5),
(a) there is no 82-cap having a conic plane of type (25,18, 18,18,17,16),
(b) there is no 84-cap having a conic plane of type (24,19,19, 19, 18,15),
(c) there is no 84-cap having a conic plane of type (22,20, 20, 20,19, 13),
(d) there is no 84-cap having a conic plane of type (20,20, 20,18, 18, 18),
and
(e) there is no 89-cap having a conic plane of type (23,20,19,19,19,19).

The preceding lemmas now imply that there are no 89-caps in PG(4, 5).
Theorem 2.7
m2(4, 5) S 88.

Proof: Assume that there is a 89-cap K in PG(4,5). Then there is at
least one plane w sharing a conic with K (Lemma 2.2). The results of
Theorem 2.5 show that 7 does not lie in two hyperplanes sharing at least
21 points with K.

We now use the results of Theorem 2.6. Consider all possible types
(s1,...,86), With 81 > 82 > 53 > 84 = 85 2> s6, for the conic plane .
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Then s; > 20, and by assumption, s < 20. All possible types for the
conic plane lead to a contradiction.

For instance, assume that the typeis (s1, ... , s¢) = (26, 20, 20, 20, 20, 13).
Then, by deleting 4 points, not in , of the cap in the 26-hyperplane and one
point, not in 7, in a 20-hyperplane, a 84-cap of conic type (22, 20, 20, 20, 19, 13)
is obtained. This contradicts Theorem 2.6 (c). D

Corollary 2.8

66 < ma(4,5) < 88.

2.5 Bounds on my(N,5)
We now present the known bounds on mz(N,5), N > 4.

Theorem 2.9 For5 <N <9,

my(N,5) <4-5%-2 9. 5N-3 T gN=4 4 2,

For 10< N <12,

sV (N+1) N-3 N—4_T nv-s 3
<2 VT 4. —2. - i
ma(N,8) S T 445N 25N 2 sV E S
For N > 13,
N, N .gN-1
MQ(N,S)SS (N+1) 3-N-5

N T nE

Proof: The first formula arises from the formula of Hill [21]. The second
formula arises from the bound of Bierbrauer-Edel on caps in affine spaces
[6] plus the formula of Hill for a cap in a hyperplane in PG(N,q). The
third formula is from Theorem 1.1. ]

3 Caps in PG(N,7)
In this section, we show that

a) mb(3,7) = 32, so every 33-cap in PG(3,7) is a subset of an elliptic
2
quadric, and

(b) 132 < ma(4,7) < 238.
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3.1 The determination of m5(3,7)

We describe how the exact value of m5(3, 7) was determined.

It is known that every 7-cap in PG(2,7) is contained in a conic [24,
Theorem 10.28]. The computer searches for complete n-caps K in PG(3,7),
with n > 33, first of all relied on this property.

We started from a bisecant L to K lying in two planes 7, and 75 sharing
at least 7 points with K. These latter planes intersect K in subsets of
conics C; and Ca. Two conics, which share two distinct points and which
lie in distinct planes, define a pencil of quadrics in PG(3,7). The pencils
of quadrics in PG(3,q) were classified by Bruen and Hirschfeld. In [9,
Theorem 4.4)], they showed that there exist precisely two distinct pencils
of quadrics intersecting in two distinct conics in two distinct planes, where
these two conics share two distinct points. Their results [9, p. 262, Cases
3(c)(i) and 3(c)(iii)] imply that we can assume that C; and C; are one of
the following:

XoX; = 0
X§+ X3+ X2 X3 = 0,
and
XoX, = 0
Xg - X]2 + X2X3 = 0.

We now prove that for caps of size at least 37, this bisecant L and these
latter two planes w; and ms really exist.

Lemma 3.1 Every bisecant of an n-cap K in PG(3,7) of size at least 37
lies in at least two planes m, and 73 containing at least 7 points of K.

Proof: A bisecant lies in 8 planes; so one of those planes contains at least
2 + 35/8 > 6 points of K. Denote this plane by m;. Then there is still
a second plane my through the bisecant containing at least 2 + 29/7 > 6
points of K. a

We determined the stabilizer group G of the two possible configura-
tions C; U Cy. The stabilizer group G has in both cases transformations
interchanging C; and C,, acts in both cases transitively on the 6 points
in Cy \ Cy, so if |C; N K| = 7, then these results show that it is possible
to select, without losing generality, the unique point of C; \ K. Once this
point r is selected, the stabilizer group H = G, has two orbits on C; \ C;.

For the different cases, (|C; N K|,|C2N K|) = (8,7), and |[C N K| =
|C2 N K| =7, representatives were determined, and then, also for the case
|CiNn K| = |C2oN K| = 8, computer searches were performed to find the size
of the largest complete caps extending these starting configurations.

These computer searches showed:
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Lemma 3.2 (i) There is no complete n-cap K, with 33 < n < 49, sharing
7 points with Cy and Cs, and containing the two points of C; N Cs.

(ii) There is no complete n-cap K, with 34 < n < 49, sharing 8 points
with Cy and 7 points with Cs.

(iii) There is no complete n-cap K, with 35 < n < 49, sharing 8 points
with C) and Cs.

This now implies the following result.
Lemma 3.3 m5(3,7) < 34.

Proof: The preceding two lemmas already imply that m5(3,7) < 36
(Lemma 3.1).

Assume that there is a complete 36-cap K in PG(3,7), then the pre-
ceding lemma implies that a bisecant lies in at most one plane sharing at
least 7 points with K. This then implies that every bisecant lies in exactly
one plane sharing 8 points with K. So the number of bisecants 36 - 35/2 to
a 36-cap must be a multiple of 8 - 7/2, which is the number of bisecants to
a 8-cap in a plane. This is however false.

Assume that there is a complete 35-cap K in PG(3,7), then the pre-
ceding lemma. implies that every bisecant lies in either:

(a) one plane sharing 8 points with K, one plane sharing 5 points with
K, and in 6 planes sharing 6 points with K, or

(b) one plane sharing 7 points with K and 7 planes sharing 6 points with

Let u be the number of planes containing 8 points of K, let v be the
number of planes sharing 7 points with K, and let w be the number of
planes sharing 5 points with K. By counting the bisecants in two ways, we
obtain:

u-8-7/2+v-7-6/2 = 35.34/2
w-5-4/2+v-7-6/2 = 35-34/2.

The unique solution to this system of equations, consisting of non-
negative integers, is (u, v, w) = (10, 15, 28).

We now count the number N of ordered pairs (n,p), where = is a plane
containing 8 or 7 points of K, where p € K, and where p € n. Necessarily
N=10-8+15-7=185.

On the other hand, let n(p) be the number of planes through p € K
containing 8 or 7 points of K. As two such planes through p have no other
point of K in common, n(p) < 6. So N =3 ., n(p) < 35-5=175. A
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contradiction is obtained. m|

To prove that m5(3,7) = 32, we still have to exclude the existence of
complete 33- and 34-caps. Computer searches gave the following results.

Lemma 3.4 (1) There is no complete 33-cap K in PG(3,7) having a
bisecant lying simultaneously in a plane my which shares 8 points with K
and lying in a plane wo which shares 7 poinits with K.

(2) There is no complete 33-cap or complete 34-cap K in PG(3,7) having
a bisecant lying in two planes which share 8 points with K.

Theorem 3.5 m5(3,7) = 32.

Proof: Assume that there exists a complete 34-cap K. The preceding
computer search results show that a bisecant lies in either:

(a) one plane sharing 8 points with K, one plane sharing 4 points with
K, and six planes sharing 6 points with K,

(b) one plane sharing 8 points with K, two planes sharing 5 points with
K, and five planes sharing 6 points with K,

(c) one plane sharing 7 points with K, one plane sharing 5 points with
K, and six planes sharing 6 points with K,

(d) eight planes sharing 6 points with K.

Let a, b, ¢, d denote respectively the number of bisecants of type (a), (b),
(c) and (d). Let s; be the number of incident ordered pairs (bisecant L,
plane containing ¢ points of K'). This number s; is a multiple of (i — 1)/2.
Then the following equations are valid:

a+b = sg

c = s7
6a+5b+6c+8d = sg
26+c¢c = s;5

a = 84

a+b+c+d = 34-33/2.

Let h; be the number of planes containing ¢ points of K, then h; =

si/(i(i —1)/2).
Count the number N of pairs (#,p), where p € K, where # is a plane
containing 7 or 8 points of K, and where p € . Then N = 8hg + 7hs.
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On the other hand, for p € K, let n(p) be the number of planes through
p containing 8 or 7 points of K. As two such planes through p do not share
a second point of K, necessarily n(p) < 33/6 < 6. So

8hg + Thy < 34 -5.

Using the same counting method as in the previous paragraph, but now
only for the planes 7 containing 8 points of K, we obtain

8hg < 34 -4,

and the same counting argument, but now for the planes = containing 7 or
4 points of K, implies

Thy + 4hy < 34 -11.
Moreover
ha+hs + he + hr + hg < (71 = 1)/(7 - 1).

The planes containing less than 4 points of K contain 0 or 1 points of
K.

There are 171 solutions (h4, ks, hg, k7, hs) to the equations above. Con-
sider these solutions, together with the possible solutions for kg and h;. It
is sufficient to calculate

i" 74 -1
1= o
i=0 7-1
8

. 7 -1
D ih =34 7,

to obtain a contradiction for all of these solutions.

Assume that there exists a complete 33-cap K. The preceding computer
search results show that a bisecant lies in either:

(a) one plane sharing 8 points with K, one plane sharing 3 points with
K, and six planes sharing 6 points with K,

(b) one plane sharing 8 points with K, one plane sharing 4 points with K,
one plane sharing 5 points with K, and five planes sharing 6 points
with K,
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(c) one plane sharing 8 points with K, three planes sharing 5 points with
K, and four planes sharing 6 points with K,

(d) one plane sharing 7 points with K, one plane sharing 4 points with
K, and six planes sharing 6 points with K,

(e) one plane sharing 7 points with K, two planes sharing 5 points with
K, and five planes sharing 6 points with K,

(f) one plane sharing 5 points with X and seven planes sharing 6 points
with K.

Let a, b, c,d, e, f denote respectively the number of bisecants of type (a),
(b), (¢), (d), (e) and (f). Using the same notations s;, h;, n(p) as above,
the [ollowing equations are obtained:

a+b+c = sg

d+e = 3¢
6a+5b+4c+6d+5e¢+7f = sg
b+3c+2e+f = ss

b+d = s34

a = 83

a+b+c+dt+e+f = 33.32/2

Count the number N of pairs (m,p), where p € K, where 7 is a plane
containing 7 or 8 points of K, and where p € . Then N = 8hg + 7h7.

The same argument as for the complete 34-caps gives n(p) < 32/6 < 6,
S0

8hg + Th? < 33.5.

Similarly, the same counting methods as in the previous paragraph im-
ply
8hg < 33 -4,
Ths + 3ha < 33 . 16,

4hy <3310,

3h3 +4hgy < 33- 16,
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Thy < 33-5.
Moreover
h3+ hy + hs + he + hy + hg < (T* = 1)/(7 = 1).

The planes containing less than 3 points of K contain 0 or 1 points of
K.

Proceeding as for the complete 34-caps, all solutions (hg, hy, k3, ha, ...,
hg) lead to a contradiction.

So mj(3,7) < 32. During the computer searches, complete 32-caps were
found. So

my(3,7) = 32.

3.2 Caps in PG(4,7)

We now use the preceding result to improve the known upper bound m,(4, 7)
< 316 to m2(4,7) < 238. This is achieved by eliminating the existence of
239-caps. We will rely on geometrical arguments and on computer search
results. The results of the preceding theorem already imply the following
lemma.

Lemma 3.6 Let K be a 215-cap of PG(4,7). Then every plane of PG(4,7)
intersects K in a subset of a conic.

Proof: The only caps in PG(2,7) not contained in a conic, are complete
6-caps {24, p. 376]. Assume that a plane intersects K in a complete 6-cap,
then every solid through this plane intersects K in at most a 32-cap. So
|K| < 6+8-26=214. o

To eliminate the existence of 239-caps in PG(4,7), we will prove that if
there is a 239-cap K in PG(4,7), then there is a 4-dimensional parabolic
quadric Q(4,7) or a cone rQ~(3,7), with vertex r and a non-singular 3-
dimensional elliptic quadric @ (3,7) as base, containing at least 101 points
of K. This is however impossible since such quadrics in PG(4,7) contain
at most 100-caps, as is shown by the following lemma.

Lemma 3.7 A non-singular 4-dimensional parabolic quadric in PG(4,q)
and e cone rQ~(3,q), with vertez r and a non-singular 3-dimensional el-
liptic quadric @~ (3, q) as base, contain at most 2(q* + 1)-caps.
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Proof: Every line of the quadratic cone rQ~(3,q) contains at most 2
points of a cap, so such a quadric trivially contains at most 2(g? + 1)-caps.
To prove the result for a 4-dimensional parabolic quadric Q(4, g), we note
that every generator of Q(4, ¢) contains at most 2 points of a cap, and that
every point of Q(4, q) lies on g + 1 generators of Q(4, q). So if K is a cap
contained in Q(4, ¢), then a double counting argument implies that

IKl(g+1) 2(¢* +¢° +q+1),

where ¢° + g% + g + 1 is the number of generators of Q(4, q). This implies
that |K| < 2(¢* +1). m]

Remark 3.8 The preceding upper bound on the size of caps in the 4-
dimensional parabolic quadric Q(4,q) of PG(4,q) is sharp since Q(4,q)
contains 2(¢q2 + 1)-caps.

This follows from results of Drudge [11] and Ebert [12).

They constructed for respectively q even and for ¢ odd sets of 2(g% +
1) lines of PG(3,q) doubly covering the points of PG(3,q). These latter
2(g+1) lines are totally isotropic lines of a symplectic polarity of PG(3, ¢).
This implies that under the Klein correspondence, the Pliicker coordinates
of these 2(¢2 + 1) lines define 2(¢% + 1) points of a 4-dimensional parabolic
quadric Q(4,q) on the Klein quadric. Since these lines doubly cover the
points of PG(3, q), the corresponding Pliicker coordinates define a 2(g?+41)-
cap on this 4-dimensional parabolic quadric.

To find a quadric containing at least 101 points of a 239-cap K, we first
of all use the arguments of Nagy and Szényi [29]. We first of all determine
a first solid a; intersecting K in a subset of an elliptic quadric @,. We
consider a plane 7 of a; having a large number of points in common with
a; N K. We then determine a second solid ap through  intersecting K in
a subset of an elliptic quadric @s.

The two 3-dimensional quadrics @, and Q5 determine a pencil of eight 4-
dimensional quadrics. One of those 4-dimensional quadrics is the union ;U
ap. The other seven 4-dimensional quadrics are non-singular 4-dimensional
parabolic quadrics, or are cones rQ (3, 7). Every point of PG(4,7) \ (a; U
a2) belongs to exactly one of those quadrics. We will select one point r
of K \ (a; Uayp). This determines one quadric Q of the pencil of quadrics
defined by @ and Q2. We will show that this latter quadric @ contains at
least 101 points of K; thus giving us the desired contradiction.

This will be achieved in the following way.

1. Select a fixed point p of K N .
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2. Consider all solids through the line pr. We will show that there
are at least two solids a3 and a3 through pr satisfying the following
conditions:

(a) as and af intersect K in subsets of elliptic quadrics Q3 and Q3,

(b) both a3 and of intersect @ and @ in distinct conics containing
at least 5 points of K.

The elliptic quadrics Q3 and @3 then share two distinct conics with @,
and also share the point r with Q. From Bézout’s theorem, Qs and Q3 are
contained in Q.

By the lower bounds on |a; N K|, |a2 N K|, |az N K|, and |03 N K],
following from the size 239 of the 239-cap, it then follows that Q contains
a 101-cap, which is impossible.

To achieve this contradiction, we rely on the following computer search
results.

Lemma 3.9 (i) A point p of a 50-, 49-, 48-, or 47-cap in PG(3,7) lies on
exzactly one plane intersecting this latter cap in at most 4 points.

(ii) A point p of a 46-, 45-, or 44-cap in PG(3,7) lies on at most two
planes intersecting this latter cap in at most 4 points.

(iii) A pointp of a 43- or 42-cap in PG(3,7) lies on at most three planes
intersecting this latter cap in at most 4 points.

(iv) A point p of a 41-, 40-, 39-, 38-, 37-, or 36-cap in PG(3,7) lies on
respectively at most four, siz, seven, eight, ten, eleven planes intersecting
this latter cap in at most 4 points.

The following result is also valid.
Lemma 3.10 Every 32-cap in PG(3,7) has a 7- or 8-plane.

Proof: Assume that there are at most 6-planes, then a bisecant lies in
(6,6,6,6,6,6,6,4)- or (6,6,6,6,6, 6,5, 5)-planes.

Let a be the number of bisecants of the first type and let b be the number
of bisecants of the second type. Then,

Ta+6b = 15-hg

26 = 10.hsg
a = 6-hy
a+b = 496.

Then the second equation implies that 5/b and then the first two equations
imply that 5|a. But then the fourth equation implies that 5 divides 496.
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This is false. 0

Other computer searches led to the following conclusions. In these com-
puter searches, we relied on the fact that caps in PG(3,7), of size at least
33, are subsets of elliptic quadrics (Theorem 3.5).

Lemma 3.11 (i) There are 33-caps in PG(3,7) having at most 7-planes.
(ii) All 34-caps in PG(3,7) have at least one 8-plane.
(iii) Bvery 35-cap in PG(3,7) contains a pair of different 8-planes in-
tersecting in a bisecant of the 35-cap. This latter property is not always
valid for a 34-cap in PG(3,7).

This led to the following conclusions.

Theorem 3.12 In PG(4,7), every

(i) 174-cap K has at least one 6-, 7-, or 8-plane,

(ii) 207-cap K has at least one solid sharing at least 32 points with K,
and so has a 7- or 8-plane,

(iii) 216-cap K has at least one solid sharing at least 34 points with K,
and so has an 8-plane,

(iv) 219-cap K has at least one solid o) sharing al least 34 points with
K and al least one solid oy sharing at least 33 points with K, and where
a) N ay shares 8 points with K.

Proof: (i) If there are no 6-, 7-, or 8-planes, then counting the number of
points of K in the planes through a bisecant to K gives |K| < 2+57-3 = 173.

(ii) A 207-cap has a 6-, 7-, or 8plane. If all solids through a 6-plane
contain at most 31 points of K, then |K| < 6+8-(31 —6) = 206. A similar
counting argument can be done for 7- and 8-planes, It follows that at least
one solid shares at least 32 points with K. Hence, a 207-cap has a 7- or
8-plane.

(iii) A 216-cap has a 7- or 8-plane. If they do not lie in a solid sharing
at least 34 points with K, then |K| < 215. So a 216-cap K has at least one
solid intersecting K in at least 34 points, and so K has an 8-plane (Lemma
3.11).

(iv) A 219-cap has an 8-plane #. Assume that = lies in a 50-hyperplane
and that all other hyperplanes through 7 share at most 32 points with K,
then |K| < 50+7-(32—-8) = 218. So a 219-cap has an 8-plane and through
this plane pass at least two solids sharing at least 33 points with K. By
the preceding paragraph, at least one hyperplane intersects K in at least
34 points, and this hyperplane has an 8-plane, so starting from this plane,
this part is also proven. a
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Lemma 3.13 Let 7w be a plane intersecting a cap K of PG(4,7) in at least
5 points, and let o and g be solids through m intersecting K in subsets
of elliptic quadrics Q) and Q2. Let p be a point of TN K, and let r be a
point of K \ (a1 U az). Let ag and of be two solids, different from (m,r),
through pr inlersecting K in subsets of elliptic quadrics Q3 and @3, and
inlersecting ay and ag in planes containing at least 5 points of K.

Let ny = |ay N K|, ng = |ap N K|, n3 = |az N K|, and nj = |oj N K.

Then

ny + ng + ng +ng — 45 < 100.

Proof: The two elliptic quadrics ¢ and Q2 define a pencil of 4-dimensional
quadrics. Exactly one of those quadrics Q contains the point r. The ellip-
tic quadric Q3 shares two distinct conics with @ and also shares the point
r with Q. By Bézout’s theorem, Q3 is contained in Q. Similarly, Q3 is
contained in Q.

We now use the generalized inclusion-exclusion principle to find a lower
bound on |@ N K|. This latter lower bound is

ny+ne+na+n3—6-8+a3—ay

with a3 the sum of the intersection sizes of the intersections of three of
those solids with K, and with a4 the intersection size of the intersection of
all four solids with K. The negative contribution 6 - 8 comes from the fact
that planes which are the intersection of two distinct solids share at most
8 points with K.

Since m ¢ a3, necessarily a; Nas Naz N o is at most a line through
P, S0 aq < 2. It is also trivial that the intersection of three of the solids
a1, az, a3, aj shares at least a4 points with K, so the lower bound becomes

ny+n2+ng+ny3—6.-8+4-a5 —ay.
Since a4 2 1, necessarily, by Lemma 3.7,
100 > |@ N K| = ny + ng + n3 +nz — 45.

(]

We now present the ideas leading to the exclusion of 239-caps in PG(4, 7).
These ideas are based on the results of the preceding lemma. In the follow-
ing description of the method, we assume the size of the cap K to be large
enough to get the desired contradiction. The precise value for the size of
K is given in Table 3.
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Part 1. Let y > 33 be the maximal size of a solid intersection of an
n-cap K in PG(4,7). We also assume that z > 33, with z < y, is the
largest size of a solid intersection of K, intersecting a y-solid in a plane
sharing at least 5 points with K (Theorem 3.12).

Let o) be a hyperplane sharing y points with K, and consider a plane
w of a; sharing at least 5 points with K. We select 7 and a; in such a way
that [r N K| > 5, |oy N K| =y, and |az N K| = z, where a3 is a second
solid through =.

Consider the notations and geometrical setting of the preceding lemma.
From Lemma 3.9, we know the upper bound @, on the number of solids
through pr intersecting a; in a plane sharing at most 4 points with K.
These latter, at most a,, solids share at most y points with K. All the
remaining solids through pr intersect a; in a plane sharing at least 5 points
with K, and so share at most = points with K.

From Lemma 3.9, we know the upper bound a; on the number of solids
through pr intersecting as in a plane sharing at most 4 points with XK. At
most a; solids through pr intersect «; in a plane sharing at least 5 points
with K, but intersect a5 in a plane sharing at most 4 points with X, These
latter, at most e, solids cannot be used to play the role of the solids as
and a3, and contain at most z points of K.

The solid (r, r) also cannot be used to play the role of one of the solids
a3 and o3. This latter solid also contains at most = points of K. There
still remain §7 — a, — a; — 1 solids through pr.

The remaining solids through pr can be used to play the role of the
solids a3 or of if they contain more than 32 points of K. Suppose that the
largest solid intersection of these latter solids with K is equal to na and
that the second largest solid intersection of these latter solids with X is
equal to n3. We first of all assume that x > ng > n§ > 32; the case nz > 33
and n3 < 32 is discussed in Part 3, while the case ng < 32 is discussed in
Part 4.

We count in all three cases the number of ordered pairs (s, @), where
s € K, where « is a solid through pr, and where s € a. This number is
equal to

(K| -2)-8+2-57. 1)

Part 2. Assume that nz > nj > 32.
Then, by Lemma 3.13,

y+z+ng+ny < 145
y+z+2n; < 145
which implies that
145 -y — =z
< |15l
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where |z denotes the largest integer smaller than or equal to z.

Note that, by the assumptions on n3 and n3, this case only occurs if
effectively 33 < (145 —y — z)/2.

All the remaining solids through pr contain at most n3 points of K. So,
from Part 1,

146 -y —=x

ay y+(z+1) - z+nz+n3+ (57 —ay —a; = 3) - [———]|
145 —y —
< (ay—1)y+a,z+y+z+n3+n§+(57—a,,—%—@I.#J
145 —y —
< (a,,-1)y+azx+145+(57—a,,—az—&l%! ()

is an upper bound for (1).

Part 3. If ng > 33, but all the remaining solids through pr intersect
K in at most nj < 32 points, then we cannot use formula (2) since we are
not sure that the solid o3 exists intersecting K in a subset of an elliptic
quadric, so we cannot rely on Lemma 3.13.

We have in this case the following upper bound on the number of inci-
dences (s, ), where s € K and where a is a solid through pr:

ay-y+(az+1) - c+n3+(57—ay —az —2)-32
< ay-y+(az+2)-z+(57-az —ay —2)-32, 3)

since = > nj.

Part 4. There still remains one case, namely n3 < 32. Then all the
remaining solids through pr share at most 32 points with K, so (3) again
is an upper bound for (1).

Lemma 3.14 Let K be a cap in PG(4,7) intersecting a plane 7 in at least
five points, and intersecting two solids oy and ap through w in subsets of
elliptic quadrics Q, and Q3 in a; and as.

Assume that |(a; Uag) N K| = 2. Then

|K| -2

z 4+ < 100.

Proof: The two elliptic quadrics @, and Q, define a pencil of 4-dimensional
quadrics in PG(4, 7). One of these quadrics is the union a; Uas. The other
seven 4-dimensional quadrics of this pencil of quadrics are non-singular
parabolic. quadrics or cones with a point as vertex and a non-singular 3-
dimensional elliptic quadric as base. These quadrics contain at most 100-
caps of PG(4,7) (Lemma 3.7).
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Since one of those seven quadrics contains at least 24 (| K|—z)/7 points,
necessarily

|K| -z
24

< 100.

Remark 3.15 First of all, using Lemma 3.14, we eliminated some pairs
(y,z) for |K| = 239. For the remaining pairs (y,z), Table 3 shows the
smallest value of | K| for which the upper bounds (2) and (3) give a contra-
diction, when compared to the exact value (|K| —2)-8+2-57.

For the values for | K|, y, z, which are preceded by !, the size of | K| arises
from formula (3).

K|y |z Kilylz] |IKI|y]=
225 148 |36 | 1226144 |36 (] ! | 229 | 41 |-40
226 |47 |37 (| 1227 [ 43 (41 ]| ' 229 141 | 39
225|471 36| 1] 228 | 43 | 40 233141 38
22746 | 381 1]228 | 43| 39 233141 | 37
227146 [ 37 || 1228 (43|38 !|230| 40| 40
226 146 | 36 || 1| 228 | 43 | 37 235140 | 39

227 145) 39 232143 36 234 |40 | 38
22714538 f '] 226 | 42 | 42 239 | 40 | 37
227 145 |37 |[ '] 227 | 42| 11 235|391 39
226 |45 |36 | '] 228 42| 40 239139 | 38
1
]

227 1441 40 228 142 | 39 239 [ 39 | 37
227 144 {39 '] 228 | 42| 38 239|381 38
227 (44| 38 232 (42| 37 243 | 38 | 37
227 |44 [ 37 [ 1] 228 | 41 Eﬂ 243 [ 37| 37

BT I R R e e T I ™S ™SS IS Y prosi gy

Table 3

The preceding table shows that 239-caps cannot exist unless (y,z) =
(38,37) or (y,z) = (37, 37).
This latter case is eliminated by the following ideas.

Assume that there is a 239-cap K in PG(4,7) having at most 37-solids.
Through an 8-plane of K (Theorem 3.12), there are seven 37-solids and one
36-solid.

Consider a 36-solid ag. In ap, we find a pair 7, 72 of 8-planes inter-
secting in the bisecant L of K (Lemma 3.11). Let o;, 1 =0,...,7, be the
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36-solid ap and the seven 37-solids through my, and let 8;, i =0,...,7, be
the 36-solid By = ap and the seven 37-solids through 5.

Consider the planes through L of a solid §;, ¢ > 0. At least five of those
planes through L share more than four points with K. One of those planes
is o which lies in Sy = 9. The other planes of §; through L correspond to
the intersections of the solids «;, j > 0, with §;. This shows that each of
the solids #;, i =1,...,7, intersects at least four of the 37-solids a;, i > 0,
in a plane containing at least five points of K.

This implies that it is possible to find two solids §;, 8i, with 7,7 > 0,
and two solids ¢;j, aj, with 7,5’ > 0, such that |8; N a; N K|, |8; N ajy N
K|, |8y Ny N K|, |Br Ny N K| 2 5.

Select a point r of 73 \ L belonging to K. The solid intersections a; N
K,a; N K and the point r define a unique 4-dimensional quadric Q, also
containing the elliptic quadrics containing the solid intersections 8;N K and
ﬁ,’l NK.

Taking into account that three of the solids «;, o, B;, Bir intersect in
the bisecant L to K, the generalized inclusion-exclusion principle applied
to the 37-solids a;, a;r, B;, Bi» shows that @ contains at least

4.37-6-8+4:2-2=106

points of K. This is false (Lemma 3.7).
So there is no 239-cap in PG(4, 7) having at most 37-solids.

Assume that (y,z) = (38,37) for a 239-cap K. Consider an 8-plane in
a 38-solid (Lemma 3.11). Through this 8-plane, there either pass:

(a) one 38-solid, six 37-solids, and one 35-solid, or
(b) one 38-solid, five 37-solids, and two 36-solids.

Consider the first possibility (a). Let ag be the 35-solid. In ag, we again
find a pair m;,w of 8-planes intersecting in the bisecant L of K (Lemma
3.11). Let i, 1 =0,...,7, be the 35-solid a9, the six 37-solids and the
38-solid through 7, and let §;, ¢ =0, ... ,7, be the 35-solid By = o, the
six 37-solids and the 38-solid through 2.

Consider the planes through L of a solid §;, i > 0. At least five of those
planes through L share more than four points with XK. One of those planes
is w2 which lies in 8y = ap. The other planes of §; through L correspond
to the intersections of the solids a;, j > 0, with 8;. This shows that each
of the solids 8;, 7 =1, ...,7, intersects at least four of the 37-solids and the
38-solid ¢, ¢ > 0, in a plane containing at least five points of K.

This leads again to the contradiction as obtained for 239-caps having at
most 37-solids.
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Consider now possibility {(b), where we assume that there are no 35-
solids. Recall that every 35-solid has at least one 8-plane (Lemma 3.11).
Consider a 36-solid ap. We proceed as before, but it could happen that
{la,- nKj, la_,v ] Kl} = {36, 37} or that {Iﬂg NK|,|Bs nKl} = {36, 37}. This
does not impose any problems in the arguments of the case (y, ) = (37, 37).
The inclusion-exclusion principle still implies that the quadric Q would con-
tain at least 104 points of K, which is impossible (Lemma 3.7).

So also the case (y, z) = (38, 37) does not occur for 239-caps in PG(4, 7).

This leads to the following improvement to the known upper bound on
m2(4,7). In PG(4,7), a 132-cap exists [15].

Corollary 3.16
132 < m2(4,7) < 238.
3.3 Bounds on my(N,7)
We now present the known bounds on m2(N,7), N > 4.

Theorem 3.17 For5 < N <12,

my(N,7) 55-7“'2—-2-35-7"’-%%.
For 13< N <17,
ma(N,7) < u}\ll\;—m+5-7"’-3—%-7"’-s+g.
For N > 18,
ma(N.T) < 7N (N+1) 3.N.7N-1

N? 2.(N-1)2

Proof: The first formula arises from the formula of Hill [21]. The second
formula arises from the bound of Bierbrauer-Edel on caps in affine spaces
[6] plus the formula of Hill for a cap in a hyperplane of PG(N,q). The
third formula is from Theorem 1.1. o
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