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Abstract

Let v:(G) denote the total domination number of the graph G.
A graph G is said to be total domination edge critical, or simply .-
critical, if 7:(G + €) < 7:(G) for each edge e € E(G). We show that,
for 4.-critical graphs G, that is, y;-critical graphs with 4.(G) = 4, the
diameter of G is either 2, 3 or 4. Further, we characterize structurally
the 4¢-critical graphs G with diam G = 4.
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1 Introduction

A set S C V(G) of a graph G is a dominating set if every vertex not in S
is adjacent to a vertex in S. The domination number 4(G) is the minimum
cardinality of all dominating sets. A total dominating set in a graph G is
a subset S of V(G) such that every vertex in V(G) is adjacent to a vertex
of S. Every graph G without isolated vertices has a total dominating set,
since § = V(G) is such a set. The total dominating number ~,(G) is the
minimum cardinality of all total dominating sets. A dominating set of G of
cardinality (G) is called a v(G)-set, while a total dominating set of G of
cardinality v:(G) is called a ~,(G)-set. For sets S, X C V, if S dominates
X, then we write S > X, while if S totally dominates X, we write written
S>> X. If §$ = {s} or X = {z}, we also write s >; X, § > z, etc.
Domination-related concepts not defined here can be found in [1].
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The open neighborhood of a vertex v is the set of vertices adjacent to
v, that is, N(v) = {w | vw € E(G)}, and the closed neighborhood of v is
N[v] = N(v) U {v}. We denote the subgraph induced by a set § C V(G)
as (95).

Denote the distance from z to y as d(z,y). If G is a graph with diam G =
k and d(u,v) = k, then we say that v and v are diametrical vertices. A
shortest u~v path in G is a diametrical path. The eccentricity of a vertex = of
a connected graph G is the number e(z) = max,ev(g)d(z,¥), the distance
between = and a vertex furthest from z. Finally, a leaf is a vertex with
degree one, and a support vertez is a vertex which is adjacent to a leaf.

A graph G is total domination edge critical, or just v, -critical, if v.(G +
e) < 1(G) for any edge e € E(G) # 0. Van der Merwe, Mynhardt, and
Haynes [4] studied total domination edge critical graphs G where 7;(G) = 3.
In this paper, we restrict our attention to 4.-critical graphs G, that is, ;-
critical graphs G with 7(G) = 4.

It is shown in [4], and we restate it here for emphasis, that the addition
of an edge to a graph can change the total domination number by at most
two.

Proposition 1 [4] For any edge e € E(G),
7(G) — 2 £ 7(G +¢) < %(G).

Graphs G with the property 7:(G + €) = %:(G) — 2 for any e € E(G) are
called supercritical and are characterized in [3]. For an example of a 4;-
critical graph which is supercritical, consider the cycle on six vertices. It
was also shown in [3] that the addition of an edge to vertices at distance
two apart can reduce the total domination number by at most one.

This paper is organized as follows: Section 2 identifies several properties
of 4;-critical graphs. Section 3 studies 4;-critical graphs with endvertices
and cutvertices. In section 4 we charaterize the 4;-critical graphs with
diameter four.

2 Some properties of 4;-critical graphs.

In this section we prove some fundamental properties of 4.-critical graphs.
For 3.-critical graphs, a property similar to Proposition 2 below can be
found in [5)].

66



Proposition 2 For any 4,-critical graph G and non-adjacent vertices u
and v, either

1. {u,v} > G, or

2. for either u or v, without loss of generality, say u, {w,u,v} > G, for
some w € N(u) and w ¢ N(v), in which case we write [uw,v] > G,
or

3. for either u or v, without loss of generality, say u, {z,y,u} > G —v
(but not v), and ({z,y,u}) is connected. In this case we write cyu —
v.

Proof:

Let u and v be non-adjacent vertices. Then G+ {uv} is totally dominated
by a set S of cardinality 2 or 3, which includes at least one of « or v. If
both u and v are in S, then either S = {u,v}, and we have Case 1, or
S = {w,u,v}, and we have Case 2. (Note that if w € N(v) as well, then
{w,u,v} >: G, contradicting that v.(G) = 4.)

If only one of u or v is in S, say u, then S = {z,y,u} totally dominates
G + {uv}. (Note that if |S| = 2, then SU {w} »: G, where w € N(v),
contradicting that v,(G) = 4.) Thus {z,y,u} > G — v, but not v, and
{{z,y,u}) is connected. m]

‘We now determine bounds on the diameter of connected 4;-critical graphs.

Proposition 3 If G is a 4;-critical graph, then
2 < diam G < 4.

Proof. Let G be a 4,-critical graph, and suppose diam G = 5. Let ug
and us be diametrical vertices on a diametrical path. Let S = {z,y, 2} be
a v-set of G + uous. If up = 2 and us = y, then 2 dominates up and u3.
Since S is a total dominating set we may assume without loss of generality
that zup € E(G). But then dist(up,us) < 2, contradicting the choice of the
up — us diametrical path. Thus we may assume that only one of ug and us
is in S. Without loss of generality, let 4o = z and let z be the vertex that
dominates u4. Since ({z,y, z}) is connected, the distance from z to vs is at
most four again contradicting the choice of a diametrical path. m]

Figure 1 gives examples of 4;-critical graphs of diameter 2, 3, and 4.

The following observation characterizes the disconnected 4;-critical graphs.
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Figure 1: 4;-critical graphs with diameters 2, 3, and 4 respectively.

Observation 4 IfG is a disconnected 4;-critical graph, then G is the union
of two nontriviel complete graphs.

We now show that 4;-critical graphs have no forbidden subgraph charac-
terization, that is, any graph G is an induced subgraph of a 4;-critical graph
H. Take two copies of G # K}, label them G; and G5, with corresponding
vertices uy,uz,...,u, € Gy and vy,vs,...,U, € Go. For i # j, add edge
u;v; if and only if w;u; ¢ E(G1). See Figure 2.

G G2

Figure 2: A 4;-critical graph H € F.

Theorem 5 Let F be the family of graphs constructed as described above.
If H € F, then H is 4;-critical.

Proof: If G = K, then H is the union of two complete graphs, and H is
not only 4;-critical, but supercritical, see [3].

It is easily seen that v¢(H) # 2. Now suppose that v.(H) = 3. Then,
without loss of generality, any -y;(H)- set must be of the form § = {u;, vj, ux}
or 8" = {u;,uj,ux}, with i # 5,7 # k, and i # k. In the first case, note
that S does not dominate u;. In the second case, with u; adjacent to both
u; and ux, S’ does not dominate v;. Thus we must have ~,(H) > 4.
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Now we will find a total dominating set of cardinality 4. Consider u; and
v;, and note that u; dominates V(G2) — N[v;] and v; dominates V(G;) —
Nlu;]. Let ux € N(u;) and v; € N(v;). Then {u;, ux,v;,v;} is a total
dominating set of cardinality 4. This implies that v.(H) < 4, and hence,
’Yg(H ) =4,

Finally, we show that H is 4;-critical. If the edge u;u; is added to H,
then {u;,u;,v;} dominates H + u;u;. If we add the edge wu;v;, then these
two vertices form a total dominating set. And if we add the edge u;v;, then
{ui,v;,v:} is a total dominating set. By the symmetry of H, it follows that
H is 4;-critical. o

If H € F, H is disconnected if and only if G is complete, or G is the
union of two complete graphs. If H is connected, then diam(H) = 3, which
we state and prove as a lemma below. If G = K,,, then H is K, , minus a
perfect matching. In particular, if G = K3, then H is Cs.

Lemma 6 If H € F and H is connected, then diam{H) = 3.

Proof: First we show that, for any u;,u; € Gy, dist(uju;) < 3. If there
is a shortest path u;ujupus...u; in G from u; to u;. Then w;vovyu; is a
path in H from u; to u; of length 3. If there is no path from u; to u; in
G, then G, consists of two or more components. Suppose G, consists of
at least three components, say Uy, Uz, Us,..., Uy, with u; € Uy, u; € Us.
Then for ux € Us, the path u;veu; is of length 2.

If G; consists of two components then at least one of them, say Us is not
complete. Without loss of generality, suppose u; € Uy and u; € Us. If u;
is not adjacent to uy € Uy, then w;vxu; is a path in H from u; to u;. If u;
is adjacent to every vertex in Us, then since U; is not complete, there exist
u, € Uy, u, € Uy, such that dist(u,,u,) = 2. Then u;v,u,u; is a path of
length 3 from u; to u;.

For any u;,v; € H, i # j, dist(u;vj) < 3: If u; ¢ N(u;) then dist(wv;) =
1. Now suppose u; € N(u;). Without loss of generality, if there is a
ug € N(u;) such that dist(u;, ux) = 2, then u is adjacent to v; and there
is a path of length 3 from u; to v;. If no such u, exists, find u, € N(u;),
u, € N(u;), with u, ¢ Nu,). (Two such points exist, else G, is complete,
and H is not connected.) Then wu;u,.v,v; is a path of length 3.

Finally, dist(u;,v;) = 3: If there is a u; such that dist(u;, ux) = 2, then
uy, is adjacent to v; and there is a path of length 3 from u; to v;. If no such
ug exists, find u, € N(u;), us € N(w;), with u, ¢ N{us]. Then uiurv,v; is
a path of length 3. Note that a path of length 2, say u;u,v;, implies that
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u, is adjacent to both u; and v;, contradicting the construction of H. O

3 Endvertices and Cutvertices

For the remainder of this paper, we restrict our attention to connected
graphs. In this section we discuss endvertices and cutvertices in 4;-critical
graphs. It is shown in Haynes, et. al. [2] that no tree is «;-critical. Van
der Merwe, et. al. [4] show that any 3.-critical graph has at most one
endvertex. They also show that if a 3;-critical graph G has a cutvertex z,
then G — z has exactly two components. We show similar results for the
4,-critical graphs.

Lemma 7 If G is a 4;-critical graph, then G has at most one endvertez.

Proof: Let u and v be endvertices of a 4;-critical graph G. By Proposition
11 in [4], v and v do not have a common support vertex. Let r be the
support of u and s the support of v, and consider the graph G + {uv}. Let
S be a total dominating set of G + {uv} with |S| = 3. By Observation 1
(again in [4]) at least one of u or v is in S. Suppose S contains exactly one
of u or v. Without loss of generality, let © € S. Then r € S, and for some
k € G, {r,k} »¢ G —v. But then {r,k, s} »: G, contradicting the fact that
’Yg(G) =4,

Now suppose both u € § and v € §. Then, without loss of generality,

r € §,and r > G — {s,v}. Since G is connected, for some k € N(s), k # v,
{r,k} »¢ G — v. But then {r,k, s} > G, again a contradiction. |

Figure 3 shows that it is possible for a ~;-critical graph to have more

than one endvertex if v, > 4.

Figure 3: A 5;-critical graph with more than one endvertex.

Consider now a 4;-critical graph G with a cutvertex . This implies that
diam(G) = 3 or 4. (If diam(G) = 2, then = dominates G and 1(G) < 4, a
contradiction.) We will show that G —z consists of exactly two components.
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If diam(G) = 3, one of these components must be K, that is, z is adjacent
to an endvertex. If diam(G) = 4, then depending on e(z), the eccentricity
of z, one of these components will be either K; or K;, with ¢ > 2. See [4]
for parallel results when +; = 3.

Lemma 8 Let G be a 4;-critical graph with a cutvertez z. Then G — z
consists of exactly two components.

Proof: Suppose G — = consists of more than two components. Choose 3
components and label them Ci, Cs, and Cj3. Since G is connected, we can
select vertices u € C; and v € C», with u and v both adjacent to z. Now u
and v are not adjacent, and {u,v} ¥ G. Also, [uw,v] > G with w ¢ N(v)
is a contradiction, since w must dominate Cj, implying w = z. Finally,
wyu ~ v implies again (without loss of generality) that w = z. But then
{z,y,u} ¢ G, contradicting the fact that v,(G) = 4. Thus by Proposition
2, G — z consists of two components. m}

Lemma 9 Let G be a 4;-critical graph with diameter 3 and a cutvertez x.
Then one of the components of G — x is K.

Proof: Without loss of generality, every vertex in one component, say
C), is dominated by z. It is easily seen that C; is complete. Suppose
[V(C1)| > 1, and let u; and ua be vertices of C;. Set v € V(C2), with
v € N(z). If {u,v} > G or [uyw,v] > G, then {u;,2,v} > G and
7(G) < 4, a contradiction. If wyu; — v, then either w = z or y = z,
a contradiction since z is adjacent to v. If wyv ~ wq, then in order to
dominate u; we must again have w = ¢ or y = z, a contradiction. Hence
by Proposition 2, C1 = K. s}

/

Figure 4: A 4,-critical graph with diameter 3 and a cutvertex z.

Lemma 10 Let G be a 4;-critical graph with diameter 4 and a cutvertex
z. Then one of the components of G — = is complete.
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Proof; Since diam(G) = 4, the eccentricity of z is 2 or 3. If e(z) = 3, then
the proof given in Lemma 9 shows that C; = K.

Now suppose e(z) = 2. Then z does not dominate C; or Cz. Let U =
V(C1) N N(z), and let § = V(C2) N N(z). Also, let W = V(C;) — U and
T =V(C;) = S. It follows easily from Proposition 2 that each of (U), (W),
(S}, and (T') is complete.

Now suppose that for some u € U and some w € W, uw € E(G). In
addition, suppose that for some s € S and some ¢t € T, st € E(G). Then
a (G + uv)-set is {u,z,v}, where v must be in S and v > T. Similarly,
a 7:(G + st)-set is {s,z, z}, where z must be in U and z > V. But then
{z,z,v} »: G, contradicting the fact that v.(G) = 4. It follows that C; or
C: is complete. (|

The graph in Figure 1(c) illustrates a 4,-critical graph with diameter four
and two cutvertices z; and z2, where e(z;) = 3 and e(z2) = 2. It is clear
that (borrowing notation from the proof above) C; and C; cannot both be
complete. In the case where e(z) = 2, these 4;-critical graphs follow a very
specific structure.

Lemma 11 Let G be a 4;-critical graph with diameter 4 and o cutvertez =
with eccentricity two. If Cy and Ca are the components of G — z, with Cy
complete, and W, U, S, and T are as described previously, then (W) = K;,
IS| = 2, |T| = 2, every vertez in T is adjacent to some vertez in S, and
every vertez in S dominates |T'| — 1 vertices in T.

Proof: Let w € W, and consider the vertices w and z. Since C is complete,
by Proposition 2 we must have rsz — w for some r and s in C», impling
that z is adjacent to every vertex in C; — w. Hence |W|=1.

Now suppose S = {s}. Then since diam(G) = 4, s is adjacent to every
t € T, and C; is complete, a contradiction. Hence |S| > 2. Also, if |T| =1
then since (S) is complete there is an s € S and ¢; € V(C}) such that
{c1,z,s} >+ G, contradicting the fact that ~,(G) = 4. Hence |T| > 2.

That every vertex in T is adjacent to some vertex in S follows from the
fact that diam(G) = 4. Now let s € S. If s dominates every vertex in T,
then {c1,z, s} >¢ (G), with ¢; € V(C)), contradicting the fact that v(G) =
4. Now suppose there are vertices t; and ¢, in T which are not dominated
by s. Then there are no vertices r,y such that rys — ¢,, contradicting
Proposition 2, and hence the fact that 4:(G) = 4. Thus every vertex in S
dominates |T'| — 1 vertices in T'. (m]

72



Lemma 11 leads us to the following characterization: Let G be the family
of diameter four graphs with a cutvertex x such that the removal of z leaves
two components, C; and Ca, with |[V(C,)| > 2 and |[V(C;)| > 4. The
cutvertex £ dominates C; — w for some w € V(C}), and C} is complete.
Set V(C2) = SUT, with |S|] > 2 and |T| > 2, where § = V(C2) N N(z)
and T = V(C2) — S. In addition, (S) and (T) are both complete. Finally,
every vertex in T is adjacent to some vertex in S and every vertex in S
dominates |T'| — 1 vertices in T'. Figure 5 depicts the family G.

U S T

Figure 5: The 4,-critical family G

Theorem 12 A graph G with diameter four and a cutvertez with eccen-
tricity two is 4;-critical if and only if G € G.

Proof: Sufficiency follows from Lemma 11.

Now suppose G € G. By the structure of G it is easy to see that 1:(G) =
4. Since every vertex in T has a neighbor in 8, it follows that for any s € S
or t € T, each of the graphs G+ vz, G +vs, or G + vt is totally dominated
by a set {z,s,t'}, where s’ = s or t' = ¢, and &' is adjacent to ¢’. Similarly,
for u € U, the graphs G + us and G + ut are dominated by {u, s',t'}.

For any t € T, {u,z,t} =, G + zt. And finally, if st € E(G), then
{u,z,8} »: G + st. Thus G is 4;-critical. O

4 A Characterization of 4;-critical Graphs with
Diameter Four

The following definition will be helpful in our characterization of 4,-critical
graphs with diameter four. If two adjacent vertices £ and y dominate a set
S, we say that edge zy dominates S, or that zy is a dominating edge.
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To aid in our characterization, we partition the vertices of the graph in
terms of their distances to a selected vertex, as illustrated in Figure 6: Let
vo € V(G) be a diametrical vertex, and let V; be the set of vertices at
distance ¢ from vy. Unless otherwise noted, we will follow the convention
that v; € V;.

Yo

i V2 Vs Va

Figure 6: A graph with diameter 4 and diametrical vertex vg

Let H be the family of diameter 4 graphs with a diametrical vertex vy,
having the following characteristics:

1. (vp UV}) is complete.
2. (V1 U VL) is complete.
3. (V4) is complete.

4. V3 = AU B where

(a) A={a € V;5: adominates V,}.

(b) B={be V3: bdominates |V3| — 1 vertices in V,}.

(c) No edge from a vertex in V5 to a vertex in A dominates Vj.
(d) If B # 0, then every vq4 € V, is adjacent to some b € B.

(e) For every a € A, there exists either

i. z € V3UV; such that az >, Vo2UVa UV, or
ii. v2, and z € V2 U V3 U V; such that veaz — vp.
(f) For every a € A, there exists either
i. v such that {ve,a} > VUV UV3UV,, or
il. £ € V3UVj such that az >~ V3 U V4, or
iii. a’,v1,v9 such that vyv2a’ — a.

(g) If v3v5 ¢ E(G), then without loss of generality v1vavs — v3.
(h) If v2b ¢ E(G), then there is an a € A such that vyvea — b.
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(i) For every b € B, (and corresponding v4 € Vj such that buy ¢
E(G)) there exists vy, vo such that vjveb — vy.

(i) If vaa ¢ E(G), then either [v1v2,a] = G or vivea’ — a.

(k) For every vg, vy, either [viv2,v4] > G or viveb — vy for some
b e B.

Note that G C #. We make the observation that the complexity of this
characterization resides in the structure of (V3), and the edges from V; and
Vs to V3. Also, condition (4) leads to several immediate conclusions:

e No vertex in A dominates V3. (4c)
* V3] 2 2. (4¢)

e (B) is complete. (Referring to (4g), since no vertex in B dominates
V4, we must have v ¢ B.)

o If A=0, (V3 UV3) is complete. (4h)
e If B =0, then A is not complete and |V2| > 1. (4c)
o If |V4| = 1, then B = {. (Take (4b) together with (4d).)

The following conclusion is not quite so immediate, so we state it as a
lemma.

Lemma 13 Forbe B andvga € V4, if va > B—=0b, then b > V3.

Proof: Suppose there exists b € B and v4 € V; such that v4 > B — b, and
suppose also that v2b ¢ E(G) for some v € V2. By condition (4k) the only
possibility is that vyued/ — vy, for some &' € B. Then ¥ # b, because b
is not adjacent to vo. But then & > V4 — vy, contradicting the fact that
vg > B-b ]

The following lemma places restrictions on the sizes of A and B. It also
leads us to the conclusion that, if [B| = 2, then |V3| > 1 and (V2 U B) is
complete.

Lemma 14 For any graph G € H, either B = { or |B| > 1. Also, if
|A] =1, then |B| > 2.
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Proof: If B # 0, then by (4b) and (4d), |B| > 1. Now suppose A = {a}
and B = {b,b2}. Since b, is not adjacent to exactly one vertex in Vj, say
v4, we must have v, adjacent to be. But then v4 > B — b1, and by Lemma
13, by = V5. Likewise, b; > V2. Then considering that there is a vertex v,
which is adjacent to a, we have v2a > V3, contradicting condition (4c). O

In Figure 7 we see two examples of 4;-critical graphs in H with |V3| = 4.
It is possible to show that these are the only structures for (V3) when
|V3| = 4 and both A and B are nonempty.

Figure 7: Two 4;-critical graphs in H with |V3| = 4. Top: |4| =1, |B| =3.
Bottom: |A| = |B| = 2.

Theorem 15 Let G be a graph with diameter 4. If G is 4;-critical, then
GeH.

Proof: Consider st € E(G). First assume that s and ¢ are in V;. By
Proposition 2 we must have svpvz — ¢, with v2 € V5 and v3 € V3. Now
consider the (nonadjacent) vertices v and v4 € V4. Again by Proposition
2, with v; € W, either [v1v2,v4) = G, or vivoy — v4. If [v1v2,v4] > G, then
using the fact that svpvs — t, we must have {v1,v2,v3} >¢ G, contradicting
that fact that v.(G) = 4. If vyvoy — v4, we can again combine this with
the fact that svpv3 — t, again contradicting that v:(G) = 4. Thus {(vp UW1)
is complete.

Next assume that s and ¢ are in V5. Then v, svs — ¢ for some v, € V; and
vs € V3. Considering {s,v4}, we see that, with z € V, either [zs,v4] > G,
or sy — vy. In either case {z,s,vs} >: G. Thus (V2) is complete. To
see that (V; U V;) is complete, consider s € V; and t € V2. The only
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possibility here is s, tvs] > G. But then since ¢ is adjacent to some z in W,
{z,t,v3} »: G, contradicting that v.(G) = 4.

It is clear from Proposition 2 that (V,) is complete. It is also clear, since
G is 4i-critical, that no edge from a vertex in V2 to a vertex in A can
dominate V3, and (4c) is proved. To show that V3 = AU B, suppose there
is a vertex v € V3, such that v dominates fewer than |V4| — 1 vertices in V4.
Let 8 and ¢ be vertices in Vj that are not dominated by v. Then there is
an z, y such that zyv — s. But this is a contradiction since this set does
not dominate ¢.

For condition (4d), consider vgvs € E(G). Applying Proposition 2, we
note that, if v4 is not adjacent to any b € B, [wvy,vg] > G implies w € A,
contradicting (4c). Similarly, vpv1v2 = G — v4 and v4vgv; — G — v both
contradict (4c).

For condition (4e), consider vovs € E(G), and apply Proposition 2. For
condition (4f), consider v,v4 € E(G). Similarly, conditions (4g) through
(4k) are immediate consequences of Proposition 2 and the construction of
A and B. o

Now consider the families #; = {H € H : A =0} and H, = {H €
H : B = 0}. Figure 8 shows 4;-critical graphs in #;, and Figure 9 shows
4-critical graphs in Hs.

Figure 8: 4;-critical graphs in H;.

— >

Figure 9: 4,-critical graphs in Hs.

Lemma 16 If G € H,, then G is 4;-critical.
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Proof: It is clear by the construction of V3 = B that v,(G) = 4. To show
that G is 4;-critical is simply a matter of checking that addition of any of
the edges vove, vov3, VoUs, V13, V1Vs, OF Vav4 reduces v:(G). m]

Lemma 17 If G € Ha, then G is 4;-critical.

Proof: Since any v; and v, together with any v and v4 totally dominate
G, and no edge from a vertex in V, to a vertex in A = V3 dominates V3,
7:(G) = 4. Asin the previous proof, it is easy to show that addition of edges
Ugv2, VgU3, Vol4, V1U3, OF v1v4 reduces v;(G). By condition (4j), if vea € G
then either {v1,v2,a} >¢ G + v2a or {v1,vs,a'} > G + vea. If vs'u;'; ¢ G,
then by (4g) (without loss of generality) {vi,v2,v3} >¢ G + vsv3. And
finally, (4k) shows that G + v2vy is totally dominated by either {v1,v2, v.;}
or {v,vo,b}, for some b € B.

Theorem 18 If G € H, then G is 4;-critical.

Proof: We assume that A # @ and B # 0. Then any connected set
{v1,v2,b,v4} totally dominates G. Also, since no b dominates V4 and no
edge voa dominates Vi, there is no set {v,vq,v3} that totally dominates
G. Hence 1:(G) =

Consider addition of each of the following edges:

voug: If vy is adjacent to some b € B, then {vs, b, v4} > G+vovz Otherwise,
select some b € B, and by condition (4h), there exists a € A such that
v1v2a > b. Then choose vq such that {v2,a,v4} >¢ G + vove.

vovs: If v3 = b € B, then {v2,vs,v4} totally dominates G + wovs. If
vz = a € A, then by condition (4e), there exists z € Vo U V3 UV, vz such
that {vs,vs,z} >¢ G + vovs.

vovs: Since (B) is complete, {v4,b,v2} ¢ G + vovs.

vvg: If v3 = b, then {v1,v3,v4} >: G + vivs. If v3 = a, then by condition
(4f), there exists ve such that {ve,v1,a} >: G+vovs (case i), or there exists
z € V3 UV} such that {v1,a,z} >¢ G +vovs (case ii), or there exists a’ such
that {v1,v2,a'} >¢ G + vovs (case iii).

v1v4: Then there is a b € B such that {v;,v4,b} >¢ G + v1v4.

voug: If v3 = b € B, then by condition (4h) there is an @ € A such that
{v1,v2,8} >+ G + vovs. If v3 = a € A, then by condition (4j), either
{v1,v2,a} > G + vaus, or {v1,v2,0a'} >¢ G + vaus, for some o’ € A.

78



vavg: By condition (4k), either {vy,v2,v4} >: G + vouy, or {v1,v2,b} >
G + vyvy for some b € B.

vsv3: By condition (4g), without loss of generality, {v,v2,v3} = G +v3v}.

v3vy: This implies that v3 € B. Then by condition (4i), there exists v; and
v such that {vy,v2,v3} >¢ G + v3v,. O

One may have noticed on examination of Figure 7 that in each of these
graphs, there is an edge from A to B. It is then natural to ask if this is
always the case: if A and B are both nonempty, is an edge from A to B
required? The answer is no, as evidenced by Figure 10. It looks complex,
but this is a very structured graph.

Note that since +,(G) = 4 and there are no edges from A to B, we must
have a vertex in V; which dominates B. In addition, there can be no vertices
v4 such that v > B —b. (If so, considering G + ab, we see that G is not
4-critical .) This in turn implies that |B| > 4. (If B = {b;,bs,b3} then
there must be at least one vertex v, that is not adjacent to two vertices in
B, say b1 and b;. But then vy is adjacent to b3, so there exists v} # vy
which is not adjacent to b3. But v} is adjacent to both b, and b;. Hence
vy > B —b3.)

In Figure 10, |A| = 1, and (V2U A) is complete. In fact A can be replaced
by any complete graph as long as (V> U A) is complete. This in turn implies
that each v, is adjacent to all but one vertex b € B, otherwise consider
G +ab. Thus [V2] > |B| > 4, and if |V2| = |B|, (V2 U B) is complete minus
a perfect matching.

Figure 10: A 4;-critical graph in H with no edges between A and B.
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