On Algorithms for Searching a Consistent Set of
Shares in a Threshold Scheme and the Related
Covering Problem

Raylin Tso!, Ying Miao* and Eiji Okamoto'

E-mail: t raylin@cipher.risk.tsukuba.ac.jp
! miao@risk.tsukuba.ac.jp
tt okamoto@risk.tsukuba.ac.jp

Graduate School of Systems and Information Engineering
University of Tsukuba
Tsukuba 305-8573 Japan

Abstract

In the Shamir (k,n) threshold scheme, if one or more of the n shares
are fake, then the secret may not be reconstructed correctly by some sets
of k shares. Supposing that at most ¢ of the n shares are fake, Rees et al.
(1999) described two algorithms to determine consistent sets of shares so
that the secret can be reconstructed correctly from k shares in any of these
consistent sets. In their algorithms, no honest participant can be absent
and at least n — t shares should be pooled during the secret reconstruction
phase. In this paper, we propose a modified algorithm for this problem so
that the number of participants taking part in the secret reconstruction can
be reduced to k + 2t and the shares necd to be pooled can be reduced to,
in the best case, k + ¢, and less than or equal to k + 2¢ in the others. Its
performance is evaluated. A construction for t-coverings, which play key
roles in these algorithms, is also provided.

Key words: algorithm; consistent set; covering; threshold scheme.

1 Introduction

Secret sharing schemes are indispensable whenever secret information needs to be
kept collectively by a group of participants in such a way that only authorized
subgroups of participants are able to reconstruct the secret. Typical examples
of such schemes are threshold schemes introduced by Blakley (1] and Shamir
[15] independently in 1979. Informally, a (k,n) threshold scheme is a method of
breaking a secret K up into n diffcrent shares S), S,,..., Sy, such that

JCMCC 60 (2007), pp. 47-63



1. with the knowledge of any k or more shares (k < n), the secret K can be
easily derived; and

2. with the knowledge of any k — 1 or fewer shares, it is impossible to derive
the secret K.

The Shamir threshold scheme is based on the Lagrange interpolating polynomial
where the constant term is the secret K. In this paper we will adopt the Shamir
scheme for the convenience of description.

The problem of detecting cheaters in threshold schemes was investigated by
McEliece and Sarwate [11], and many others (see, for example, [2], (5], [12], [17]).
Under the assumption that at most t of the n shares are fake, by recognizing that
the secret and the n shares altogether form a codeword in an [n+1,k,n+ 2 — ¥]
maximum distance separable code, McElicce and Sarwate [11] showed that if k+2t
shares are pooled together, then there exists a unique polynomial of degree at most
k—1 so that at least k- ¢ of the genuine shares lie on it. This unique polynomial,
which is used to compute the secret, can be efficiently determined by both the
Berlekamp-Massey algorithm or the Euclidean algorithm for Reed-Solomon codes.

Rees et al. [13] considered the problem of determining consistent sets of shares
in a threshold scheme with cheaters. A sct of shares in a (k,n) threshold scheme
is called consistent if every k-subset of the shares derives the same secret. Rees et
al. proposed a deterministic algorithm, based on a particular class of ¢-coverings
with index 1, to reconstruct the secret of the Shamir (k,n) threshold scheme when
some shares are fake. They also considered a randomized algorithm for the same
problem, and compared it with the above mentioned deterministic algorithm.
Their underlying idea is to find a suitable set system (S5, T), where S is the set
of all » shares and 7 is a collection of k-subsets of S, so that for any t-subset S;
of shares (thus the subsct of all fake shares, if we assume that at most ¢ of the
n shares are fake), there is at least one T € T such that T’ does not contain any
share in this t-subset S;. Then the k-subset of 7 containing no fake shares can
be used to derive the secret correctly.

Unfortunately, one drawback of Rees et al. 's algorithms is that they sacrifice
the property of threshold. That is, no honest participant can be absent if they
decide to reconstruct the secret, while in a conventional (k,n) threshold scheme,
only k of the n participants are needed to pool their shares. As a consequence,
Rees et al. 's algorithms are not so practical in a (k,n) threshold scheme where k
and t are small but n is relatively large, or gathering all the participants together
is impossible.

In this paper, we propose a modificd algorithm for this problem so that the
number of participants taking part in the secret reconstruction can be reduced to
k+2t if at most ¢ of the n shares are fake. In our new algorithm, the shares need to
be pooled can be reduced to, in the best case, k+t, and less than or equal to k+-2¢
in the others. Some efficiency will be sacrificed in our algorithm in order to allow
any k+ 2t of the n participants to achieve the end of determining a consistent set
of shares in a threshold scheme with at most ¢ cheaters. This is verified by the
numerical results of our computer experiments. The expected number of shares
used to reconstruct the secret will also be compared with those of Rees et al.

48



’s algorithms [13] and k + 2t, the number of shares needed to reconstruct the
secret by McEliece and Sarwate’s method [11], in some special cases. Finally, a
construction for those set systems used in the algorithms mentioned above is also
presented.

Since many notations and symbols are used in this paper, a list of them is
given in Appendix 2.

2 Rees et al. ’s two algorithms
Suppose that the Shamir (k,n) threshold scheme is implemented in GF(q). Let
§={(zi,w): 1<i<n} C(GF(g)\ {0}) x GF(q)

be the set of n sharcs, and assume that at most ¢ of the n shares are fake. That
is, there exists a polynomial Py(z) € GF(q)[z] of degree at most k — 1 such
that y; = Po(z;) for at least n — ¢t of the n shares. The secret, which can be
reconstructed from any k genuine shares, is the value P,(0).

Denote the subset of good sharesby G = {i: y; = Py(z;),1 <i < n}, and the
subset of bad sharesby B = {1,2,...,n}\ G. Then |G| > n—tand |B| <t.

For any T C {1,2,...,n} such that [T} = k, there is a unique polynomial Pr
of degree at most k — 1 such that Pr(z;) = 3 for all i € T, which can easily be
computed by Lagrange interpolation

Pr(z) = zieTy‘Hje'I’\{i):i%Z'
The following two facts are obvious:
1. If TC G, then Pr = P,.
2. If TNB #49, then Pr # P,.

Define Cr = {i: Pr(z;) =yi,1 <i < n}. Thenclearly [Cr| > n—-tifT C G,
and |CT| < k+t—1ifTNB#0. Ifn—-t<k+t—1, then there could exist
a polynomial Pr # Py of degree at most k — 1 such that at least n — t shares lie
on Pr. Therefore, Rees et al. [13] required that the inequality n > k + 2¢ always
holds.

Let v, k, A and t be positive integers such that v > k > t. A t-(v, k, A) covering
is a pair (V, B), where V is a v-set of elements, called points, and B is a collection of
k-subsets of V, called blocks, such that every t-subset of points occurs in at least A
blocks of B. The covering number Cy (v, k, t) is the minimum number of blocks in
any ¢-(v, k, A) covering. A t-(v, k, A) covering (V, B) is optimal if |B| = Cx(v,k, t).

Let 7 be a collection of k-subsets of {1,2,...,n} such that its complement
{{1,2,...,n}\T : T € T} forms the collection of blocks of a t-(n,n — k,1)
covering. Then Rees et al. [13] claimed that the following deterministic algorithm
can compute the polynomial Py(z) € GF(q)[z).

49



Algorithm 1
Input 7,5, n,k,t.
For each T € T, perform the following steps:

1. compute Pr
2. compute Cr
3. if |Cr| 2 n—t then P, = Pr and QUIT

Rees et al. {13] also provided a randomized algorithm to compute Po(z) €
GF(g)[z].

Algorithm 2
Input S, n,k,t.
REPEAT the following steps:

1. let T be a random k-subset of {1,2,...,n}
2. compute Pr

3. compute Cr
4

. if [Cr| > n —~t then
Py = Pr and QUIT
else
proceed to the next iteration of the REPEAT loop

Algorithm 2 is not as cfficient as Algorithm 1 because C;(n,n — k,t) provides
an upper bound on the number of iterations required by Algorithm 1, whereas
Algorithm 2 is a Las Vegas algorithm which may not give an answer.

3 The new practical algorithm

As mentioned in the first section, a drawback of Rees et al. ’s algorithms is that all
the honest participants should be gathered together in order to make the secret
reconstruction successful in any situation. On the other hand, we also note that
if we apply Algorithm 1 of Rees et al. ’s method to a (k,n,) multiple threshold
scheme of s multiplicity with at most t cheaters, or apply to s different (k,n,)
threshold schemes with at most t cheaters each and the same threshold value
k, but varying in the number of participants n,, then we need to construct and
store s different (optimal) t-(ns,ns — k,1) coverings at first. But some of the
required t-(n;,n, — k,1) coverings may be unknown or hard to be constructed.
In addition, storing all the data of these coverings may consume a lot of capacity
or cost expensively. In this section, we improve Rees et al. 's Algorithm 1 so that
the new algorithm can overcome all the disadvantages described above.

According to Rees et al. [13], as was described in Section 2, |Cr| < k+t—1if
TNB # 0. Therefore, if |Cr| > k+t, then it must be the case that TNB = 0. On
the other hand, if we define NCr = {i: Pr(z;) # ¥i,1 <1 < n}, then [INCr| <t
if TN B = 0. As a consequence, the following two facts become obvious:

50



1. If |Cz| > k+ ¢, then Pr = Py,
2. If INCT| > t+1, then Pr # Po.

Let R be a (k + 2t)-subset of {1,2,...,n}, Sgr = {(z;,3s): i€R}C Sand T
be a collection of k-subsets of R such that its complement {R\T : T € T} is the
collection of blocks of a t-(k + 2t,2t, 1) covering. Then the following deterministic
algorithm will compute the polynomial Po(z) for any & + 2t of the n participants.
In this algorithm, for convenicnce, we denote R\ T = {r;,,...,7s,,} for each
T € T, where the subscripts are ordercd randomly.

Algorithm 3
Input R, T, Sr, k,t.
For each T € T, perform the following steps:

1. compute Pr
2. |[NCr|=0
3. |Crl=k

4, for j =1 to 2t do
if Yri; = Pr(z,,.’,), then |Cr| + +
else |[NCr| + +
if |Cr| 2 k + ¢, then Py = Pr and QUIT
else if [INC7| > t + 1 then BREAK

The advantage of adding the computation of NCr is that if Pr(z) # Po(z),
then the for loop can be broken out at the point [NCr| =t +1 and the compu-
tation for the next T can be proceeded, while in Algorithm 1 and Algorithm 2,
Pr(z) 3¢ Po(z) will lead the algorithms to run without stop until all the shares
have been pooled and result in |C7| < k + ¢. Another advantage is that one and
only one of the two conditions |Cr| > k+t and [NC7| > t + 1 is satisfied in
each loop, and there is at least one k-subset T € T such that |Cr| > k+ ¢, so
adding the computation of NCr makes any k + 2t of the n participants possible
to reconstruct the secret.

For each of the three algorithms, the best case occurs when the secret is
successfully reconstructed at the first try and the algorithm is ended in Pr(z) =
Po(z) with all the pooled shares belonging to Cr. In this case, only k -+ t shares
are needed in Algorithm 3 while n — t shares are needed in Algorithm 1 and
Algorithm 2.

4 Performance evaluation of the three algorithms

In this section, we assume that there are exactly ¢ bad shares. We evaluate these
three algorithms for their efficiencies and the total shares need to be pooled.

51



Let B, be the expected number of iterations of the randomized Algorithm 2.
Then it is not difficult to know (see [13]) that

n

Br = ,i .

()]

However, the expected numbers of iterations of Algorithm 1 and Algorithm 3 de-

pend on the specific set systems 7 they used. Since there is no uniform descrip-

tion of “good” t-(n, k, 1) coverings, we can not expect to find a unified theoretical

method for the computation of the expected numbers of iterations of Algorithm

1 and Algorithm 3. Instead, we set up a computer experiment to compare the

expected number By, of iterations of the deterministic Algorithm 3 with 84, and

Br, those of Algorithms 1 and 2, and to compare the average number 8, of shares

needed in Algorithm 3 to reconstruct the secret correctly with sg,, that needed

in Algorithm 1, and the value k + 2¢, the number of shares needed in McEliece
and Sarwate’s method [11].

To avoid any source of bias, in our experiment, we neither construct any
specific polynomial Py(z) € GF(p)[z] nor construct all the genuine shares (z;, y;)
for i € G and all the fake shares (z;,y;) for j € B. This causcs no problem for the
computation of the expected number of iterations of each algorithm. But when we
compute the expected number of shares nceded in Algorithm 3, for some k-subset
T of R with Pr(z) # Po(z), we will not be able to verify whether a share belongs
to Cr or NCr without the knowledge of the polynomial Pr(z) and all the shares
belonging to Sg. Therefore, we make an assumption that if Pr(z) # Po(z), then
in Algorithm 3, the good shares not belonging to T will be counted in NCr. This
assumption is reasonable if the Shamir threshold scheme is implemented in G F(q)
with ¢ >> maz{k,2t}. This will be explained right after Lemma 4.1. We also
assume that the bad shares not belonging to T will be counted in Cr in Algorithm
3 if Pr(z) # Po(z), since any cheater wants to mislead other participants to some
incorrect secret and thus he/she will try his/her best to make his/her bad share
belong to Cr, which, as a by-product, forces more shares to be pooled. This
assumption also resulls in an overestimation of the number of shares needed in
Algorithm 3 if the fake shares are caused by communication noise instead of the
existence of cheaters.

Lemma 4.1 Let Py(z) € GF(q)[z] and Pr(z) € GF(g)[z| be two different poly-
nomials of degree at most k— 1. For any randomly chosen u-subset of points from
Po(z) € GF(q)[z), if ¢ >> max{k,u}, then the probability that at least one of
these u points lies on Pr(z) is nearly equal to 0.

Proof The number of points which lie on both Py(z) and Pr(z) is at most k—1
and there are totally q points on Po(z) € GF(q)[z] and on Pr(z) € GF(q)[z],
respectively. Let Qg and Qr denote the sets of these ¢ points respectively. Then,
for any randomly chosen u-subset U C @y, the probability that U N Qr # @ will
be

Prob(UnNQr # 0) =1 - Prob(U NQr = 0)

52



q_k+l — e — —
< 1) -kt xx(g-k+2-v)

@ gx-x(g-u+l)

=~ 0,

where the inequality comes from |Qo N Q7| < k- 1. 1]

In our experiment for Algorithm 3, [(R\T)N G| < [R\ T| = 2t holds for
any T € T, and if TN B| = k; > 0, then [TNG| = k — k;. Meanwhile,
{(zs,%) : i = Po(z:),z: # 0}| =g — 1, and at most k — 1 of these ¢ — 1 points
may lie on Pr(z) because the degrees of Py(z) and Pr(z) are at most k ~ 1
and Py(z) # Pr(z). Since k — k; of these common points have been pooled, by
Lemma 4.1, the probability that at least one of the remaining (at most k; — 1)
good shares lying on Pr(z) can be included in the 2t-set R \ T is nearly equal to
0, and therefore it can be ignored.

Table 1 reports the numerical results of our experiment. The values of 8y,
and B, are taken from Table 4 of Rees et al. {13]. The twenty-seven t-(n,n — k,1)
coverings with different parameters n and k used in Algorithm 1 are listed below:
k =3 and t = 2: the following blocks form a 2-(n,n — 3,1) covering over
{1,2,...,n} forany n > 9:

{1,2,...,7}\ {1,2,3}, {1,2,...,n}\ {4,5,6}, {1,2,...,n}\{7,8,9}.

k = 4 and t = 2: the following blocks form a 2-(n,n — 4,1) covering over
{1,2,...,n} for any n > 12:

{1,2,...,n}\ {1,2,3,4}, {L,2,...,n}\{5,6,7.8},
{1,2,...,n}\ {9,10,11,12}).

k = 4 and t = 3: the following blocks form a 3-(n,n — 4,1) covering over
{1,2,...,n} for any n > 16:

{1,2,...,2}\ {1,2,3,4}, {1,2,...,n}\{5,6,7,8},
{1,2,...,n}\ {9,10,11,12}, {1,2,...,n}\ {13,14,15,16}.

For the set systems used in Algorithm 3, we use three coverings from the web
page [18]: a 2-(7,4,1) covering with k = 3 and ¢t = 2, a 2-(8,4, 1) covering with
k=4andt =2, and a 3-(10, 6, 1) covering with k = 4 and t = 3, which are listed
below.

R ={1,2,3,4,5,6,7}: the following blocks form a 2-(7,4,1) covering over R:

{1,2,3,4}, {1,4,5,6}, {1,5,6,7},
{2,3,4,7}, {2,3,5,6}.

53



Table 1:

No| n k t Ba, Br Baa 84, 3d, k+2t
1 9 3 2 11833 ]2400 | 2.145 | 8.832 | 6.443 7
2 10 3 2 |1 1.733 | 2.143 | 2.041 9.813 6.428 7
3 11 3 2 | 1.655 | 1.964 | 1.926 | 10.836 | 6.227 7
4 12 | 3 2 11591 |1.833 | 1.800 | 11.863 | 6.154 7
5 13| 3 2 |1.538 | 1.733 | 1.701 | 12.871 | 6.065 7
6 59 [ 3 2 | 1.105 | 1.111 | 1.134 | 58.957 | 5.250 7
7 109 3 2 | 1.056 | 1.058 | 1.068 | 108.981 | 5.132 7
8 [159} 3 2 | 1.038 | 1.039 | 1.045 | 158.989 | 5.097 7
9 209} 3 2 ] 1.029 | 1.029 | 1.031 | 208.988 | 5.053 7
10 12 4 2 | 1.818 | 2.357 | 2.277 | 11.885 | 7.336 8
11 ] 13 | 4 2 | 1.744 | 2.167 | 2.258 | 12.895 | 7.294 8
12 ] 14 | 4 2 | 1.681 | 2.022 | 2.132 | 13.892 | 7.216 8
13|15 | 4 2 | 1.629 | 1.909 | 1.948 | 14.906 | 7.121 8
14| 16 | 4 2 | 1.583 | 1.818 | 1.921 | 15.902 | 7.085 8
15 | 62 4 2 | 1.134 | 1.144 | 1.192 | 61.963 | 6.287 8
16 | 112 | 4 2 [1.073]11.076 | 1.104 | 111.984 | 6.160 8
17 | 162 | 4 2 | 1.050 | 1.051 | 1.082 | 161.983 | 6.126 8
18 [ 262 | 4 2 | 1.031 | 1.031 | 1.041 | 261.991 | 6.064 8
19| 16 | 4 3 | 2.036 | 2.545 | 2.582 | 15.880 | 9.132 10

20 17 4 3 | 1.956 | 2.378 | 2.467 | 16.884 | 8.985 10

21 18 4 3 | 1.887 | 2.242 | 2.393 | 17.864 | 8.944 10

22119 | 4 3 11.828 | 2.130 | 2.291 | 18.867 | 8.886 10
231 20 | 4 3 117751 2.036 | 2.171 | 19.899 | 8.813 10

24 | 66 | 4 3 | 1.196 | 1.210 | 1.274 | 65.956 | 7.592 10

25 | 116 | 4 3 11.108 |1.112 | 1.135 | 115.990 | 7.329 10
26 1216 | 4 3 | 1.057 1 1.058 | 1.079 | 215.986 | 7.179 10
27 {316 | 4 3 | 1.039 | 1.039 | 1.056 | 315.984 | 7.139 10

54




R ={1,2,3,4,5,6,7,8}: the following blocks form a 2-(8,4, 1) covering over R:

{1,2,3,4}, {1,4,5,8}, {1,5,6,7},
{2,3,5,8}, {2,3,6,7}, {4,6,7,8)}.

R = {1,2,3,4,5,6,7,8,9,10}: the following blocks form a 3-(10,6,1) covering
over R:

{1,2,3,4,5,7}, {1,2,3,5,9,10}, {1,2,3,4,6,10},
{1,2,4,8,9,10}, {1,3,7,8,9,10}, {1,5,6,7,8,9},
{2,3,4,5,6,8}, {2,6,7,8,9,10}, {3,4,5,6,7,9},
{4,5,6,7,8,10}.

In the experiment, the bad shares are selected randomly in each of the cases.
T € T in Algorithm 1 and Algorithm 3, and the (k + 2t)-subset R of the n shares
used in Algorithm 3, are also chosen randomly.

It turns out that the efficiencies of the threc algorithms are very close. Al-
though Algorithm 1 is usually a little more cfficient than Algorithm 3, the ex-
pected number of shares needed in Algorithm 1 is much larger than that needed
in Algorithm 3, especially for large n. Also note that sy, is smaller than k + 2¢,
the number of shares nceded in McEliece and Sarwate [11].

5 Constructions for optimal or nearly optimal cov-
erings

In Algorithms 1 and 3, t-(v, k, A) coverings with A = 1 are required. Obviously,
any ¢-(v, k, X) covering is also a t-(v, k, 1) covering. But from Appendix 1, we can
know that Algorithm 1 would succeed efficiently only when the numbers of blocks
containing ¢-subsets of points are distributed as cvenly as possible. Similar state-
ments should also hold for Algorithm 3. If the number of blocks in a t-(v,k,1)
covering is b, then it is desirable that the number of blocks containing a t-subset
is [6(5)/(9)) or [(¥)/(?)] + 1, where |z] denotes the greatest integer smaller
than or equal to z, i.e., we wish the t-(v, k,1) covering to be a t-(v,k, [b(5)/(2)))
covering. However, it may happen that the existence of an optimal or a nearly
optimal ¢-(v, k,1) covering is unknown, but that of an optimal or a nearly op-
timal t-(v,k, |5(5)/(?)]) covering has been established already, or is easy to be
established, although they have the same parameters v, k and t. For example,
the existence of an optimal 2-(v,5, 1) covering with » = 0 (mod 4) is not settled
in general, but the existence of an optimal 2-(v,5,2) covering and the existence
of an optimal 2-(v,5,3) covering, all with » = 0 (mod 4), had been settled for a
while (see, for example, [10, 16]). A well-known fact is that only finitely many
t-(v,k, 1) designs with ¢t > 3 arc known and none is known for ¢ > 6 (see [3]),

55



while infinitely many t-(v, k, A) designs with ¢ > 3 and A > 1 are known (see {7]).
Here a t-(v, k,\) design means a t-(v, k, X) covering where any t-subset of points
is contained in exactly A blocks. Clearly, constructing optimal or nearly optimal
t-(v, k, M) coverings with ¢t > 3 and A > 1 is much more easier than constructing
optimal or nearly optimal t-(v, k, 1) coverings with ¢ > 3.

In order for Algorithms 1 and 3 to succeed more efficiently, we try to construct
optimal or nearly optimal t-(n,n — k, X) coverings with 2t < n — k < kt. The first
inequality was required for the uniqueness of the polynomial of degree at most
k — 1 such that at least n — ¢ shares lie on it. The second one is because that
Ci(n,n —k,t) = t+ 1 for n — k > kt had been already proved by Mills (9], so
that the applications of Algorithms 1 and 3 are sufficient for efficiently searching
consistent sets of shares. In what follows, we describe a construction for optimal
or nearly optimal 3-(n,n — k, A) coverings with 6 < n - k < 3k by inflating the
blocks of the ingredient coverings. It is a variant of Ling’s union construction [8]
for t-designs. Such a construction mcthod had been used years ago by Kageyama
and Miao [6] for resolvable 2-designs.

We recap some concepts in combinatorial design theory. A resolulion class
in a t-(v, k, A) design (V, B) is a sub-collection of blocks in B that partition the
point set V. A resolvable t-(v,k, \) design is a t-(v, k, \) design whose collection
of blocks can be partitioned into resolution classes.

Theorem 5.1 Let N = p[AG=HER + 3u PR A2=2] + u(SGgipts? — 1

- 35(—:'_;;)-), where [z] denoles the smallest inleger greater than or equal to z. If
there ezists a resolvable 3-(nl,l, ) design, then

(nl - 1)(nl —2)
(I-1)({1-2)
Proof Let (V, B) be a resolvable 3-(nl, {, 1) design with resolution classes R, Rs,
... ,R“;nl:lgin-l-zz, where R; = {Ba, Bia,...,Bin} fori =1,2,... ,p%‘l:—ﬁ%ﬁ)@-.
On R; = {B;,Bia, ..., Bin}, we construct an optimal 3-(n, k,A) covering, where
each By; is viewed as a point. The resultant block corresponding to the block B
in the optimal 3-(n, k, X) covering is Up;;ep Bij, where the union is taken over V.
Then it can be checked that the resultant set system is the desired 3-(nl, ki, N)
covering, with a total of u%—:%g‘_‘ﬂ;ac,\(n, k,3) blocks. We are to check that
every 3-subset of points is contained in at least A’ blocks. Let {z;,z3,z3} be
an arbitrary 3-subset of V. The number of resolution classes in the resolvable 3-
(nl,l, 1) design is p%‘ﬁ;{%’a, and g of the resolution classes contain {z),z2,z3}
as a subset in a block of the resolution class. Hence, the 3-subset {z,,z2,2z3} ap-
pears at least f)\%'ﬁ;-&l:—g] times in the blocks of the optimal 3-(n, k, ) covering
defined on each of these y resolution classes. There are 423552 — i resolution classes
such that {z,,z,} appears in a block but {z3} does not appear in that block. In
the optimal 3-(n, &, ) covering defined on each of these resolution classes, the

3-subset {z),z2,z3} appears at least in [A 'i-f%] blocks. For each of the remaining
resolution classes, the 3-subset {z,,zs,73} appears at least A times in the blocks

C,\'(nl,kl,3) < n C,\(n, k,3)

56



of the optimal 3-(n, k, A) covering defined on it. Totally, the 3-subset {z;,z2,z3}
appears at least in A\’ resultant blocks. 0

The existence of resolvable 3-(4n, 4, 1) designs is summarized in [3].

Theorem 5.2 A resolvable 3-(4n,4,1) design ezists for everyn=1,2 (mod 3)
ezcept possibly for n € P = {55,589, 73,91, 115, 149, 169, 181, 269, 275, 313, 329, 455,
559, 577, 581, 595, 635, 685, 703, 805, 955, 1589}.

Applying Theorem 5.1 with Theorem 5.2, we obtain the following result.

Corollary 5.3 Let X = [AG=RE=R1+6(n—1)[AR=F ]+ A(Ee=tin=l) _gn45).
Then Cx(4n,4k,3) < Q"—'—'—’éMC,\(n,k,S) Jor every n = 1,2 (mod 3) except
possibly for n € P, where P is defined in Theorem 5.2,

For the existence of optimal 3-(n,4,3) coverings, the following result can be
found, for example, in [10].

Theorem 5.4 The Schénheim lower bound L(v, k,t) is defined to be

v uv-1 v—-t+1
= = .
L)«(v)klt) 'k[k—l rk—t+1X| ]]

(1) For any positive integer n such thaln # 7 (mod 12), Cy(n,4,3) = L,(n,4,3).

(2) For anyn =7 (mod 12) with n > 52423, Cy(n,4,3) = L1(n,4,3); forn =7,
C1(n,4,3) =12 = Ly(n,4,3) + 1.

Combining the above Corollary 5.3 and Theorem 5.4, we can have the following
consequence.

Corollary 5.5 Let ) = [-("—'l)é"—’g)-] +6(n — 1)[252] + M,M — 6n + 5.
Then Cy (4n,16,3) < E2=n=1 (n 4,3) for every n = 1,2,4,5,8, 10,

11 (mod 12) ezcept possibly for n € P, where P is defined in Theorem 5.2, and
Jor every n = 7 (mod 12) with n > 52423. For n =7, Ci93(4n,16,3) < 1404.

A degenerate form of Theorem 5.1 is the following Theorem 5.6. For the
existence of a resolvable 2-(v, k, A) design, Lhe reader is referred to [4] for details.
It is well known that a resolvable 2-(2n, 2, 1) design exists for any positive integer
n.

Theorem 5.6 Lel X' = 3[ 5%331] + (2n — 4)A. Then Ca»(2n,2k,3) < (2n —
1)Cis(n, k,3).

Proof Let (V, B) be a resolvable 2-(2n, 2, 1) design with resolution classes R;, Rz,
...y Ron—1, where R; = {B;), Bis,..., Bin} fori =1,2,...,2n — 1. We construct
an optimal 3-(n, k, A) covering on R = {Bs1,Bs,...,Bin}, where each B;; is
viewed as a point. Then it can be checked that the resultant set system is a
3-(2n,2k, \") covering, with a total of (2n — 1)Cx(n, k,3) blocks. We are only

57



to check that every 3-subset of points is contained in at least A\” blocks. Let
{z1,z2,z3} be an arbitrary 3-subsct of V. If two of the three points form a block
in a resolution class of the resolvable 2-(2n,2,1) design, then this 3-subset is
contained in at least [c*—(,:%,a] blocks of the optimal 3-(n, k, ) covering defined
on this resolution class. If the three points belong to different blocks in this
resolution class, then they are contained in at least A blocks in the optimal 3-
(n, k, A) covering defined on this resolution class. So totally there are at least A”
blocks which contain {z,,z2,z3}. 0

Applying Theorem 5.6 with Theorem 5.4, we immediately obtain the following
consequence.

Corollary 5.7 Let X' =3[3]+2n—7. Then Cs(2n,8,3) < (2n —1)L1(n,4,3)
Jor every n # 7 (mod 12) and for every n = 7 (mod 12) with n > 52423. For
n =71, C1s(2n,8,3) < 156.

We should note that the resultant 3-(nl, kl, \') coverings constructed in Theo-
rem 5.1 and 3-(2n, 2k, A”) coverings in Theorem 5.6 are, in general, not optimal.
The value Cy (v, k,t) cannot excced the Schénheim lower bound [14] La(v,k,t).
It is known (see [16]) that C,(6,4,3) = L;(6,4,3) = 6, and L14(12,8,3) = 57. By
Theorem 5.6, we can only know that Cy4(12,8,3) < 66. But anyhow, we obtained
several “good” 3-(n,n — k, A)-coverings with reasonably small numbers of blocks,
remembering the difficnlty of constructing optimal t-(n,n — k, \)-coverings with
t > 3. On the other hand, if the ingredient optimal 3-(n, k, A) covering is indeed a
3-(n, k, A) design, then the resultant 3-(nl, ki, \’) covering and 3-(2n, 2k, ") cov-
ering are optimal, and in fact are a 3-(nl, ki, \') design and a 3-(2n, 2k, \"') design,
respectively. This assertion was first proved in Ling {8].

6 Conclusion

In this paper, we proposed an algorithm for the problem of determining a con-
sistent set of shares in a threshold scheme with chealers to reconstruct the secret
correctly. This algorithm is a modification of Rees et al. ’s [13] two algorithms
but can reduce the number of shares o be pooled to k + t in the best case, and
less than or equal to k + 2t in other cases, while Rees et al. 's algorithms need
all the good shares to be pooled so that the least number of shares is n — ¢ in
the best case and n in other cases. The efficiencies of these three algorithms are
similar but the shares needed in Rees et al. 's two algorithms are much more
than those in ours, espccially when n is large. In addition, the number of shares
used in the newly proposed algorithm is usually less than & + 2¢, the number of
shares needed in McEliece and Sarwate {11], which happens more often for large
n. Therefore, there is a real advantage in using the newly proposed algorithm,
especially in the case when gathering all the participants together is impossible,
or in a (k,n) threshold scheme with small k and ¢ but a rclatively large n. An-
other advantage is that only one covering, the t-(k + 2¢,2t, 1) covering, is needed
in any (k,n,) multiple threshold schemc of s multiplicity, or in s different (k,n,)

58



threshold schemes with the same k and ¢ but different n,. As a consequence, this
modified algorithm is shown to be practical. We also described a construction for
optimal or nearly optimal coverings, which can be used in Algorithms 1 and 3.

Acknowledgmcnts This research is supported by Grant-in-Aid for Scien-
tific Research (C) under Contract Number 14540100. An early version of this
paper was published in part in ICISC 2003, Lecture Notes in Comput. Sci.
2971, Springer-Verlag, Berlin, 2004, pp. 377-385. The authors thank Profes-
sor Ruizhong Wei of Lakehcad University for his helpful comments on an earlier
version of this paper.

References

(1] G. R. Blakley, Safequarding cryptographic keys, AFIPS Conf. Procced. 48
(1979), 313-317.

{2] E. F. Brickell and D. R. Stinson, The detection of chealers in threshold
schemes, SIAM J. Discrete Math. 4 (1991), 502-510.

(3] C. J. Colbourn and R. Mathon, Steiner systems, in: C. J. Colbourn and J.
H. Dinitz, eds., The CRC llandbhook of Combinalorial Designs, CRC Press,
Boca Raton, 1996, 66-75.

(4] S. C. Furino, Y. Miao and J. Yin, Frames and Resolvable Designs, CRC Press,
Boca Raton, 1996.

(5] L. Harn, Efficient sharing (broadcasting) of multiple secrets, IEE Proc. -
Comput. Digit. Tech. 142 (1995), 237-240.

[6] S. Kageyama and Y. Miao, A construclion of resolvable designs, Utilitas
Math. 46 (1994), 49-54.

(7] D. L. Krcher, t-designs, t > 3, in: C. J. Colbourn and J. II. Dinitz, eds., The
CRC Handbook of Combinalorial Designs, CRC Press, Boca Raton, 1996,
47-66.

[8] A. C. H. Ling, Union constructions for t-designs, preprint.

[9] W. H. Mills, Covering designs I: coverings by a small number of subsets, Ars
Combin. 8 (1979), 199-315.

[10] W. H. Mills and R. C. Mullin, Coverings end packings, in: J. H. Dinitz and
D. R. Stinson, eds., Contemporary Design Theory, John Wiley & Sons, New
York, 1992, 371-399.

[11] R. J. McElicce and D. V. Sarwate, On sharing secrels and Reed-Solomon
codes, Comm. ACM 24 (1981), 583-584.

59



[12] W. Ogata and K. Kurosawa, Oplimum secrel sharing scheme secure against
cheating, Lecture Notes in Comput. Sci. 1070 (1996), 200-211.

[13] R. S. Rees, D. R. Stinson, R. Wei and G. H. J. van Rees, An application
of covering designs: delermining the maximum consistent set of shares in e
threshold scheme, Ars Combin. 53 (1999), 225-237.

[14] J. Schénheim, On coverings, Pacific J. Math. 14 (1964), 1405-1411.
(15] A. Shamir, How lo share a secret, Comm. ACM 22 (1979), 612-613.

[16] D. R. Stinson, Coverings, in: C. J. Colbourn and J. H. Dinitz, eds., The CRC
Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996, 260-265.

[17] M. Tompa and H. Woll, How lo share a secret with chealers, J. Cryptology
1 (1988), 133-138.

(18] URL: htip://www.ccrwest.org/cover.html

Appendix 1

A computer experiment is executed 1,000 times for each instance. The specific
set system 7 corresponding Lo an optimal 2-(n,5,1) covering is taken from [18],
while the set system 7" is defined to be the same as T except that the first block
in 7 is repeated 50 times. B+ and B+ are the average number of times needed in
Algorithm 1 to succeed in reconstructing the secret correctly, and Var(8r) and
Var(Br+) are the variances of 87 and B, respectively.

60



No.|n |k |t]| Br Br: | Var(Br) | Var(Br+)
1 [ 6] 1[2] 1.416 | 8.450 0.397 175.379 |
2 |72 2]| 1.732 | 13668 | 0.594 261.125
3 |83 |2]| 2210 17706 | 1.242 301.791
4 | 9] 4|2 2621 |17493 | 1.953 288.283
5 |10|5 |2 3137 | 1970 | 2.714 291.015
6 |11] 6 |2]| 3719 | 21.576 | 4.064 305.164
7 |12] 7 | 2| 4507 | 22372 | 6.620 315.949
8 [13] 8 | 2| 5155 | 24.562 | 8.623 340.276
9 |14 9|2 6114 | 26505 | 12.027 | 342.503
10 |15 10] 2| 6443 | 28877 | 14.181 | 367.585
11 |16 11| 2| 7.437 | 27.996 | 18.388 | 371.391
12 |17 12 ] 2| 8.108 | 28.524 | 21.266 | 388.495
13 | 18|13 |2 8.997 | 29.520 | 25.941 | 399.041
14 19|14 }2] 9.697 | 31.258 | 30.629 | 418.859
15 {20 15] 2110493 | 31.380 | 36.010 | 427.305
16 |21 |16]2]10876 | 33.242 | 36.251 | 440.691
17 |22 1721 13.140 | 34.895 | 60.843 | 516.973
18 [ 23| 18] 2] 13935 | 36540 | 63.013 | 542.476
19 [24]19| 2] 15178 | 36.907 | 71.148 | 514.226
20 |25 | 20| 2| 15618 | 38864 | 73.864 | 354.715
21 |26 )21 2] 18.099 | 40.317 | 110.715 | 651.214
22 (27 ] 22| 2| 19.127 | 12.359 | 119.103 | 688.752
23 |28 | 23| 2| 19.989 | 43.604 | 133.797 | 686.361
24 [ 20|24 2| 21643 | 44.812 | 150.172 | 705.209
25 [ 30|25]2123.914 | 46.633 | 200.169 | 845.938
26 (31261225727 | 46.432 | 210.264 | 842.413
27 |32 (27225059 | 40.894 | 223.580 | 905.116

61



Appendix 2

Common notations
n: the total number of shares.
k: the threshold value of a (k,n) threshold scheme.
t: the number of fake shares in a (k,n) threshold scheme at most.
K: the secret in a (k,n) threshold scheme.
S: the set of all n shares.
S;: any t-subset of shares in S.

Po(z): a polynomial of degree at most k — 1 such that y; = Py(z;) for at
least n — t of the n shares.

Po(0): the secret which can be reconstructed from any k genuine shares.
G: the set of good shares.
B: the sct of bad shares.
Cr: the set of shares salisfying the polynomial Pr(z).
NCr: the set of shares not satisfying the polynomial Pr(x).
Special notations in Algorithm 1

T a collection of k-subsets of {1,2,...,n} such that its complement forms
the collection of blocks of a t-(n,n — k, 1) covering.

T: a random k-subset of 7.
Special notations in Algorithin 2
T: a random k-subset of {1,2,...,n}.
Special notation in Algorithm 3
R: arandom (k + 2¢)-subset of {1,2,...,n}.
Szt {(z5,%): t€R}CS.

T: a collection of k-subsets of R such that its complement is the collection
of blocks of a t-(k -+ 2¢,2t,1) covering.

T: a random k-subsct of 7.
Special notations in Table 1

Ba,: the expected number of itcrations of Algorithm 1.

62



By: the expected number of iterations of Algorithm 2.
Ba,: the expected number of iterations of Algorithm 3.
84,: the average number of shares nceded in Algorithm 1.

84,: the average number of shares needed in Algorithm 3.

Special notations in Appendix 1

T': thesame as 7 in Algorithm 1 except that the first block in 7 is repeated
50 times.

Br: the average number of times needed in Algorithm 1 with input 7 to
succeed in reconstructing the secrct correctly.

Br+: the average number of times needed in Algorithm 1 with input 77 to
succeed in reconstructing the sceret correctly.

Var(Br): the variances of 3r.
Var(Br): the variances of Sy

63



