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Abstract

A linear k-forest is a graph whose components are paths with
lengths at most k. The minimum number of linear k-forests needed
to decompose a graph G is the linear k-arboricity of G and denoted
by lax(G). In this paper, we study the linear 3-arboricity of balanced

complete multipartite graphs and we obtain some substantial results.
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1 Introduction

Throughout this paper, all graphs considered are finite, undirected, loop-
less and without multiple edges.
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An independent set in a graph is a set of pairwise nonadjacent vertices.
A graph G is m-partite if its vertex set V(G) can be partitioned into m
(possibly empty) independent sets called partite sets of G. A complete m-
partite graph G is a m-partite graph having the additional property that the
edge uv € E(G) if and only if u and v belong to different partite sets. When
m > 2, we write Ky, ;.. n. for the complete m-partite graph with partite
sets of sizes ny,ny,...,n,. Moreover, if g = ng = --- = n,, = n, then
it is called a balanced complete m-partite graph and denoted by Ko(n). For
m = 2, such a graph is called a balanced complete bipartite graph and denoted
by Knn.

A balanced complete multipartite graph is a balanced complete m-partite
graph with m > 2. A complete graph is a graph whose vertices are pairwise
adjacent; the complete graph with m vertices is denoted K,,. We can also
view Ky, as Kpn(n) with n = 1.

A decomposition of a graph is a list of subgraphs such that each edge
appears in exactly one subgraph in the list. If a graph G has a decomposition
G1,Gs,...,Gg4, then we say G can be decomposed into Gq,Ga,...,Gq or
G1,Gs,...,G4 decompose G. A linear k-forest is a graph whose components
are paths with lengths at most k. The linear k-arboricity of a graph G,
denoted by lax(G), is the minimum number of linear k-forests needed to
decompose G.

The notion of linear k-arboricity was defined by Habib and Peroche in
[7]. It is a natural generalization of edge coloring. Clearly, a linear 1-forest is
induced by a matching and la,(G) = x'(G) which is the chromatic indez of a
graph G. It is also a refinement of the concept of linear arboricity, introduced
earlier by Harary in [9], in which no length constraints are needed. In 1982,

Habib and Peroche 6] made the following conjecture on linear k-arboricity.
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Conjecture 1.1. If G is a graph with mazimum degree A(G) and k > 2,

then
[?‘f%fcfﬂ if A(G)=|V(G)|-1and
[%ﬂ] if A(G) < |V(G)|-1.

So far, quite a few results have been obtained, mainly on the cases where

lak(G) S

k is small and the graphs we consider are special, such as trees [2, 7], cubic
graphs [1) and complete graphs [1, 2, 5] when k = 2,3. Chen and Huang (3]
also determined lax(Kon) for k > [%]—1 and lag(Kp,) for k > n—1. As for
small k for lax(K, ), only k = 2 and k = 3 were considered, see [4, 5, 12].
In this paper, we determine lag(Km(n)) when mn = 0 (mod 4). The result

is coherent with the corresponding case of Conjecture 1.1.

2 Preliminary lemmas

Assume that G and H are graphs. A spanning subgraph F of G is called
an H-factor if each component of F' is isomorphic to H. If G is expressible as
an edge-disjoint sum of H-factors, then this sum is called an H-factorization
of G. Let Py be a path on A vertices. From the meanings of Pi-factorization
and linear (k — 1)-arboricity of a graph, we know that if a graph G has a
Py-factorization then la,_,(G) is equal to (k—f%, which is the number of
Pi-factors required to decompose G.

In 1999, Muthusamy and Paulraja [11] showed that for k = p+1 > 3,
p is a prime, Km(n) has a Pi-factorization if and only if mn = 0 (mod k)
and 2(k — 1) | k(m — 1)n. Hence we obtain the following result on linear

3-arboricity of K.
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Corollary 2.1. la3g(Kpn) = m when mn = 0 (mod 4) and (m—1)n =
0 (mod 3).

Furthermore, we say that a I-factor of a graph G is a spanning 1-regular
subgraph of G. A 1-factor and a perfect matching are almost the same thing.
The precise distinction is that “l-factor” is a spanning 1-regular subgraph
of G, while “perfect matching” is the set of edges in such a subgraph. A
decomposition of a regular graph G into 1-factors is a I-factorization of G.
A graph with a 1-factorization is I-factorable. For complete graphs K,,, the

following results are well-known.
Lemma 2.2. /8] K., has a K;-factorization if and only if m = 4 (mod 12).

Lemma 2.3. A complete graph with even order K,, has a 1-factorization in

which there are 2v — 1 1-factors.

Proof. See for instance [10]. 0

Let G(A, B) be a balanced bipartite graph with A = {a; | j € Z,} and
B ={b; | j € Z,}. In [5], Fuet al. defined the bipartite difference of an edge
apb, in G(A, B) by the value ¢ — p (mod n). It is not difficult to see that an
edge subset in G(A, B) containing the edges of the same bipartite difference
must be a matching. In particular, the edge subset is also a perfect matching
if G(A, B) is K, ». Hence we can partition the edge set E(K, ) into n perfect
matchings. Each perfect matching can be labelled by the bipartite difference
of its own edges. For convenience, the perfect matching in K, consisting
of the edges with bipartite difference £ is called “perfect matching £”, where
£€{0,1,...,n — 1}. Note that the index of each vertex is modulo n.

Fu et al. [5] also observed that if n is even, then the edges of every

three perfect matchings of K, with consecutive labels can generate two
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linear 3-forests. Otherwise, if n is odd, then the edges of every three perfect
matchings of K, , with consecutive labels can generate two linear 3-forests

and one isolated edge. At last, they obtained the following theorem.
Theorem 2.4. [5/

lag(Knyp) = [TZ—:—J‘I and lag(Ky) = [%%_;Tl)‘l )

2 4
For example, Fig. 1 and Fig. 2 show that the edges of perfect matchings
0,1,2 in Kgg and K77 can construct two linear 3-forests respectively except

the edge agbp in K77 is not used.

Figure 1: Two linear 3-forests in Kgg.

The above statements are necessary to obtain our results. Furthermore,

we also need some properties of lai(G).

Lemma 2.5. If H is a subgraph of G, then lay(H) < lax(G).
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Figure 2: Two linear 3-forests and one isolated edge in K7 .

Lemma 2.6. If a graph G is the edge-disjoint union of two graphs G, and
Gg, then la.k(G) S lak(Gl) + lak(Gz).

Lemma 2.7. If a graph G has an H-factorization with t H-factors, then
lag(G) < t-lax(H).

Lemma 2.8. lax(G) > ma.x{[-A—@z] , [[ E(G ]}

2
+1

Lemmas 2.5 and 2.6 are evident by the definition of linear k-arboricity.
Lemma 2.7 can be obtained from Lemma 2.6. We shall use Lemmas 2.5 ~
2.7 frequently and without an explicit reference. Since any.vertex in a linear
k-forest of a graph G has degree at most 2 and a linear k-forest of G has at

most l",‘;_f J edges, we have Lemma 2.8.

3 The main results

Let P,(g) be an a-partite graph such that each partite set V; has (3 vertices
for alli € {0,1,...,a — 1} and the edge uv € E(P,g) if and only if u € V,,

~
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and v € V,q; where w € {0,1,...,a —2}.
Lemma 3.1. lak(Pk+1(,)) = 8.

Proof. For all i € {0,1,...,k}, assume that the vertices of the partite
set V; of Pry1(s) are vig), vipa)s - - - » Vifs—1)- Lhen, let the fth linear k-forest be
the set of Pit1’s {vopjvipj+(e-1)) - - - Vipg+ke-1jl 5 € {0,1,...,5s —1}} for all
€€ {1,2,...,s}. Note that the index y of each vertex v,y is modulo s. It is
not difficult to check that the edges of all linear k-forests are distinct and that
their union is equal to the edge set E(Pr11(s)). Thus lag(Prii(s)) = s a

Lemma 3.2. lag(Kmn)) <t lax(Kmn))-
Proof. We can obtain Kpn) from Kp(n) by replacing each edge of K
with K;;. Hence a path P; in a linear k-forest of K,,(n) corresponds to a
r-partite subgraph Py of Kmn), where 2 < r < k+ 1. From Lemma 2.5,
lag(Pry)) < lax(Piyaey) for all 2 < v < k + 1. Therefore, lag(Kmen)) <
lag(Pry1()) - lax(Kmm)) =t - lag(Komn)) by Lemma 3.1. O
Lemma 3.3. If n = 0 (mod 2°) where 0 > 1, then Kp(n) has a K

factorization and there are 2°(m — 1) K 5 o -factors in it.

n n
2737

Proof. We prove this lemma by using induction on the number ¢. Assume
o = 1. First, by partitioning each partite set of Kyu(n) into two subsets of
vertices, we can find that sz( ) is the union of a Kg a-factor of sz( )
and K,(n). Then, from Lemma 2.3 (by replacing each edge of Komm by K2 ,‘.,7)
,_,m( ) has a K a-factorization in which there are 2m — 1 Kz a-factors.
Therefore, Km(n) has a Kp n-factorization and there are 2m — 2 = 2(m — 1)
g,3-factors in it. This provides the basis.
For the induction step, suppose 0 = h+1 > 2. The induction hypothesis
is that Kpm(n) has a K & -factorization in which there are 2#(m —1) K

P

factors. Since a K X -factor can be decomposed into two K_= e factors

39



then Ky has & K_n  _u -factorization and there are 2 - 2tm - 1) =
2 (m —1) K iy -factors in it. Hence, by mathematical induction, the

assertion holds. a

Now, we are ready to prove our main results.

Proposition 3.4. lag(Km(n) < |-—(—1)—"-] when m = 0,4,6,8 (mod 12) and
n =4 (mod 6).

Proof. From Lemma 2.3 (by replacing each edge of Kn by Ky n), Kmm)
has a K, ,-factorization in which there are m — 1 K, ,-factors. Moreover,
the edge set of K, ,, can be partitioned into n perfect matchings whose labels
are from 0 to n — 1. Then the edges of perfect matchings 1,2,...,7n —1 can
construct g"s;l) linear 3-forests. Note that perfect matching 0 has not been
used.

However, it is not difficult to see that the subgraph induced by the union
of perfect matching 0 in those K, , of K,-factors in Ky(n) is just a Kpn-
factor. Hence, lag(Kmmn)) < (m —1)- 3(53_—]2 + lag(K,»). By Theorem 2.4,
lag(Kn) = I‘;t—’;‘ﬁl)] = [24"3‘—2] when m = 0,4,6,8 (mod 12). Therefore,

fa(om) < (m 1) - 252 [20g2] = [Aegin] o

Proposition 3.5. lag(Kmm)) < [21’"—;'1)3] when m = 2 (mod 6) andn =0
(mod 2).

Proof. Dividing all m partite sets of K,,(n) into 3 disjoint pairs of two
partite sets shows that Kpn() is the union of a K, .-factor of Km(n) and
Kz (an). Therefore, lag(Km(n)) < lag(Knn) +la3(Kpam)). Since 3 (mod
3) and 2n = 0 (mod 4), from Corollary 2.1, lag(Kz () < M
g%)@nl. Thus, lag(Kmz) < [2] + (m—32)2n = [2(m; l)"] by Theorem 2.4.
0
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Proposition 3.6. lasg(Kmn)) < [m-l when m = 0 (mod 6) and n = 2
(mod 6).

Proof. From Lemma 2.3 (by replacing each edge of K., by Ky »), Kmn(n) has
a K, ,-factorization and there are m—1 K, ,-factors in it. Moreover, the edge
set of K, , can be partitioned into n perfect matchings whose labels are from
0 to n—1. Then we obtain 3("3—"9 linear 3-forests which are constructed by the
edges of perfect matchings 2,...,n — 1. Assume that the vertices of K, , =
G(A, B) are ag, ay,...,a,-1 and by, by, ...,bs—1. The edges of perfect match-
ings 0 and 1 also produce a linear 3-forest {b;a;b;+1a;41| 7 =0,2,...,n —2}.
But, the edges of the matching {a;b;11| j = 1,3,...,n — 1} of K, » have not
been used. Thus we have to estimate the number of linear 3-forests induced
by the union of the above edges which are not used in those K, , of K, -
factors in Kpn(n).

First, for all ¢ € {0,1,...,m — 1}, let the vertices of partite set V; of
Kon(n) be denoted by vyq), vipt)s - - . , Vipn—1)- Without loss of generality, we can
assume that the set of all edges not used of K, is the union of 3 — 1

perfect matchings Uy, Uy, ..., Un_y, and a matching X m, where
Ur = {vijvire+y| 1 € {0,1,...,m—1},j € {1,3,...,n— 1}}
forall£e{1,...,5 —1} and
Xz = {vpvirgueli€ (0,1,....3 -1} € {1,3,...,n - 1}}.

Then the edges of Uy, Uy, ..., Uz _3 can generate ﬂ@ linear 3-forests. Be-

sides, the edges of U. 2_2, U 2.1, and X B also produce two linear 3-forests.
Hence, la,:;(Km(n)) < (m - 1) . (2("3_'22 + 1) + (@ + 2) = 2!m—;!n+l —
I'ng—lln-l. -

3
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Proposition 3.7. lag(Km@)) < [ng—l)g] when m = 3 (mod 6) and n = 4
(mod 12).

Proof. From Lemma 3.3, Kp(n) has a K _;s,%-fa»ctoriza.tion and there are
2m —2 Ky a-factors in it. Since the edge set of Kz a can be partitioned into
2 perfect matchings whose labels are from 0 to § —1, we obtain ﬁ?l linear
3-forests which are constructed by the edges of perfect matchings 2,...,5 —
1. Assume that the vertices of Kz » = G(A, B) are aq,ay,...,a2_; and
bo, b1, .. .,ba_1. The edges of perfect matchings 0 and 1 also produce a linear
3-forest {b,-a,-b_,-+1aj+1| 7j=02...,5- 2}. But, the edges of the matching
{a,-b,-.,_ll i=13,...,5— 1} of K.g.,xgs have not been used. Thus we have to
estimate the number of linear 3-forests induced by the union of the above
edges which are not used in those K32 of Ky a-factors in K. Since
sz(%) is the union of a K z,3-factor of sz(g) and K(»), for convenience,
we can consider this question on the graph K2m(%).

First, for all ¢ € {0,1,...,2m — 1}, let the vertices of partite set V; of
sz(%) be denoted by g}, vipj, - - - ’v"[ﬁ‘ll' Without loss of generality, we
can assume that the set of all edges not used in Kyn(n) is the union of two
matchings X, X,n., and m — 2 perfect matchings U, U, .. r Up-y of sz(%),

where

-1}},

Xi= {vpuiapeylie {1,3,....2m-1},5€{1,3,...,3
»§- 11

U = {’Ug[j]‘Ui+¢b'+1]| 1€ {0,1,. ey 2m— 1},] € {1,3, ceny
for all £ € {2,3,...,m— 1} and
Xm = {U‘U]v""'"‘b""l]l i€{0,2,...,2m —2},5 € {1,3,.. B - l}} .

Then (i) the edges of X; and U, can produce a linear 3-forest; (ii) the edges
of Us, Uy, ..., Un-1 can generate 1(";—'31 linear 3-forests; (iii) the edges of X,
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can produce a linear 3-forest. Hence, lag(Km(n)) < (2m—2)- ( 1——22 + 1)

2(m-3)\ _ 2(m=Dn+2 _ [2(m-1)
(2+ 200 = tnopest  [amin],

Proposition 3.8. lag(Kmm) < J—Ll 2| whenm =5 (mod 6) andn =4
(n)
(mod 12).

Proof. It is similar to the proof of Proposition 3.7 except the following.
(i) The edges of X; and X,, can produce a linear 3-forest; (ii) the edges
of Uz,Us, ..., Upn-1 can generate g";—'a linear 3-forests. Hence, lag(Km(n))

<@m-2)- (333—‘32 + 1) + (14272 < Hmoped _ [2mcie] -

Proposition 3.9. lag(Knn)) < [i——%.l when m = 3 (mod 6) and n = 8
(mod 12).

Proof. From Lemma 3.3, K, has a K »,z-factorization and there are

4m —4 Ky 2-factors in it. Since the edge set of K32 2 can be partitioned into

. . 2(2—
% perfect matchings whose labels are from 0 to § — 1, we obtain =%; 2

linear 3-forests which are constructed by the edges of perfect matchings
2,...,%3—1. Assume that the vertices of Kz 2 = G(4, B) are ag, ay, . .. a1
and bo,b1,...,ba_;. The edges of perfect matchings 0 and 1 also produce
a linear 3-forest {b;a;bj110541] 5 =0,2,...,2 —2}. But, the edges of the
matching {a,-bj+1| j=13,...,%- 1} of Ka 1 have not been used. Thus
we have to estimate the number of linear 3-forests induced by the union of
the above edges which are not used in those K3 2 of Kz a-factors in Kmn).
Since K, am(3) 18 the union of three Kz a-factors of K, pres) and Ky (), for
convenience, we can consider this question on the graph K am(3)"

First, for all ¢ € {0,1,...,4m — 1}, let the vertices of partite set V; of
K am(2) be denoted by vy, vi), - - 2 Yfz-1]- Without loss of generality, we
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can assume that the set of all edges not used in K is the union of four
matchings X, Xs, X3, Xom and 2m — 4 perfect matchings Uy, Us, ..., Usm-1

of K4m(§-)’ where
X1 = {Ui[jlvi+1l,‘+1]| i€ {3, 7,...,4m — 1},_’] € {1,3, .. ,%— 1}} s
Xo= {vivisap+yl i € {2,3,6,7,...,4m —1},5 € {1,3,...,2 - 1}},

Xs = {vivisasyl 1 € {1,2,3,5,6,7,...,4m - 1}, € {1,3,...,3 - 1}},

U= {Ui[j]vi-i-t[j-l-lll i€ {0) L...,4m— 1}:.7 € {1)3) veey 'E;' - 1}}
for all £ € {4,5,...,2m — 1} and
X2m = {v,-[j]v,-“,,.b-“ﬂ 1€ {0, 1,4,5, - ,4m - 3},] € {l, 3, L ,% —_ 1}} .
Then (i) the edges of X;, a subset {vij;jvisap4y| ¢ € {2,6,...,4m — 2},
j €{1,3,...,5—1}} of X3 and Uj can produce a linear 3-forest; (ii) the edges
of X, asubset {vjjjviyap4y) ¢ € {1,3,...,4m~1},5 € {1,3,...,5~1}} of X3

and X,,, can produce a linear 3-forest; (iii) the edges of Us, Us, . . ., Usm—2 can

generate ﬁ?"‘T'i) linear 3-forests; (iv) the edges of Us,,—; can produce a linear
3-forest. Hence, lag(Km(n)) < (4m —4) - (ﬁs;?l + l) + (3+ -212—';'—61) =
2(m-1)n+1 2(m—1)n

(m-Dntl [ (m—1) ] O

Proposition 3.10. lag(Km@)) < [35"‘7'123] whenm =5 (mod 6) andn =8
(mod 12).

Proof. It is similar to the proof of Proposition 3.9 except the following.
(i) The edges of X; and X3 can produce a linear 3-forest; (ii) the edges of
X, and Uy can produce a linear 3-forest; (iii) the edges of Us, Us, - . . , Uzm—1,
and Xy,, can generate gz_'g_—_g linear 3-forests. Hence, lag(Km(n)) < (4m —

4)- (Eﬁ@ + 1) + (2 + 2(2,;-4)) = 2(m—;)n+2 - |-2(m;1)n-|' O




Proposition 3.11. lag(Kmmy) < [ng")ﬂ] when m = 0 or 8 (mod 12) and
n=1 or5 (mod 6).

Proof. Dividing all m partite sets of Kn(n) into Z disjoint collections of
four partite sets shows that Kp(n) is the union of a Ky-factor of Kp(n) and
K'm(4n). Since 3 = 0 or 2 (mod 3) and 4n = 4 or 8 (mod 12), from Corollary
2.1 and Propositions 3.4 ~ 3.10, la3(Kmm)) < lag(Ks(n) + lag(Kmun)) <
2(4-1)n 2(T—1)(4n) 2(m—-1)n

(3)+[(.3) ]=[(3)]. O

On the other hand, from Lemma 2.8, laz(Kp(n)) > [gﬂsﬂ] when mn =
0 (mod 4). Hence, by combining Corollary 2.1 and the above propositions,
we determine the linear 3-arboricity of Kip(n) when mn = 0 (mod 4) and

conclude the work of this paper with the following main theorem.

Theorem 3.12. la3(Kpnm)) = I-&("‘T'lm] when mn = 0 (mod 4).

Concluding Remark. By using the ideas in this paper, we can also find
lag(Kmny) for quite a few other cases when mn = 2 (mod 4). But, we are
not able to finish the whole part at this moment due to several stubborn
subcases. As for the cases when mn is odd, they are expected to be more
difficult.
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