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An incomplete block design (IBD) is a pair (V,D) where V is a v-set of
symbols and D is a collection of k-subsets of V called blocks where k < v.
A balanced incomplete block design (BIBD) is an IBD (V,D) such that
each pair of V is contained in exactly A blocks. We denote such design as
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Abstract

A backtracking over near parallel classes with an early isomorph
rejection is carried out to enumerate all the near resolvable (2k +
1,k,k — 1) balanced incomplete block designs for 3 < k < 13. We
first prove some results which enable us to restrict the search space of
near parallel classes. The number of nonisomorphic designs is equal
to 1 for each 3 < k < 8 and there are respectively 2, 0, 19, 8 and 374
nonisomorphic designs for &k = 9, 10, 11, 12 and 13.

Introduction

a (v, k, A)-BIBD.

A near parallel class on an IBD (V, D), with respect to a symbol s, is a
set of blocks that partitions the set V — {s} into (v — 1)/k blocks of that

design. We call s the missing symbol of this class.

A near resolvable incomplete block design (NRIBD) is an IBD (V, D)
whose blocks can be partitioned into v near parallel classes, and every
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symbol of V is missing from exactly one class (see, for example, [1]). Two
necessary conditions for the existence of a (v, k£, A)-NRBIBD are v = 1 (mod
k) and A=0 (mod k —1).

Two (v, k, A)-BIBDs are isomorphic if there exists a bijection between
the symbol sets that maps blocks onto blocks; such a bijection is called an
tsomorphism. An automorphism of a design is an isomorphism of the design
onto itself. The (full) automorphism group of a design consists of all its
automorphisms with composition of permutations as the group operation.
In this work, we use a backtracking over near parallel classes with partial
isomorph rejection to enumerate all nonisomorphic near resolvable (2k +
1,k,k — 1)-BIBDs for 3 < k < 13. Kaski and Ostergard in (3] and [6] have
enumerated some near resolvable incomplete block designs.

This paper is organized into six sections. Section 1 is this introduction.
In Section 2 we define the intersection matrix of any two near parallel classes
of a (2k + 1,k,k — 1)-NRBIBD and we determine the structure of these
matrices. In Section 3 we define 2-concurrence (3)-designs (these designs
are a generalization of the 2-concurrence designs defined in [2]). Then we
prove that any (2k+1, k, £ —1)-NRBIBD is also a 2-concurrence (3)-design.
In Section 4 we investigate the structure of (2k + 1, &, 4 — 1)-NRBIBDs in
order to restrict the search space. Section 5 outlines the backtracking over
parallel classes, with partial isomorph rejection, that was used to enumerate
such designs. The last section enumerates all (2k + 1, &,k - 1)-NRBIBDs
for 3 < k< 13.

2 Intersection Pattern

In this section terminology is similar to the one developed in (7, 5, 8].

Let {Mg, ...y Vi, } be the near parallel classes of a (2k + 1,4,k = 1)-
NRBIBD where t; is the missing symbol of the near parallel class N;, with
blocks M, = (Bt 1, Bt,,2)- So V = {to,...,t2x}. To simplify notation, N,
will be denoted as Af;. For two different symbols, i and j, Bj p(;) denotes the
block of A; containing j (i.e j € B;p(;)); the other block of A; is denoted
by Bin()- For two different near parallel classes N; and N; we define
the near parallel class intersection matriz (NPCIM) as the 2 x 2 matrix

A(i, j) = ((a(i, J)s,e), where
a(ivj)s,t = |Bi.-' N B',ll' (1)

Clearly, 0 < a(i, j)s.e < .
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Lemma 1. Let D be a (2k + 1,k,k — 1)-NRBIBD. Let B;, be a block of
the near parallel class N; of D. Then

(i) For any near parallel class N (j # i) of D we have

.. .. - k- ]-, ] € B:’.s
a(,j)sn +a(t, j)s2 = {k, i¢Bis

(i) There are ezactly k near parallel classes of D for each one of the two
cases of statement (i).

Proof. Statement (7) follows from the next simple observation

Bi,a - {J}y ] € Bi,s

B: B: i2) =BisN(V-{j})=
n.sn( ,IUB-Q) B"' ( {]}) {Bi,s\ ngi.s

Let B;, = {21,...,2} and let {y1,...,yx} be the other block of A;. Hence
B;,n(V - {:l:t}) Bis —{xe} and Bi e N(V — {ye}) = Bi,, for L< €< k.
These equallt.nes prove (#z). |

Lemma 2. Let N; and N be two different near parallel classes of a (2k +
1,k,k — 1)-NRBIBD. Then, the NPCIM A(i, j) (i # j) satisfies

L-))() Zz(“(’ ”"). (2)

J#i t=1

Proof. Let B; ;s be a block of the near parallel class A;. Since A = k =1,
the left hand side of (2) gives the number of occurrences of the pairs of
symbols belonging to B; , into the other blocks of the design. On the other

a(isj)s,t
92

hand, ) is the number of pairs of symbols belonging to the set

B;,, N Bj,, ;:or each block B;, (j # 7). Therefore,

ZZ (“(l vJ)s, z)

J#i t=1

is also the number of occurrences of the pairs of symbols of B; ; into the
other blocks of the design. This proves formula (2). O
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Lemma 3. For k even, we have that

. — 3 k \2 \
()+(3)20)+G) - 5-5

Jor0<a<k.

a k—=1-a k=2 £ k?
6+ (7272 (5)+6) = Torer

for0<a<k-1.

For k odd, we have
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(3)

o k-a k=1 £+1 Kook 1
()+(3)2(5)+(3) = 5-3+3  ®

for0<a<k.

Proof. Let f(a) = (%) + (*7°) and g(a) = (§) + (*737°%) be two functions
defined on [0, k] and [0, k — 1), respectively. Then, using a standard calculus

argument, we can show that for k even, f(a) > % - % for all a € [0,4]

and g(a) > “—: — k + 1 for all integer @ € [0,k — 1]. The case £ odd is
analogous. a

Lemma 4. Let N; and N be two different near parallel classes of a (2k +
1,k k — 1)-NRBIBD. Then, up to permutation of rows and columns, the
NPCIM A(i, j) has the form

E k-2 k=1 k-1
(i) % % for k even, (ii) R 31 A i . for k odd.
2 2 2 2

Proof. 1t follows from Lemma 2 that

'—‘,'; - 2:3 +k = (k-2 (’;) = gg (a(i,gj)a,t)
S [(a(i, ;’)s.x) N (a(i,g)s,zn _ 0

J#
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By Lemma 1 there exists a permutation ¢;,.. Ciyligry .. bop of the set
{0,...2k} — {3} such that a(i,£;),,1 + a(é, £)s2 = k for j = 1,...k and
a(z,(’ Jsata(i,€)sz2=k—1for j=k+1,...2k Soby (7) we ha,ve that

E_ﬁ b= z[(““"-’ M) (k-a(i,cj),,l)]

[(a(z,(’ i)s, 1) + (k -1- ‘)‘(’ C.i)s.l)] . (8)
i=k+1 -

However, for k even, by (4) and (5) we get

& . ;e :
Z [(a(z,.()‘j),'l) + (k—(!-(.l; fJ)s.l)] > k %2_ - -’;-] , and (9)

-

Jj=1
o O R
i=k+1 -
But
k2 & k3 342
LT—-]+L[—-k+1] 5~ 5tk (11)

Then, by equalities (8) and (11) the inequalities (9) and (10) are actually
equalities. It follows from (4) and equality (9) that

a(zscj)s,l '—(I(I,ej),’l _ k k . :
( 9 )"’( 9 =3+ 3)s for j=1...,k

Solving this quadratic equation for a(i, £;),.;, we get that a.(i, li)ea = %

Since a(i, ;)s,2 = k — a(i. j),,1, we have ai, (; ), 2 = 3. Now using (5)
and equality (10). we have lhat elther a(i,(j)ey = 2 > and a(l ()s2 = "'21,
or a(?, lj),1 = "T and a(i, (j),2 = - Thu» we have showed (). The case
k odd is proved similarly. [}

3 2-concurrence (t)-Designs

An equi-replicate incomplete block (EIB) design is an IBD (V, D) such that
every symbol occurs in r blocks. We shall refer to the symbols 2q,..., 2,
as i-th associates if they occur together in ); blocks. Then, we deﬁne a
2-concurrence (t)-design (see [2), for the case t = 2) as an EIB design
satisfying the conditions below:
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(1) Any t symbols are either first or second associates.

(2) For each symbol x there are exactly n; subsets {y1,...,%-1} such
that the symbols z,y,..., -1 are i-th associates, the number n;
being independent of z.

The numbers v, b, », &, A1, A2, n; and ns are called the parameters of
the design. Using a standard double counting argument we can prove that
these parameters satisfy: vr = bk,

2k
mtm = (%), (12)

-

% ("; 1). (13)

Theorem 5. Any (2k + 1.k k= 1)-NRBIBD is also a 2-concurrence (3)-
design with parameters v =2k + 1, b =20, r =2k and

nyAL + n2A;

k-2 k- (k=2 k?
—_—, 2= B 4a m= ul 9 )’ nz:-?’Tforkeven.

2
< - - -

)\1:

and

2

/\1=k—1, /\2=k—;—3—. ny = (k+1) n2=3(§) for k odd.

- -

Proof. We will prove that every 3-subset of V belongs to A; or Az blocks.
Since each near parallel class of every (2k + 1,k,k — 1)-NRBIBD has two
blocks, it follows that for any three symbols of V it holds one and only one
of the following four possibilities with respect to each near parallel class A:

(a) All three symbols belong to the same block of A.

{b) Two of them belong to one block and the third symbol belongs to the
other block of A.

(c) Two of them belong to one block and the third symbol is the missing
symbol of .

(d) Two symbols occur in different blocks and the third one is the missing
symbol of A.
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Now, let z;, 22, z3 and 24 be the number of near parallel classes satisfying
(a), (b), (c) and (d), respectively. Since our design is a (2k + 1,k,k — 1)-
NRBIBD, we have

ri+xetaz+ry = 2h+1,
ey +xe+az = 3(h-1),
a3ty = 3.
The above system has the following solution sets

k=2 3k -2

Ty = y .‘L'3=l. ;L'4=2, (14)

T =

R 1;2=——:, .'L'3=3, .‘L'4=0, (15)

for k even, and for ¥ odd

_ k=1 3k -3

T = > 2 =

ce3 =0, 24 =3, (16)

’ 3!:3:2, Jlo'.j:l. (17)

Hence, A} = % and A\, = "—'2'—‘-' for k even, and for k odd, A\; = "—;—l- and
Ay = l‘—'z'a

Solving the system of linear equations (12)-(13) with v = 2k + 1 and
r = 2k, we get the desired values for n; and nj. O

Corollary 6. For any (2k + 1, k. k — 1)-NRBIBD we have, for k even,

(jss) Any triple {a.b,c} C V' occurs Ay limes iff
(6) Ba,ps) = Ba,p(cyr Bupta) # Bupie) and Bepia) # Bepis)»
(b) Bap(o) # Bapic)r Bopta) # Bopiey and Bepiay = Bepio) 0r
(c) Bapie) # Ba,pic)+ Bo,pa) = Bo,p(e) and Be piay # B pio)-
(iij) Any triple {a,b,c} C V occurs Ay times iff
Bapi) = Bap(c)r Bu,pta) = Bo,p(c) and Bepia) = Be,ps)-
And, for k odd,
(sss) Any triple {a,b.c} C V' occurs Ay times iff
Bapie) # Ba,pic)s Bo,piay # Bo,pie) @nd Bepia) # Bep(s).-

(i3s) Any triple {a,b,c} C V occurs Ay times iff
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(@) Bap(s) # Ba,pic)r Bopla) = Bopie) and Bepia) = Bepioys
(b) Baps) = Ba,pte) Bupia) # Bo,pic) and Bep(ay = Be,ps)s oF
(¢) Ba,p(b) = Ba,p(c)r Bo,p(a) = Bb,pc) and Bepia) # Be,ps)-

Proof. Suppose that k is even. Assume that the triple {«,b,c} occurs ex-
actly A\; = "—;2 times in the design. Then by (14) we have2g = land a4y =2
(here we use the notation of the previous lemma). However, x3 = 1 means
that there is a near parallel class, say A, such that the other two symbols,
namely b and ¢, belong to the same block of M. That is, Ba pb) = Ba,p(c)-
Therefore, x4 = 2 means now that B; pa) # Beps) and By pa) # Bo,pic)-
Thus we have proved (jss)(a). The other cases are proved similarly. 0O

4 Initial Structures

In this section we give the initial structure for any (2k+1, &, k~1)-NRBIBD
and some results that will restrict the search space.

Theorem 7. For any (2k + 1, k. k= 1)-NRBIBD, up to isomorphism, we
have

(i) Fork even (resp. k odd) the near parallel classes No and Ny are given
in the first and the second rows of Table 1 (vesp. 2).

(ii) For the near parvallel class N (2 < i < 2k), for k even (vesp. k odd),
Nin{0,1,2} is given in the corresponding row of Table 1 (resp. Table
2). '

(This structure is called the initial structure for the design. It is denoted
by € for k even and F for k odd).

Proof. Assume that & is even. jFrom Theorem 5, we assume without loss
of generality that the triple {0, 1,2} occurs exactly in A; blocks. Then by
Lemma 4 and the statement (jss) of Corollary 6, we can assume the first
and second near parallel classes are given in the first and the second rows
of Table 1, respectively. Also by Corollary 6(jss), we can suppose that
the missing symbol of the third near parallel class is 2 and, moreover, the
symbols 0 and 1 appear in different blocks of this near parallel class (see
the third row of Table 1).

The triple {0, 1,2} occurs exactly in A; blocks and each one of the pairs
{0,1}, {0,2} and {1,2} occurs exactly in A = k =1 blocks. Therefore, since
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A= "'—;2, A=k—1and A = A, + (A1 + 1), a simple counting argument
proves (i?). The case k odd is proved similarly. O

Table 1: Initial structure & for k even.

First block Second block
o l12... & Kby b bbrnre 33
1 23 b1kt kt2-3) 0 Sa2o k Fyaom
2 |o 1
3 [o1 2
LY
L4101 2
£+42{01 2
A+
k+1]01 2
k+2]|0 1 2
M
3% o T 2
3402 1
Ay 41
2% |02 1

Suppose that M, ..., N, are the near parallel classes of a (2k+1, k, k—
1)-NRBIBD with initial structure £ for & even (F for %k odd). It follows
from Theorem 7 that #; = i for i = 0.1,2. However, to determine the
missing element of the other near parallel classes we need some definitions.
For two different symbols i and j, define the sets:

J( 1Y = (Bipi) N Bjpiiy) U (Biyn(j) N Bjniy)s
S0, J) = (Bipy) N Bjniin) U (Biyagg) N Bjpiiy)

for k even. For k odd, we define as well

S'(6,3) = (Bipij) N Bipt)) Y (Bisn(j) O Biniy)s
J'({,3) = (Bip3) N Bjn(iy) U(Bin(i) N Bjpiiy)-
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Table 2: Initial structure F for & odd.

First block Second block

0 23"_‘;_3‘_3'_5 k41 1k+2...3_“{_13_k§f_3...2k
1 23..."_3'_3[.-4.-2....3&2‘]'_1 05_3'_5 k41 3_"+§z/.

2 0 1

3 01 2

L IR BEEE
££3] 012
E£51] 01 2

Ay

Ay

k3 o2 1

L

———— —— —— P——
-
Y .. + ..
-
.o O e
.. - e
o~

The next lemma determines the missing element of the near parallel
class A}, (3 < i< 2k) for k even.

Lemma 8. In any (2k + 1, k, k — 1)-NRBIBD with initial structure £ (k
even) we have

{tai.oitey} = J(0,1)NJ(L2), (18)
{tygar- o tern} = J(0,1)NS(L,2), (19)
{tiezs. . atae} = S(0,1)NJ(L,2), (20)
{tagyyr--ntan} = S(0,1)NS(1,2). (21)

Proof. Tt lollows from Table 1 that the symbols 0, 1 and 2 appear in the
same block of each near parallel class M, (3<7 < §+ 1). This means that
B, po) = Bi,p1) = Br,pi2y for 3< i < %+ 1. This proves (18). However.

for !'2- +2< i< k+1 we have B,”,,(o,‘z By, p(1) # Bi,.p2)- This proves
(19). Similarly, we can show (20) and (21). a
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Lemma 9. In any (2k + 1.k, k — 1)-NRBIBD with initial structure F (k
odd} we have

{t3,...,15_.ae} = J'0,1)nJ'(1,2),
{tege, ..o vtipr = J'(0,1)N S'(1,2),
{thszreootum} = §(0,1)NJ"(1,2),
{tass,.tn) = S0.1)NS(1.2)

Proof. The proof is similar to that of Lemma 8. O

5 Backtrack Algorithm

Let X = {0,1,2} and ¥ = {3,...,2k}. Let A = {a1,....a,} and B =
{b1,.eyba—p} (1 < n < 3) be two disjoint subsets of X. Then for each
y € Y, we define

Cy(4B) = {(AU{yeesthon}s BU{Yhon1:.-..y26-3})
[H{oiooo oy} =Y = {y} ).
Morcover.
:2({0}’ {l}) = { {U‘ yh"--yk-l}’ {1,311.-. . -13/’2[:—2})

I {;‘/h (KRR y’Zk—'Z} =Y }'

A simple calculation shows that |C,(4. B)| = (2"Lf_l|;||"|).

In order to generate all possible (2k + 1,k, & — 1)-NRBIBDs with the
initial structure ecither £ or F, we used a backtrack algorithm over necar
parallel classes. Our initial solution is the partial design formed by the first
two classes of the initial structure £, for k even. The third near parallel
class will be chosen in the set C2({0}, {1}). Note that 0. 1 and 2 are the
missing symbols of the first. second and third near parallel classes of the
design, respectively.

For each choice of the third class we found the sets J (0,1),J(1,2 .’
5(0,1) and S(1,2). Then, it follows from Lemma 8 that

(1) The near parallel class A, (3 < ¢ < 5?2'—’) must be chosen in the set
C({0,1,2}, B) with 7 € J(0.1) N J(1.2).
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(2) The near parallel class A (% + 2 < (< k+ 1) must be chosen in the
set Ci({0, 1}, {2}) with ¢ € J(0.1) N S(1.2).

(3) The near parallel class Ve (k+2< (< %) must be chosen in the set
C:({0},Y1,2}) with 1 € S(0,1) nJ(1,2).

(4) The near parallel class A (% + 1 < € < 2k) must be chosen in the
set. Cp({0,2}, {1}) with 2 € $(0.1) N S(1,2).

For each choice of these classes, we check that each partial design is si-
multaneously a partial (2k+1, k, k—1)-NRBIBD and a partial 2-concurrence
(3)-design.

A partial isomorph rejection scheme [10] is employed to avoid process-
ing isomorphic subproblems in the backtrack tree. The scheme described
here is closely related to that in [8]. However, here we perform isomorph
rejection at every level of the search unlike the authors of [8], who per-
formed isomorph rejection only at certain levels. For each partial solution
D = (No,...,Nj) (3 < j < 2k) with initial structure &. let A(D) be the
design formed by the classes M, ..... A and {Aj41, Bjgr}e .o { A2 B}
(where {Aj41,Bj41}, ... {A2x, Bar} are classes of £). Define

A(j) = {A(NMo. ... . N})|(No.....N)) is a partial solution at level j}.

A partial isomorph rejection at the level j means that only one partial
solution (A, ..., A;) from cach isomorphism class of A(j), which is called
a cerlificate, will be extended in the search tree. Informally, we say that
the subtree rooted at D = (.N‘o,...,.’\/j) is the same as the one rooted
at Q = (Qo,.... Q) if the designs A(Do,...,D;) and A(Q),..., Q;) are
isomorphic. Clearly. our partial isomorph rejection allows the possibility of
generating partial designs which are isomorphic. However, the extensions
of these designs are removed at the leaves of the search tree.

In order to determine the certificates in every level 3 < j < 2k with
the initial structure & (k even), we use the package nauty due to McKay
(9] as follows. When a partial solution D = (No,...,Nj) is generated, we
construct the bipartite point-block incidence graph G(D) of A(D) and then
call nauty to get the canonical form of /(D). Hence the partial design
D = (No....,N;) is a certificate in this testing level if the canonical form
ol G(D) was not gencrated before. Note that a certificate. in our context,
is a partial design (AMo,..... A;) generated by our backtracking algorithm.

It is not the canonical form obtained by McKay’s program.

The next theorem proves that the proposed algorithm works.

92



Theorem 10. Our isomorph rejection algorithm generates, without repe-
tition, all nonisomorphic (2k 4+ 1,k,k — 1)-NRBIBDs.

Proof. The proof is similar to that of [8, Theorem 6]. a

For the rest of this section. n denotes the number of certificates at the
third testing level and D(1),...,D(n) denote such certificates for an initial
structure £ for k even (F for k odd). Note that for cach 1 < j < n,
D(j) = (Mo, M1, N2) is a partial design, Ao and N are the first and the
second near parallel classes of the initial structure, and A is a near parallel
class chosen in C2({0}, {1}).

Lemma 11. Suppose thal a; is the missing element of the near parallel
class No, (1 < i < 3). Then if the triple {ay,az,a3} occurs exactly A,
times, the partial design (N, Na,s Na,) is isomorphic to D(j) for some
1<j<n.

Proof. The prool is similar to that of Theorem 7. O

This result can be used in order to reduce even more the search space.

The generation of all (2k+1, k, k—1)-NRBIBDs with initial structure £
for k even (F for k odd) can be attained in n steps. At the i-thstep (1 <i <
n), we generate all designs D such that any partial design (Ng,, Ma,, Na,)
with a;,az,a3 first associates is isomorphic to D(j), for some i < j <
n. Note that at the n-th step, our algorithm generates only designs such
that any partial design (N, . N,,, Na,) with @), az,a3 first associates is
isomorphic to D(n). Morcover. designs generated at different steps cannot
be isomorphic. It follows from Lemima 11 that our algorithm generates all
nonisomorphic (2k+1, k. k= 1)-NRBIBDs with initial structure &€ for & even
(F for k odd). A similar procedure was used in [8] to reduce the scarch
space to find all (10.5,16)-RBIBDs.

6 Computational Results

The backtracking algorithm described in this work was implemented in
C’ and ran on an 1.7 GHz PC machine. Using the algorithm we obtained
the following main theorem in this work.

Theorem 12. Table 3 gives the number of all nonisomorphic (2k+1,k, k—
1)-NRBIBDs and the sizes of their automorphism groups for 3 < k < 13.
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Kaski [4] has obtained these results for & < 11. The second row of Table
3 gives the parameter k of the design. The first column gives the size of
the (full) automorphism group. Columns labeled by 3,6...,13 give the
number of nonisomorphic (24 + 1, &,k — 1)-NRBIBDs for k = 3,4,...,13,
respectively.

Table 3: The nonisomorphic (2k + 1,k, & — 1)-NRBIBDs for 5 < & < 13

%
[GA[[3 4 5 6 : 8 9 10 11 12 13
1 16 1 312
2 2 9
3 1 35
5 1
G 1 2 15
21 1
39 1
12/ 1 1
54 1
55 1
72 1
110 1
144 1
156 1
272 1
342 1
506 1
1200 1
2106 1
Total [ 11 1 1 1 1 2 0 19 8 3i4
CPU {min)|0° 0" 0° 0" 0° 0.005 0.033 0.15 3.52 23.6 2004.2

* CPU time less than 0.0015 minutes
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