4_t -Critical Graphs with Maximum Diameter

Lucas van der Merwe and Marc Loizeaux Department of Mathematics University of Tennessee at Chattanooga Chattanooga, TN 37403

Abstract

Let $\gamma_t(G)$ denote the total domination number of the graph G. A graph G is said to be total domination edge critical, or simply γ_t -critical, if $\gamma_t(G+e) < \gamma_t(G)$ for each edge $e \in E(\overline{G})$. We show that, for 4_t -critical graphs G, that is, γ_t -critical graphs with $\gamma_t(G) = 4$, the diameter of G is either 2, 3 or 4. Further, we characterize structurally the 4_t -critical graphs G with diam G = 4.

Keywords: diameter, total domination, edge addition, edge critical, extremal graphs

AMS subject classification: 05C35, 05C69, 05C75

1 Introduction

A set $S \subseteq V(G)$ of a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of all dominating sets. A total dominating set in a graph G is a subset S of V(G) such that every vertex in V(G) is adjacent to a vertex of S. Every graph G without isolated vertices has a total dominating set, since S = V(G) is such a set. The total dominating number $\gamma_t(G)$ is the minimum cardinality of all total dominating sets. A dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set, while a total dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set. For sets S, $X \subseteq V$, if S dominates S, then we write $S \succ S$, while if S totally dominates S, we write written $S \succ_t S$. If $S = \{s\}$ or S if S also write S if S is S in S

The open neighborhood of a vertex v is the set of vertices adjacent to v, that is, $N(v) = \{w \mid vw \in E(G)\}$, and the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. We denote the subgraph induced by a set $S \subseteq V(G)$ as $\langle S \rangle$.

Denote the distance from x to y as d(x,y). If G is a graph with diam G = k and d(u,v) = k, then we say that u and v are diametrical vertices. A shortest u-v path in G is a diametrical path. The eccentricity of a vertex x of a connected graph G is the number $e(x) = \max_{y \in V(G)} d(x,y)$, the distance between x and a vertex furthest from x. Finally, a leaf is a vertex with degree one, and a support vertex is a vertex which is adjacent to a leaf.

A graph G is total domination edge critical, or just γ_t -critical, if $\gamma_t(G+e) < \gamma_t(G)$ for any edge $e \in E(\overline{G}) \neq \emptyset$. Van der Merwe, Mynhardt, and Haynes [4] studied total domination edge critical graphs G where $\gamma_t(G) = 3$. In this paper, we restrict our attention to 4_t -critical graphs G, that is, γ_t -critical graphs G with $\gamma_t(G) = 4$.

It is shown in [4], and we restate it here for emphasis, that the addition of an edge to a graph can change the total domination number by at most two.

Proposition 1 [4] For any edge $e \in E(\overline{G})$,

$$\gamma_t(G) - 2 \le \gamma_t(G + e) \le \gamma_t(G)$$
.

Graphs G with the property $\gamma_t(G+e)=\gamma_t(G)-2$ for any $e\in E(\overline{G})$ are called *supercritical* and are characterized in [3]. For an example of a 4_t -critical graph which is supercritical, consider the cycle on six vertices. It was also shown in [3] that the addition of an edge to vertices at distance two apart can reduce the total domination number by at most one.

This paper is organized as follows: Section 2 identifies several properties of 4_t -critical graphs. Section 3 studies 4_t -critical graphs with endvertices and cutvertices. In section 4 we characterize the 4_t -critical graphs with diameter four.

2 Some properties of 4_t -critical graphs.

In this section we prove some fundamental properties of 4_t -critical graphs. For 3_t -critical graphs, a property similar to Proposition 2 below can be found in [5].

Proposition 2 For any 4_t -critical graph G and non-adjacent vertices u and v, either

- 1. $\{u,v\} \succ G$, or
- 2. for either u or v, without loss of generality, say u, $\{w, u, v\} \succ G$, for some $w \in N(u)$ and $w \notin N(v)$, in which case we write $[uw, v] \succ G$, or
- 3. for either u or v, without loss of generality, say u, $\{x, y, u\} \succ G v$ (but not v), and $\langle \{x, y, u\} \rangle$ is connected. In this case we write $xyu \mapsto v$.

Proof:

Let u and v be non-adjacent vertices. Then $G+\{uv\}$ is totally dominated by a set S of cardinality 2 or 3, which includes at least one of u or v. If both u and v are in S, then either $S=\{u,v\}$, and we have Case 1, or $S=\{w,u,v\}$, and we have Case 2. (Note that if $w\in N(v)$ as well, then $\{w,u,v\}\succ_t G$, contradicting that $\gamma_t(G)=4$.)

If only one of u or v is in S, say u, then $S = \{x, y, u\}$ totally dominates $G + \{uv\}$. (Note that if |S| = 2, then $S \cup \{w\} \succ_t G$, where $w \in N(v)$, contradicting that $\gamma_t(G) = 4$.) Thus $\{x, y, u\} \succ G - v$, but not v, and $\langle \{x, y, u\} \rangle$ is connected.

We now determine bounds on the diameter of connected 4_t -critical graphs.

Proposition 3 If G is a 4_t -critical graph, then

$$2 \leq diam \ G \leq 4$$
.

Proof. Let G be a 4_t -critical graph, and suppose diam G = 5. Let u_0 and u_5 be diametrical vertices on a diametrical path. Let $S = \{x, y, z\}$ be a γ_t -set of $G + u_0 u_5$. If $u_0 = x$ and $u_5 = y$, then z dominates u_2 and u_3 . Since S is a total dominating set we may assume without loss of generality that $zu_0 \in E(G)$. But then $dist(u_0, u_3) \leq 2$, contradicting the choice of the $u_0 - u_5$ diametrical path. Thus we may assume that only one of u_0 and u_5 is in S. Without loss of generality, let $u_0 = x$ and let z be the vertex that dominates u_4 . Since $\langle \{x, y, z\} \rangle$ is connected, the distance from x to v_5 is at most four again contradicting the choice of a diametrical path. \square

Figure 1 gives examples of 4_t -critical graphs of diameter 2, 3, and 4.

The following observation characterizes the disconnected 4_t -critical graphs.

Figure 1: 4_t -critical graphs with diameters 2, 3, and 4 respectively.

Observation 4 If G is a disconnected 4_t -critical graph, then G is the union of two nontrivial complete graphs.

We now show that 4_t -critical graphs have no forbidden subgraph characterization, that is, any graph G is an induced subgraph of a 4_t -critical graph H. Take two copies of $G \neq K_1$, label them G_1 and G_2 , with corresponding vertices $u_1, u_2, \ldots, u_n \in G_1$ and $v_1, v_2, \ldots, v_n \in G_2$. For $i \neq j$, add edge $u_i v_j$ if and only if $u_i u_j \notin E(G_1)$. See Figure 2.

Figure 2: A 4_t -critical graph $H \in \mathcal{F}$.

Theorem 5 Let \mathcal{F} be the family of graphs constructed as described above. If $H \in \mathcal{F}$, then H is 4_t -critical.

Proof: If $G = K_n$, then H is the union of two complete graphs, and H is not only 4_t -critical, but supercritical, see [3].

It is easily seen that $\gamma_t(H) \neq 2$. Now suppose that $\gamma_t(H) = 3$. Then, without loss of generality, any $\gamma_t(H)$ - set must be of the form $S = \{u_i, v_j, u_k\}$ or $S' = \{u_i, u_j, u_k\}$, with $i \neq j, j \neq k$, and $i \neq k$. In the first case, note that S does not dominate u_j . In the second case, with u_j adjacent to both u_i and u_k , S' does not dominate v_j . Thus we must have $\gamma_t(H) \geq 4$.

Now we will find a total dominating set of cardinality 4. Consider u_i and v_i , and note that u_i dominates $V(G_2) - N[v_i]$ and v_i dominates $V(G_1) - N[u_i]$. Let $u_k \in N(u_i)$ and $v_j \in N(v_i)$. Then $\{u_i, u_k, v_i, v_j\}$ is a total dominating set of cardinality 4. This implies that $\gamma_t(H) \leq 4$, and hence, $\gamma_t(H) = 4$.

Finally, we show that H is 4_t -critical. If the edge $u_i u_j$ is added to H, then $\{u_i, u_j, v_i\}$ dominates $H + u_i u_j$. If we add the edge $u_i v_i$, then these two vertices form a total dominating set. And if we add the edge $u_i v_j$, then $\{u_i, v_j, v_i\}$ is a total dominating set. By the symmetry of H, it follows that H is 4_t -critical.

If $H \in \mathcal{F}$, H is disconnected if and only if G is complete, or G is the union of two complete graphs. If H is connected, then $\operatorname{diam}(H) = 3$, which we state and prove as a lemma below. If $G = \overline{K}_n$, then H is $K_{n,n}$ minus a perfect matching. In particular, if $G = \overline{K}_3$, then H is C_6 .

Lemma 6 If $H \in \mathcal{F}$ and H is connected, then diam(H) = 3.

Proof: First we show that, for any $u_i, u_j \in G_1$, $\operatorname{dist}(u_i u_j) \leq 3$. If there is a shortest path $u_i u_1 u_2 u_3 \ldots u_j$ in G_1 from u_i to u_j . Then $u_i v_2 v_1 u_j$ is a path in H from u_i to u_j of length 3. If there is no path from u_i to u_j in G_1 , then G_1 consists of two or more components. Suppose G_1 consists of at least three components, say $U_1, U_2, U_3, \ldots, U_n$, with $u_i \in U_1, u_j \in U_2$. Then for $u_k \in U_3$, the path $u_i v_k u_j$ is of length 2.

If G_1 consists of two components then at least one of them, say U_2 is not complete. Without loss of generality, suppose $u_i \in U_1$ and $u_j \in U_2$. If u_j is not adjacent to $u_k \in U_2$, then $u_i v_k u_j$ is a path in H from u_i to u_j . If u_j is adjacent to every vertex in U_2 , then since U_2 is not complete, there exist $u_r \in U_2$, $u_s \in U_2$, such that $\operatorname{dist}(u_r, u_s) = 2$. Then $u_i v_r u_s u_j$ is a path of length 3 from u_i to u_j .

For any $u_i, v_j \in H$, $i \neq j$, $\operatorname{dist}(u_i v_j) \leq 3$: If $u_i \notin N(u_j)$ then $\operatorname{dist}(u_i v_j) = 1$. Now suppose $u_i \in N(u_j)$. Without loss of generality, if there is a $u_k \in N(u_j)$ such that $\operatorname{dist}(u_i, u_k) = 2$, then u_k is adjacent to v_i and there is a path of length 3 from u_i to v_i . If no such u_k exists, find $u_r \in N(u_i)$, $u_s \in N(u_j)$, with $u_r \notin N[u_s]$. (Two such points exist, else G_1 is complete, and H is not connected.) Then $u_i u_r v_s v_j$ is a path of length 3.

Finally, $\operatorname{dist}(u_i, v_i) = 3$: If there is a u_k such that $\operatorname{dist}(u_i, u_k) = 2$, then u_k is adjacent to v_i and there is a path of length 3 from u_i to v_i . If no such u_k exists, find $u_r \in N(u_i)$, $u_s \in N(u_i)$, with $u_r \notin N[u_s]$. Then $u_i u_r v_s v_j$ is a path of length 3. Note that a path of length 2, say $u_i u_r v_i$, implies that

3 Endvertices and Cutvertices

For the remainder of this paper, we restrict our attention to connected graphs. In this section we discuss endvertices and cutvertices in 4_t -critical graphs. It is shown in Haynes, et. al. [2] that no tree is γ_t -critical. Van der Merwe, et. al. [4] show that any 3_t -critical graph has at most one endvertex. They also show that if a 3_t -critical graph G has a cutvertex x, then G-x has exactly two components. We show similar results for the 4_t -critical graphs.

Lemma 7 If G is a 4_t -critical graph, then G has at most one endvertex.

Proof: Let u and v be endvertices of a 4_t -critical graph G. By Proposition 11 in [4], u and v do not have a common support vertex. Let r be the support of u and s the support of v, and consider the graph $G + \{uv\}$. Let S be a total dominating set of $G + \{uv\}$ with |S| = 3. By Observation 1 (again in [4]) at least one of u or v is in S. Suppose S contains exactly one of u or v. Without loss of generality, let $u \in S$. Then $v \in S$, and for some $v \in G$, $v \in G$, and for some $v \in G$, $v \in G$, then $v \in G$ contradicting the fact that $v \in G$, and $v \in G$ are the fact that $v \in G$ and $v \in G$.

Now suppose both $u \in S$ and $v \in S$. Then, without loss of generality, $r \in S$, and $r \succ G - \{s, v\}$. Since G is connected, for some $k \in N(s)$, $k \neq v$, $\{r, k\} \succ_t G - v$. But then $\{r, k, s\} \succ_t G$, again a contradiction.

Figure 3 shows that it is possible for a γ_t -critical graph to have more than one endvertex if $\gamma_t > 4$.

Figure 3: A 5_t -critical graph with more than one endvertex.

Consider now a 4_t -critical graph G with a cutvertex x. This implies that $\operatorname{diam}(G) = 3$ or 4. (If $\operatorname{diam}(G) = 2$, then x dominates G and $\gamma_t(G) < 4$, a contradiction.) We will show that G - x consists of exactly two components.

If diam(G) = 3, one of these components must be K_1 , that is, x is adjacent to an endvertex. If diam(G) = 4, then depending on e(x), the eccentricity of x, one of these components will be either K_1 or K_t , with $t \ge 2$. See [4] for parallel results when $\gamma_t = 3$.

Lemma 8 Let G be a 4_t -critical graph with a cutvertex x. Then G - x consists of exactly two components.

Proof: Suppose G-x consists of more than two components. Choose 3 components and label them C_1, C_2 , and C_3 . Since G is connected, we can select vertices $u \in C_1$ and $v \in C_2$, with u and v both adjacent to x. Now u and v are not adjacent, and $\{u,v\} \not\succ G$. Also, $[uw,v] \succ G$ with $w \notin N(v)$ is a contradiction, since w must dominate C_3 , implying w=x. Finally, $wyu \mapsto v$ implies again (without loss of generality) that w=x. But then $\{x,y,u\} \succ_t G$, contradicting the fact that $\gamma_t(G)=4$. Thus by Proposition 2, G-x consists of two components.

Lemma 9 Let G be a 4_t -critical graph with diameter 3 and a cutvertex x. Then one of the components of G-x is K_1 .

Proof: Without loss of generality, every vertex in one component, say C_1 , is dominated by x. It is easily seen that C_1 is complete. Suppose $|V(C_1)| > 1$, and let u_1 and u_2 be vertices of C_1 . Set $v \in V(C_2)$, with $v \in N(x)$. If $\{u_1, v\} \succ G$ or $[u_1w, v] \succ G$, then $\{u_1, x, v\} \succ_t G$ and $\gamma_t(G) < 4$, a contradiction. If $wyu_1 \mapsto v$, then either w = x or y = x, a contradiction since x is adjacent to v. If $wyv \mapsto u_1$, then in order to dominate u_2 we must again have w = x or y = x, a contradiction. Hence by Proposition 2, $C_1 = K_1$.

Figure 4: A 4_t -critical graph with diameter 3 and a cutvertex x.

Lemma 10 Let G be a 4_t -critical graph with diameter 4 and a cutvertex x. Then one of the components of G-x is complete.

Proof: Since diam(G) = 4, the eccentricity of x is 2 or 3. If e(x) = 3, then the proof given in Lemma 9 shows that $C_1 = K_1$.

Now suppose e(x)=2. Then x does not dominate C_1 or C_2 . Let $U=V(C_1)\cap N(x)$, and let $S=V(C_2)\cap N(x)$. Also, let $W=V(C_1)-U$ and $T=V(C_2)-S$. It follows easily from Proposition 2 that each of $\langle U \rangle$, $\langle W \rangle$, $\langle S \rangle$, and $\langle T \rangle$ is complete.

Now suppose that for some $u \in U$ and some $w \in W$, $uw \in E(\overline{G})$. In addition, suppose that for some $s \in S$ and some $t \in T$, $st \in E(\overline{G})$. Then a $\gamma_t(G+uv)$ -set is $\{u,x,v\}$, where v must be in S and $v \succ T$. Similarly, a $\gamma_t(G+st)$ -set is $\{s,x,z\}$, where z must be in U and $z \succ V$. But then $\{z,x,v\} \succ_t G$, contradicting the fact that $\gamma_t(G) = 4$. It follows that C_1 or C_2 is complete.

The graph in Figure 1(c) illustrates a 4_t -critical graph with diameter four and two cutvertices x_1 and x_2 , where $e(x_1) = 3$ and $e(x_2) = 2$. It is clear that (borrowing notation from the proof above) C_1 and C_2 cannot both be complete. In the case where e(x) = 2, these 4_t -critical graphs follow a very specific structure.

Lemma 11 Let G be a 4_t -critical graph with diameter 4 and a cutvertex x with eccentricity two. If C_1 and C_2 are the components of G-x, with C_1 complete, and W, U, S, and T are as described previously, then $\langle W \rangle = K_1$, $|S| \geq 2$, $|T| \geq 2$, every vertex in T is adjacent to some vertex in S, and every vertex in S dominates |T|-1 vertices in T.

Proof: Let $w \in W$, and consider the vertices w and x. Since C_1 is complete, by Proposition 2 we must have $rsx \mapsto w$ for some r and s in C_2 , impling that x is adjacent to every vertex in $C_1 - w$. Hence |W| = 1.

Now suppose $S = \{s\}$. Then since $\operatorname{diam}(G) = 4$, s is adjacent to every $t \in T$, and C_2 is complete, a contradiction. Hence $|S| \geq 2$. Also, if |T| = 1 then since $\langle S \rangle$ is complete there is an $s \in S$ and $c_1 \in V(C_1)$ such that $\{c_1, x, s\} \succ_t G$, contradicting the fact that $\gamma_t(G) = 4$. Hence $|T| \geq 2$.

That every vertex in T is adjacent to some vertex in S follows from the fact that $\operatorname{diam}(G) = 4$. Now let $s \in S$. If s dominates every vertex in T, then $\{c_1, x, s\} \succ_t (G)$, with $c_1 \in V(C_1)$, contradicting the fact that $\gamma_t(G) = 4$. Now suppose there are vertices t_1 and t_2 in T which are not dominated by s. Then there are no vertices r, y such that $rys \mapsto t_1$, contradicting Proposition 2, and hence the fact that $\gamma_t(G) = 4$. Thus every vertex in S dominates |T| - 1 vertices in T.

Lemma 11 leads us to the following characterization: Let $\mathcal G$ be the family of diameter four graphs with a cutvertex x such that the removal of x leaves two components, C_1 and C_2 , with $|V(C_1)| \geq 2$ and $|V(C_2)| \geq 4$. The cutvertex x dominates $C_1 - w$ for some $w \in V(C_1)$, and C_1 is complete. Set $V(C_2) = S \cup T$, with $|S| \geq 2$ and $|T| \geq 2$, where $S = V(C_2) \cap N(x)$ and $T = V(C_2) - S$. In addition, $\langle S \rangle$ and $\langle T \rangle$ are both complete. Finally, every vertex in T is adjacent to some vertex in S and every vertex in S dominates |T| - 1 vertices in T. Figure 5 depicts the family $\mathcal G$.

Figure 5: The 4_t -critical family \mathcal{G}

Theorem 12 A graph G with diameter four and a cutvertex with eccentricity two is 4_t -critical if and only if $G \in \mathcal{G}$.

Proof: Sufficiency follows from Lemma 11.

Now suppose $G \in \mathcal{G}$. By the structure of G it is easy to see that $\gamma_t(G) = 4$. Since every vertex in T has a neighbor in S, it follows that for any $s \in S$ or $t \in T$, each of the graphs G + vx, G + vs, or G + vt is totally dominated by a set $\{x, s', t'\}$, where s' = s or t' = t, and s' is adjacent to t'. Similarly, for $u \in U$, the graphs G + us and G + ut are dominated by $\{u, s', t'\}$.

For any $t \in T$, $\{u, x, t\} \succ_t G + xt$. And finally, if $st \in E(\overline{G})$, then $\{u, x, s\} \succ_t G + st$. Thus G is 4_t -critical.

4 A Characterization of 4_t -critical Graphs with Diameter Four

The following definition will be helpful in our characterization of 4_t -critical graphs with diameter four. If two adjacent vertices x and y dominate a set S, we say that edge xy dominates S, or that xy is a dominating edge.

To aid in our characterization, we partition the vertices of the graph in terms of their distances to a selected vertex, as illustrated in Figure 6: Let $v_0 \in V(G)$ be a diametrical vertex, and let V_i be the set of vertices at distance i from v_0 . Unless otherwise noted, we will follow the convention that $v_i \in V_i$.

Figure 6: A graph with diameter 4 and diametrical vertex v_0

Let \mathcal{H} be the family of diameter 4 graphs with a diametrical vertex v_0 , having the following characteristics:

- 1. $\langle v_0 \cup V_1 \rangle$ is complete.
- 2. $\langle V_1 \cup V_2 \rangle$ is complete.
- 3. $\langle V_4 \rangle$ is complete.
- 4. $V_3 = A \cup B$ where
 - (a) $A = \{a \in V_3 : a \text{ dominates } V_4\}.$
 - (b) $B = \{b \in V_3 : b \text{ dominates } |V_4| 1 \text{ vertices in } V_4\}.$
 - (c) No edge from a vertex in V_2 to a vertex in A dominates V_3 .
 - (d) If $B \neq \emptyset$, then every $v_4 \in V_4$ is adjacent to some $b \in B$.
 - (e) For every $a \in A$, there exists either
 - i. $x \in V_3 \cup V_4$ such that $ax \succ_t V_2 \cup V_3 \cup V_4$, or
 - ii. v_2 , and $x \in V_2 \cup V_3 \cup V_4$ such that $v_2ax \mapsto v_0$.
 - (f) For every $a \in A$, there exists either
 - i. v_2 such that $\{v_2, a\} \succ V_1 \cup V_2 \cup V_3 \cup V_4$, or
 - ii. $x \in V_3 \cup V_4$ such that $ax \succ_t V_3 \cup V_4$, or
 - iii. a', v_1, v_2 such that $v_1v_2a' \mapsto a$.
 - (g) If $v_3v_3' \notin E(G)$, then without loss of generality $v_1v_2v_3 \mapsto v_3'$.
 - (h) If $v_2b \notin E(G)$, then there is an $a \in A$ such that $v_1v_2a \mapsto b$.

- (i) For every $b \in B$, (and corresponding $v_4 \in V_4$ such that $bv_4 \notin E(G)$) there exists v_1, v_2 such that $v_1v_2b \mapsto v_4$.
- (j) If $v_2a \notin E(G)$, then either $[v_1v_2, a] \succ G$ or $v_1v_2a' \mapsto a$.
- (k) For every v_2 , v_4 , either $[v_1v_2, v_4] \succ G$ or $v_1v_2b \mapsto v_4$ for some $b \in B$.

Note that $\mathcal{G} \subset \mathcal{H}$. We make the observation that the complexity of this characterization resides in the structure of $\langle V_3 \rangle$, and the edges from V_2 and V_4 to V_3 . Also, condition (4) leads to several immediate conclusions:

- No vertex in A dominates V_3 . (4c)
- $|V_3| \ge 2$. (4c)
- $\langle B \rangle$ is complete. (Referring to (4g), since no vertex in B dominates V_4 , we must have $v_3 \notin B$.)
- If $A = \emptyset$, $\langle V_2 \cup V_3 \rangle$ is complete. (4h)
- If $B = \emptyset$, then A is not complete and $|V_2| > 1$. (4c)
- If $|V_4| = 1$, then $B = \emptyset$. (Take (4b) together with (4d).)

The following conclusion is not quite so immediate, so we state it as a lemma.

Lemma 13 For $b \in B$ and $v_4 \in V_4$, if $v_4 \succ B - b$, then $b \succ V_2$.

Proof: Suppose there exists $b \in B$ and $v_4 \in V_4$ such that $v_4 \succ B - b$, and suppose also that $v_2b \notin E(G)$ for some $v_2 \in V_2$. By condition (4k) the only possibility is that $v_1v_2b' \mapsto v_4$, for some $b' \in B$. Then $b' \neq b$, because b is not adjacent to v_2 . But then $b' \succ V_4 - v_4$, contradicting the fact that $v_4 \succ B - b$.

The following lemma places restrictions on the sizes of A and B. It also leads us to the conclusion that, if |B|=2, then $|V_2|>1$ and $\langle V_2\cup B\rangle$ is complete.

Lemma 14 For any graph $G \in \mathcal{H}$, either $B = \emptyset$ or |B| > 1. Also, if |A| = 1, then |B| > 2.

Proof: If $B \neq \emptyset$, then by (4b) and (4d), |B| > 1. Now suppose $A = \{a\}$ and $B = \{b_1, b_2\}$. Since b_1 is not adjacent to exactly one vertex in V_4 , say v_4 , we must have v_4 adjacent to b_2 . But then $v_4 \succ B - b_1$, and by Lemma 13, $b_1 \succ V_2$. Likewise, $b_2 \succ V_2$. Then considering that there is a vertex v_2 which is adjacent to a, we have $v_2 a \succ V_3$, contradicting condition (4c). \square

In Figure 7 we see two examples of 4_t -critical graphs in \mathcal{H} with $|V_3| = 4$. It is possible to show that these are the only structures for $\langle V_3 \rangle$ when $|V_3| = 4$ and both A and B are nonempty.

Figure 7: Two 4_t -critical graphs in \mathcal{H} with $|V_3| = 4$. Top: |A| = 1, |B| = 3. Bottom: |A| = |B| = 2.

Theorem 15 Let G be a graph with diameter 4. If G is 4_t -critical, then $G \in \mathcal{H}$.

Proof: Consider $st \in E(\overline{G})$. First assume that s and t are in V_1 . By Proposition 2 we must have $sv_2v_3 \mapsto t$, with $v_2 \in V_2$ and $v_3 \in V_3$. Now consider the (nonadjacent) vertices v_2 and $v_4 \in V_4$. Again by Proposition 2, with $v_1 \in V_1$, either $[v_1v_2, v_4] \succ G$, or $v_1v_2y \mapsto v_4$. If $[v_1v_2, v_4] \succ G$, then using the fact that $sv_2v_3 \mapsto t$, we must have $\{v_1, v_2, v_3\} \succ_t G$, contradicting that fact that $\gamma_t(G) = 4$. If $v_1v_2y \mapsto v_4$, we can again combine this with the fact that $sv_2v_3 \mapsto t$, again contradicting that $\gamma_t(G) = 4$. Thus $\langle v_0 \cup V_1 \rangle$ is complete.

Next assume that s and t are in V_2 . Then $v_1sv_3 \mapsto t$ for some $v_1 \in V_1$ and $v_3 \in V_3$. Considering $\{s, v_4\}$, we see that, with $x \in V_1$, either $[xs, v_4] \succ G$, or $xsy \mapsto v_4$. In either case $\{x, s, v_3\} \succ_t G$. Thus $\langle V_2 \rangle$ is complete. To see that $\langle V_1 \cup V_2 \rangle$ is complete, consider $s \in V_1$ and $t \in V_2$. The only

possibility here is $[s, tv_3] \succ G$. But then since t is adjacent to some x in V_1 , $\{x, t, v_3\} \succ_t G$, contradicting that $\gamma_t(G) = 4$.

It is clear from Proposition 2 that $\langle V_4 \rangle$ is complete. It is also clear, since G is 4_t -critical, that no edge from a vertex in V_2 to a vertex in A can dominate V_3 , and (4c) is proved. To show that $V_3 = A \cup B$, suppose there is a vertex $v \in V_3$, such that v dominates fewer than $|V_4| - 1$ vertices in V_4 . Let s and t be vertices in V_4 that are not dominated by v. Then there is an x, y such that $xyv \mapsto s$. But this is a contradiction since this set does not dominate t.

For condition (4d), consider $v_0v_4 \in E(\overline{G})$. Applying Proposition 2, we note that, if v_4 is not adjacent to any $b \in B$, $[wv_4, v_0] > G$ implies $w \in A$, contradicting (4c). Similarly, $v_0v_1v_2 \mapsto G - v_4$ and $v_4v_3v_2 \mapsto G - v_0$ both contradict (4c).

For condition (4e), consider $v_0v_4 \in E(\overline{G})$, and apply Proposition 2. For condition (4f), consider $v_1v_4 \in E(\overline{G})$. Similarly, conditions (4g) through (4k) are immediate consequences of Proposition 2 and the construction of A and B.

Now consider the families $\mathcal{H}_1 = \{H \in \mathcal{H} : A = \emptyset\}$ and $\mathcal{H}_2 = \{H \in \mathcal{H} : B = \emptyset\}$. Figure 8 shows 4_t -critical graphs in \mathcal{H}_1 , and Figure 9 shows 4_t -critical graphs in \mathcal{H}_2 .

Figure 8: 4_t -critical graphs in \mathcal{H}_1 .

Figure 9: 4_t -critical graphs in \mathcal{H}_2 .

Lemma 16 If $G \in \mathcal{H}_1$, then G is 4_t -critical.

Proof: It is clear by the construction of $V_3 = B$ that $\gamma_t(G) = 4$. To show that G is 4_t -critical is simply a matter of checking that addition of any of the edges v_0v_2 , v_0v_3 , v_0v_4 , v_1v_3 , v_1v_4 , or v_2v_4 reduces $\gamma_t(G)$.

Lemma 17 If $G \in \mathcal{H}_2$, then G is 4_t -critical.

Proof: Since any v_1 and v_2 together with any v_3 and v_4 totally dominate G, and no edge from a vertex in V_2 to a vertex in $A = V_3$ dominates V_3 , $\gamma_t(G) = 4$. As in the previous proof, it is easy to show that addition of edges v_0v_2 , v_0v_3 , v_0v_4 , v_1v_3 , or v_1v_4 reduces $\gamma_t(G)$. By condition (4j), if $v_2a \notin G$ then either $\{v_1, v_2, a\} \succ_t G + v_2a$ or $\{v_1, v_2, a'\} \succ_t G + v_2a$. If $v_3v_3' \notin G$, then by (4g) (without loss of generality) $\{v_1, v_2, v_3\} \succ_t G + v_3v_3'$. And finally, (4k) shows that $G + v_2v_4$ is totally dominated by either $\{v_1, v_2, v_4\}$ or $\{v_1, v_2, b\}$, for some $b \in B$.

Theorem 18 If $G \in \mathcal{H}$, then G is 4_t -critical.

Proof: We assume that $A \neq \emptyset$ and $B \neq \emptyset$. Then any connected set $\{v_1, v_2, b, v_4\}$ totally dominates G. Also, since no b dominates V_4 and no edge v_2a dominates V_3 , there is no set $\{v_1, v_2, v_3\}$ that totally dominates G. Hence $\gamma_t(G) = 4$.

Consider addition of each of the following edges:

 v_0v_2 : If v_2 is adjacent to some $b \in B$, then $\{v_2, b, v_4\} \succ_t G + v_0v_2$ Otherwise, select some $b \in B$, and by condition (4h), there exists $a \in A$ such that $v_1v_2a \mapsto b$. Then choose v_4 such that $\{v_2, a, v_4\} \succ_t G + v_0v_2$.

 v_0v_3 : If $v_3=b\in B$, then $\{v_2,v_3,v_4\}$ totally dominates $G+v_0v_3$. If $v_3=a\in A$, then by condition (4e), there exists $x\in V_2\cup V_3\cup V_4$, v_2 such that $\{v_2,v_3,x\}\succ_t G+v_0v_3$.

 v_0v_4 : Since $\langle B \rangle$ is complete, $\{v_4, b, v_2\} \succ_t G + v_0v_4$.

 v_1v_3 : If $v_3 = b$, then $\{v_1, v_3, v_4\} \succ_t G + v_1v_3$. If $v_3 = a$, then by condition (4f), there exists v_2 such that $\{v_2, v_1, a\} \succ_t G + v_0v_3$ (case i), or there exists $x \in V_3 \cup V_4$ such that $\{v_1, a, x\} \succ_t G + v_0v_3$ (case ii), or there exists a' such that $\{v_1, v_2, a'\} \succ_t G + v_0v_3$ (case iii).

 v_1v_4 : Then there is a $b \in B$ such that $\{v_1, v_4, b\} \succ_t G + v_1v_4$.

 v_2v_3 : If $v_3 = b \in B$, then by condition (4h) there is an $a \in A$ such that $\{v_1, v_2, a\} \succ_t G + v_2v_3$. If $v_3 = a \in A$, then by condition (4j), either $\{v_1, v_2, a\} \succ_t G + v_2v_3$, or $\{v_1, v_2, a'\} \succ_t G + v_2v_3$, for some $a' \in A$.

 v_2v_4 : By condition (4k), either $\{v_1, v_2, v_4\} \succ_t G + v_2v_4$, or $\{v_1, v_2, b\} \succ_t G + v_2v_4$ for some $b \in B$.

 v_3v_3' : By condition (4g), without loss of generality, $\{v_1, v_2, v_3\} \succ_t G + v_3v_3'$. v_3v_4 : This implies that $v_3 \in B$. Then by condition (4i), there exists v_1 and v_2 such that $\{v_1, v_2, v_3\} \succ_t G + v_3v_4$.

One may have noticed on examination of Figure 7 that in each of these graphs, there is an edge from A to B. It is then natural to ask if this is always the case: if A and B are both nonempty, is an edge from A to B required? The answer is no, as evidenced by Figure 10. It looks complex, but this is a very structured graph.

Note that since $\gamma_t(G)=4$ and there are no edges from A to B, we must have a vertex in V_4 which dominates B. In addition, there can be no vertices v_4 such that $v_4 \succ B - b$. (If so, considering G + ab, we see that G is not 4_t -critical .) This in turn implies that $|B| \ge 4$. (If $B = \{b_1, b_2, b_3\}$ then there must be at least one vertex v_4 that is not adjacent to two vertices in B, say b_1 and b_2 . But then v_4 is adjacent to b_3 , so there exists $v_4' \ne v_4$ which is not adjacent to b_3 . But v_4' is adjacent to both b_1 and b_2 . Hence $v_4' \succ B - b_3$.)

In Figure 10, |A|=1, and $\langle V_2 \cup A \rangle$ is complete. In fact A can be replaced by any complete graph as long as $\langle V_2 \cup A \rangle$ is complete. This in turn implies that each v_2 is adjacent to all but one vertex $b \in B$, otherwise consider G+ab. Thus $|V_2| \geq |B| \geq 4$, and if $|V_2|=|B|$, $\langle V_2 \cup B \rangle$ is complete minus a perfect matching.

Figure 10: A 4_t -critical graph in \mathcal{H} with no edges between A and B.

Acknowledgements. The authors thank the referees, whose suggestions contributed much to the improvement of this paper.

References

- [1] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [2] T. W. Haynes, M. A. Henning, and L. C. van der Merwe, Domination and total domination critical trees with respect to relative complements, Ars Combin. 59 (2001) 117-127.
- [3] T. W. Haynes, C. M. Mynhardt, and L. C. van der Merwe, Criticality index of total domination, *Congr. Numer.* 131 (1998) 67-73.
- [4] L. C. van der Merwe, C. M. Mynhardt, and T. W. Haynes Total domination edge critical graphs, *Utilitas Math.* 54 (1998) 229-240.
- [5] L. C. van der Merwe, C. M. Mynhardt, and T. W. Haynes Total domination edge critical graphs with maximum diameter, *Discuss. Math;* Graph Theory 21 (2001) 187-205.