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ABSTRACT

An oriented graph is 2-stratified if its vertex set is partitioned
into two classes, where the vertices in one class are colored red
and those in the other class are colored blue. Let H be a 2-
stratified oriented graph rooted at some blue vertex. An H-
coloring of an oriented graph D is a red-blue coloring of the
vertices of D in which every blue vertex v belongs to a copy of
H rooted at v in D. The H-domination number vy (D) is the
minimum number of red vertices in an H-coloring of D. We
investigate H-colorings in oriented graphs where H is the red-
red-blue directed path of order 3. Relationships between the H-
domination number vy and both the domination number + and
open domination 7, in oriented graphs are studied. It is shown
that (D) < yg(D) < 7.(D) < I_h%(—@-J for every oriented
graph D. All pairs of positive integers that can be realized as
(1) domination number and H-domination number and (2) the
H-domination number and open domination number of some
oriented graph are determined. Sharp bounds are established
for the H-domination number of an r-regular oriented graph in
terms of r and its order.
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1 Introduction

We refer to the books [3, 5, 6] for graph theory notation and terminology
not described in this paper. An area of graph theory that has received
considerable attention in recent decades is domination. Although initiated
by Berge [1] and Ore (7] in 1958 and 1962, respectively, it was a paper
by Cockayne and Hedetniemi [4] in 1977 that began the popularity of the
subject and has led to a theory. This subject is based on a very simple
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definition: A vertex v dominates a vertex u in a graph G if either « = v or
u is adjacent to v. Over the years a large number of variations of domination
have surfaced. Each type of domination is based on a condition under which
a vertex v dominates a vertex u in a graph G. As with standard domination,
many definitions of domination state that a vertex v dominates a vertex u
in a graph G if either u = v or u satisfies some condition involving v. There
are also those definitions of domination that state a vertex v dominates a
vertex u not if u = v but if u satisfies some condition involving v. The
simplest example of this is total or open domination where v dominates u
if u is adjacent to v. An advantage of the former type of domination is
that every graph G contains a set of vertices (called a dominating set) such
that every vertex of G is dominated by some vertex of S; while this is not
necessarily the case for the latter type of domination. For example, graphs
with isolated vertices contain no open. dominating sets.

In 1999 a new way of looking at domination was introduced in [2] that
encompassed several of the best known domination parameters defined ear-
lier (including standard domination and open domination). This new view
of domination was based on a simple but fundamental idea introduced by
Rashidi (8] in 1994. A graph whose vertex set V(G) is partitioned is a
stratified graph. If V(G) is partitioned into k subsets, then G is k-stratified.
In particular, the vertex set of a 2-stratified graph is partitioned into two
subsets. Typically, the vertices of one subset in a 2-stratified graph are
considered to be colored red and those in the other subset are colored blue.
A red-blue coloring of a graph G is an assignment of colors to the vertices
of G, where each vertex is colored either red or blue.

We now describe how domination was defined in {2] with the aid of
stratification. Let F' be a 2-stratified graph in which some blue vertex r
is designated as the “root” of F. Thus F is said to be rooted at r. By an
F-coloring of a graph G, we mean a red-blue coloring of G such that for
every blue vertex u of G, there is a copy of F in G with r at u. Therefore,
every blue vertex u of G belongs to a copy of F rooted at u. A red vertex
v in G is said to F'-dominate a vertex u if u = v or there exists a copy of
F rooted at u and containing the red vertex v. The set S of red vertices in
a red-blue coloring of G is an F-dominating set of G if every vertex of G
is F-dominated by some vertex of S, that is, this red-blue coloring of G is
an F-coloring. The minimum number of red vertices in an F-dominating
set is called the F-domination number vr(G) of G. An F-dominating set
with yr(G) vertices is a minimum F-dominating set. The F-domination
number of every graph G is defined since V(G) is an F-dominating set.

To illustrate these concepts, consider the three 2-stratified graphs Hi,
H,, and H; and the graph G of Figure 1, where solid vertices denote red
vertices and open vertices denote blue vertices. Each of the 2-stratified
graphs Hy, Hj, and Hj3 has the same 2-stratification of the path P; of
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order 4 but is rooted at a different blue vertex. A minimum H;-dominating
set of G with exactly i red vertices is also shown in that figure for i = 1,2, 3.
Therefore, vy, (G) =i for i =1,2,3.

.
H: Hy: | Hy: G:
r
11, (G) =1 Y, (G) = 2 Yi,(G) = 3

Figure 1: A minimum H;-dominating set (¢ = 1,2, 3) for a graph G

As described in [2}, the most studied types of domination in graphs can
be defined in terms of an appropriately chosen rooted 2-stratified graph, in
fact, in terms of an appropriately selected rooted 2-stratified path of order
3. This gives rise to an infinite class of domination parameters, each of
which is defined for every graph. In this work, we extend the concept of
stratified domination to oriented graphs.

2 Stratification and Domination in Oriented
Graphs

If a digraph D has the property that for each pair u, v of distinct vertices
of D, at most one of (u,v) and (v,u) is an arc of D, then D is an oriented
graph. For a vertex v in an oriented graph, the number of vertices to which
a vertex v is adjacent is the outdegree of v and is denoted by odv and
the number of vertices from which v is adjacent is the indegree of v and is
denoted by id v. Thus the degree of v is degv = od v + id v.

An oriented graph whose vertex set is partitioned into two subsets is
called a 2-stratified oriented graph, where the vertices of one subset are
considered to be colored red and those in the other subset are colored blue.
For a oriented graph D, a red-blue coloring of D is a coloring in which every
vertex is colored red or blue. It is acceptable if all vertices of D are colored
the same. If there is at least one vertex of each color, then the red-blue

107



coloring of D produces a 2-stratification of D. Let F be a (connected)
2-stratified oriented graph rooted at some blue vertex. An F-coloring of
an oriented graph D is a red-blue coloring of the vertices of D in which
every blue vertex v belongs to a copy F' of F rooted at v in D. In this
case, v is said to be F-dominated by some red vertex in F’. A red vertex is
F-dominated by itself. The F-domination number vg(D) is the minimum
number of red vertices in an F-coloring of D. The set of red vertices in an
F-coloring c of D is also called an F-dominating set of D and is denoted
by R.. If |R.| = vr(D), then c is a minimum F-coloring of D and R,
is a minimum F-dominating set of D. As with graphs, the F-domination
number of every oriented graph D is defined since V(D) is an F-dominating
set. Therefore, if F has r red vertices, then

r<ar(D)<n (1)

for every oriented graph D of order n > r. Furthermore, if D has no
subdigraph isomorphic to F, then y¢(D) = n.

If F is a connected 2-st1;atiﬁed oriented graph of order 2, then F is one
of the 2-stratifications of P; in Figure 2. In each case, the F-domination
number is a well-known domination parameter, as we show next.

F: e—0 F: o—e
Figure 2: Two 2-stratified oriented graphs of P,

Let D be an oriented graph. A vertex v is said to dominate (or out-
dominate) itself together with all vertices adjacent from v. A set S C
V(D) is a dominating set for D if every vertex in D is dominated by some
vertex in S. The domination number v(D) is the minimum cardinality
of a dominating set in D. A dominating set of cardinality (D) is called
a minimum dominating set of D. We first establish a result that is not
unexpected.

Proposition 2.1  For the 2-stratified oriented graph Fy of 15‘2,
Y(D) = v, (D)
for every oriented graph D.

Proof. Let D be an oriented graph and let S be a minimum dominating
set of D. Then the red-blue coloring c of D defined by coloring each vertex
in S red and the remaining vertices blue is an Fj-coloring using |S| red
vertices. Therefore, vr, (D) < |S| = 4(D). To show that v(D) < vr, (D),
let there be given a minimum Fj-coloring ¢’ and let R~ be the set of red
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vertices of D assigned by ¢. Then R. is a dominating set of D and so
V(D) £ |Ret| = vr, (D). n

The converse D* of an oriented graph D has the same vertex set as
D and the arc (u,v) is in D* if and only if the arc (v,u) is in D. It is
straightforward to verify the following.

Proposition 2.2  For the 2-stratified oriented graph Fy of P,
1R (D) = vr, (D")
for every oriented graph D.

By Proposition 2.2, we need not be concerned with studying the param-
eter Y, since the F3-domination number of an oriented graph always equals
the Fj-domination number of its converse. Also, since the Fj-domination
number of an oriented graph equals the well-studied out-domination num-
ber, we proceed to consider F-domination for 2-stratified oriented graphs
of higher order. This leads us to 2-stratified paths of order 3. There are six
of these, as shown in Figure 3.

H=H Hy Hs Hy Hs Hg
Figure 3: Six 2-stratifications of ) A

As with graphs, each of these 2-stratified oriented graphs in Figure 3
gives rise to a domination parameter in digraphs. However, we are espe-
cially interested in the 2-stratified oriented graph H;. Not only is the Hy-
domination number a new domination parameter, it also possesses several
interesting features as we will see in this work. To simplify the notation,
we write H = H;. Necessarily, the only blue vertex in H is the root of
H. Since H has two red vertices, it follows by (1) that if D is a digraph of
order n > 2, then

2 <yu(D) < n. (2)

To illustrate H-domination, consider the tournament T in Figure 4.
Since the red-blue coloring of T' shown in Figure 4 is an H-coloring of T
with three red vertices and so v4(T) < 3. Therefore, either Yu(T) = 2
or yu(T) = 3. We claim that yg(T) = 3. Assume, to the contrary, that
YH(T) = 2. Let ¢ be a minimum H-coloring of T', where z and y are the two
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red vertices of T'. Necessarily, £ and y are adjacent vertices in T'. Assume,
without loss of generality, that (z,y) is an arc of T. Since c is an H-coloring
of T, for every blue vertex 2, the digraph T must contain the directed path
z,y,z and so ody > 3. Since every vertex of T has outdegree 2, this is
impossible. Therefore, as claimed, vy (T') =

v2

vs U4
Figure 4: An H-coloring of an oriented graph

The argument just used to show that v (T") # 2 for the digraph T' of
Figure 4 gives us the following result.

Proposition 2.3 An oriented graph D of order n > 3 has yy(D) = 2 if
and only if D contains a vertez v withidv =1 andodv =n — 2.

We now introduce some additional definitions that will be useful in what
follows. Let ¢ be an H-coloring of an oriented graph D and let w be a blue
vertex of D. Necessanly, w is the terminal vertex of a directed red-red-blue
path B;, say P : u,v,w. In this case, we say that w is H-dominated by v
or that v H-dominates w. That is, in this context, every blue vertex w of
D is H-dominated by some red vertex v and so w is adjacent from v, which,
in turn, is adjacent from another red vertex. Consequently, if a red vertex
v H-dominates a blue vertex w, then v is adjacent to w and adjacent from
another red vertex. The following three observations are useful.

Observation 2.4 Let v be a vertez in an oriented graph D.

(a) Ifodv =0, then v cannot dominate or H-dominate any other vertez
inD.

(b) Ifidv = 0, then v can neither H-dominate nor be H-dominated by
any other vertez in D.

Observation 2.5 Let v be a vertez in an oriented graph D with idv =1
and let ¢ be an H-coloring of D.
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(@) If (u,v) is an arc of D, then at least one of u and v must be colored
red by c.

(b) If (u,v) is an arc of D, idu = 1, and (w,u) is an arc of D, then at
least two of u, v, and w must be colored red by c.

Observation 2.6  Let D be a connected oriented graph of order n and let
A be the mazimum outdegree among all vertices of D with positive indegree.
Then yg(D) < n— A.

The following is an immediate consequence of Observation 2.4.

Corollary 2.7 Let I be the set of all vertices of an oriented graph D with
indegree 0. Then

(@) I belongs to every dominating set of D, and
(b) I C R for every H-coloring c of D.

Recall that if D is a nontrivial oriented graph of order n and vy (D) = k,
then 2 < k < n. Next, we show that every pair k,n of integers with
2 < k < n is realizable as the H-domination number and the order of some
connected oriented graph, respectively.

Proposition 2.8 For each pair k,n of integers with 2 < k < n, there
erists a connected oriented graph D of order n with yy(D) = k.

Proof. Let ?1,,;_1 be the orientation of the star K ;—; whose vertex
set is {u, v, vs, ..., vk—1}, where u is the central vertex of Ky -1 and
(u,v;) € E(?l,k_l) for 1 <4 < k—1. Construct the oriented graph D
from ?1,;6.4 by adding n — k new vertices wy, wa, ..., w,—x together with
the n — k new arcs (vy,w;) for 1 <4 < n — k. Then the order of D is n.
We show that v (D) = k. Define a red-blue coloring ¢ of D by assigning
red to every vertex of V(K1,k—1), and blue to the remaining vertices of D.
Then c is an H-coloring of D with k red vertices, so yx(D) < k. Next,
we show that yg(D) > k. Let there be given a minimum H-coloring c
of D and let R, be the set of red vertices of c. Since idu = 0, it follows
that u € R.. Also, since every vertex v; (1 < i < k — 1) is adjacent from
only a vertex with indegree 0, it follows that v; is not H-dominated by
any vertex distinct from v;. Therefore, v; € R, for 1 < i < k — 1. Thus
V(?l,k..l) C R. and so vy (D) = |R.| 2 k. Therefore, yy(D) = k. n
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3 Comparing H-Domination with Standard
Dominations

In this section, we compare H-domination number with two well-known
domination parameters in digraphs, namely domination and open domina-
tion. A vertex v is said to openly dominate (or openly out-dominate) all
vertices adjacent from v. A set S C V(D) is an open dominating set for D
if every vertex in D is openly dominated by some vertex in S. The open
domination number v,(D) is the minimum cardinality of an open domi-
nating set in D. An open dominating set of cardinality +,(D) is called a

minimum open dominating set of D. The following three observations are
useful.

Observation 3.1 Let D be an oriented graph. Then the open domina-
tion number v,(D) is defined for an oriented graph D if and only ifidz > 1
for every vertez x in D.

Observation 3.2 If S i3 an open dominating set of an oriented graph
D, then |S| > 3 and the subdigraph (S) induced by S contains a directed
cycle. In particular, for every oriented graph D for which «,(D) is defined,
Yo(D) > 3.

Observation 3.3  If D is an oriented graph with (D) = 1, then v,(D)
is not defined.

We now show that if D is any oriented graph for which v, (D) is defined,
then yg(D) is bounded above by 7,(D) and bounded below by (D).

Theorem 3.4 Let D be an oriented graph such that idz > 1 for every
z € V(D). For the 2-stratification H of P,

v(D) £ 78(D) £ 7(D).

Proof. We first show y(D) < yu(D). Let there be given a minimum
H-coloring c of D and let R, be the set of the red vertices of D assigned by
¢. We show that R, is a dominating set of D. If v € V(D) — R, thenvisa
blue vertex and v belongs to a copy of H rooted at v. This implies that v is
adjacent from a red vertex in R., and so v is dominated by some vertex in
R.. Therefore, R, is a dominating set of D and so (D) < |R,| = yu (D).
Next, we show that yx(D) < 7,(D). Let S be a minimum open dom-
inating set of D. Define a coloring ¢ by assigning red to each vertex in S
and blue to each vertex in V(D) —S. We show that c is an H-coloring. Let
v € V(D) — S be a blue vertex. Since S is an open dominating set of D, it
follows that v is openly dominated by some vertex » € S and so v is adja-
cent from the red vertex u. Moreover, u is also openly dominated by some
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vertex w € S and so u is adjacent from some red vertex w. Hence v belongs
to a copy of H with vertex set {u,v,w}. Therefore, c is an H-coloring of
D and so 7#(D) < |S| = v,(D). "

The two inequalities in Theorem 3.4 can both be strict. For example,
for the directed cycle C; of order 4, we have Cy) = 2, v#(Cs) = 3, and
75(C4) = 4. On the other hand, both inequalities in Theorem 3.4 can be
equalities. For example, for each integer k > 3, let Cy. : Uy, U2,. .., Uk, Uy De
the directed k-cycle and let the out-corona Cor(Cy) of Cy be the oriented
graph obtained from 6,, by adding k& new vertices vy, vs,...,v; and k new
arcs (ug,v;) for 1 <4 < k. It is straightforward to verify that

7(Cor(Cr)) = 11 (Cor(Ck)) = 75(Cor(Cy)) = k. @3)

for each integer k > 3.

By Theorem 3.4, if D is a connected oriented graph with 4(D) = a and
Yu(D) = b, then @ < b and b > 2. Next, we show that every pair a,b
of positive integers with @ < b and b > 2 is realizable as the domination
number and H-domination number of some connected oriented graph D.

Proposition 3.5  For every pair a,b of positive integers with a < b and
b > 2, there exists a connected oriented graph D such that v¥(D) =a and
va(D) =b.

Proof. Ifa=b=2, then let D = C; and so v(D) = vg(D) = 2; while if
a=b>3,then D= Cor(C"'a) and the result follows by (3). Thus, we may
assume that 1 < a < b. Let D = ?a,b_a be the oriented graph obtained
from the complete bipartite graph with partite sets U = {u1,u2,...,u,}
and V = {v1,v,...,va_p} such that B(Rep-0) = {(us,v;) : 1< i <
a, 1 < j <b-a}. Observe that idu = 0 for each vertex u € U and so each
vertex in U is dominated only by itself. Thus U belongs to every dominating
set of D. Since U is a dominating set of D, it follows that v(D) = a.

Furthermore, D does not contain the directed P, as a subdigraph and so
Ya(D) =|V(D)| =b. n

Although every pair a,b of positive integers with a < b and b > 2
is realizable as the domination number and H-domination number of some
connected oriented graph, this is not the case for the H-domination number
vx and open domination number v,. Next we determine all pairs a,b of
integers with 2 < a < b that are realizable as the H-domination number
and open domination number of some connected oriented graph, beginning
with those pairs a, b, where a = 2.

Proposition 3.6  Let D be a connected oriented graph of order n > 3
for which ~,(D) exists. If vy (D) = 2, then v,(D) = 3.
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Proof. Let D be a connected oriented graph of order n > 3 with y5(D) =
2 and let ¢ be a minimum H-coloring of D such that R, = {z,y}. Thus ei-
ther (z,y) € E(D) or (y,z) € E(D), say the former. This implies that every
blue vertex z € V(D) — {z,y} is H-dominated by y. Hence (y,z) € E(D)
for each z € V(D) —{z,y}. Since v,(D) exists, it follows by Observation 3.1
that idv > 1 for every vertex v of D. Since (z,y) € E(D), it follows that
(2',z) € E(D) for some 2' € V(D) — {z,y}. Then {z,y,2'} is an open
dominating set of D and so v,(D) < 3. It then follows by Observation 3.2
that v,(D) = 3. n

We saw in Theorem 3.4 that if D is a connected oriented graph for which
Yo(D) exists, then «,(D) is bounded below by (D). We now show that

¥0(D) is bounded above by |-3‘732(D) J .

Theorem 3.7 If D is a connected oriented graph for which v,(D) exists,
then
3yu(D
Y(D) < [—72( )J .

Proof. Let ¢ be a minimum H-coloring of D and let R, be the set of
red vertices in D. Furthermore, let R; be the subset of R, consisting of all
vertices that H-dominate at least one blue vertex in D and let Ry = R.—R;.
(Note that R, may be empty.) Thus y#(D) = |R;| = |Ri| + |Rz2|. We
consider two cases.

Case 1. |Rz| < |Ry|. Then |Rs| < 3vu(D). Observe that every blue
vertex in D is adjacent from some red vertex in R; and so is openly domi-
nated by some vertex in R;. Also, every red vertex in R; is adjacent from
some red vertex in R, and so is openly dominated by some vertex in R,.
Thus every vertex in V(D) — R; is openly dominated by some vertex in
R.. Since v,(D) exists, every vertex in D has positive indegree. For each
vertex = € Ry, let y; € V(D) such that y, is adjacent to z, that is,  is
openly dominated by y.. Let

Y ={y: : ¢ € Re}.

Then |Y| < |R2| and every vertex in R; is openly dominated by some vertex
inY. Hence R, UY is an open dominating set of D and so

(D) < IRUY|< IR+ Y] < Rl + IR
1 3vu(D
< (D) + 2yu(D) = 22D,

Case 2. |Ry| < |Rz|. Then |Ry| < 3yu(D). Observe that every blue
vertex in D is openly dominated by some vertex in R;. For each vertex
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v € Ry, let w, € V(D) such that w, is adjacent to v and let W = {w, : v €
R;}. Then |W| < |R,| and every vertex in R, is openly dominated by some
vertex in W. Again, for each vertex z € Ry, let y, € V(D) such that y, is
adjacent to z, that is, z is openly dominated by y,. Let Y = {y, : z € Ry}.
Then |Y| < |R3| and every vertex in R, is openly dominated by some vertex
inY. Hence R; UW UY is an open dominating set of D and so

Y(D) < |[RMUWUY]|L|Ry|+|W|+]Y|
< |Ri| + |Ri| + |R2| = |Ry| + |Re|

< 2om(D) +vu(D) = 218D).

Therefore, v,(D) < I_%QJ, as desired. .

By Proposition 3.6, if D is a connected oriented graph of order n >
3 for which 9,(D) exists and yu(D) = 2, then 7,(D) = 3. Thus, there
is no connected oriented graph with H-domination number 2 and open
domination number 4 or more. On the other hand, we show that every pair
a,b of integers with 3 < @ < b < |32] is realizable as the H-domination
number and open domination number of some connected oriented graph.

Theorem 3.8  For every pair a,b of integers with3 < a < b < [3—" ,
there ezists a connected oriented graph D such that v (D) = a and v,(D) =
b.

Proof. If a=b> 3, then let D = Cor(C,) and the result follows by (3).
Thus we may assume that a < b. We consider two cases.

Case 1. b=a+1. Let k > 2 be an integer and for each integer i with
1<i<a-1,let G;: ujvi,wi,u; be a directed 3-cycle. Let D be the
oriented graph obtained from the digraphs G; (1 < i < a—1) by identifying
the vertices w; for 1 < i < a — 1 and labeling the identified vertex by w.
Then 7g(D) = a and v,(D) =a + 1.

Case 2. b>a+2. Let
k=b-a-land{=3a-2b+1.

Since b>a+2and < |32, it follows that & > 1 and £ > 1.

For each ¢ with 1 <i < k+¢, let G; be a copy of C; : Vi1, 32, Vi,3, Vi1
First, we construct an oriented graph D’ obtained from the first ¢ copies of
of G; (1 < i < ) by identifying all the vertices v;; (1 < i < £) and labeling
the identified vertex by v;. Then we construct the oriented graph D from
D' and the k copies of G; (£+1 < j < £+k) by adding a new vertex v and
the k + 1 new arcs (v1,v) and (v;,1,v) for £+1<j < +k.
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We show that v (D) = a and v,(D) = b. Let

i = {ni}U{v1:€+1<j<El+k},
Va = {wm2:1<t<l+k),
Vi = {v3:1<i<¢t-1},
Vs = {ves}U{vjs:€+1<j<e+k}

We first show that vy (D) = a. Since the set V; UV3 U V{ is an H-
dominating set,

D) £ MUVBUV|=2k+£+1
= 2b-a-1)+Ba-2b+1)+1=a.

To show that yg(D) > a, let ¢ be a minimum H-coloring of D and let
R, be the set of red vertices of D. By Observation 2.5, (1) R, contains at
least one vertex in {v;2,v;3} for 1 < ¢ < £ and (2) R, contains at least
two vertices in {vj,1,v;,2,v;3} for £+ 1< j < €+ k. Thus |R.| > 2k + £
We claim that |Rc| > 2k + £. Assume, to the contrary, that |R;| = 2k + £.
Then R, contains exactly one vertex in {v;2,v;3} for 1 < i < £ and exactly
two vertices in {vj,1,v;,2,v;3} for £+1 < j < £+ k. In particular, v; ¢ R,.
Observe that the only directed path P; in D having v; as a terminal vertex
is v;,2,v;,3,v; for some ¢ with 1 < i < £. Since R, contains exactly one
vertex in {v;2,v;3} for all ¢ with 1 < ¢ < ¢, it follows that v; is not
H-dominated by R, which is a contradiction. Therefore,

YH(D)=|R| 22 +Ef+1=0a

and so vy (D) = a.
Now we show that v,(D) = b. First we show that v,(D) < b. Since the
set V3 U V2 U V4 is an open dominating of D, it follows that

YD) £ ViUV UVy|=3k+(£+2)
3b-a—-1)+(B3a—-2b+1)+2=b.

To show 7,(D) > b, let S, be a minimum open dominating set. Observe
that (i) for each ¢ with 1 < i < £, the vertex v; 3 is only openly dominated
by v;2. Thus v;s € S, for 1 < ¢ < ¢, (ii) for each ¢ with 1 < i < £, the
vertex v is only openly dominated by v; and so v; € S,, and (iii) the
vertex v, is only openly dominated by some vertex v; 3, where 1 < i < £.
It follows by (i)—(iii) that S, must contain at least £+ 2 vertices in the set

[4
{'01} U (U V(G.)) .

116



Furthermore, for each j with £+ 1 < j < £+ k, (1) the vertex vj,1 can
only be openly dominated by v;3, (2) the vertex v;2 can only be openly
dominated by v;,1, and (3) the vertex v;,3 can only be openly dominated by
vj,2. This implies that {v;,v;2,vi3} C S, for £+1 < i < £+k. Therefore,

'Yo(D) = 'SOI Z3k+(£+2)
3(b—a—1)+(3a—2b+3)=b.

This completes the proof. [

Combining Proposition 3.6 and Theorems 3.7 and 3.8, we have the fol-
lowing characterization of those pairs a,b of integers with 2 < @ < b that
are realizable as the H-domination number and open domination number
of some connected oriented graph.

Corollary 3.9  Leta and b be integers with 2 < a < b. Then there exists
a connected oriented graph D such that yy(D) = a and 7,(D) = b if and
only if

(a,b) =(2,3) or 350565[%].

4 H-Domination in Regular Oriented Graphs
A connected oriented graph D is said to be r-regular if
idv=odv=r

for some nonnegative integer r and for every v € V(D). If D is a connected
r-regular oriented graph of order n, then the underlying graph of D is 2r-
regular. Thus n > 2r 41 and so # < | 252 |. In this section, we investigate
H-domination in r-regular oriented graphs.

‘We have seen in (2) that if D is a connected oriented graph of order
n 2 2, then 2 < v (D) < n. Moreover, by Proposition 2.8, for each pair
k,n of integers with 2 < k < n, there exists a connected oriented graph
D of order n with y4(D) = k. However, this is not the case for r-regular
connected oriented graphs; that is, for fixed positive integers r and n with
n 2> 2r + 1, there are pairs k,n of integers with 2 < k < n such that there
is no connected r-regular oriented graph of order n with y4(D) = k, as we
will see in this section. .

If r = 1, then the directed n-cycle C,, is the only connected 1-regular ori-
ented graph of order n > 3. We now determine the H-domination number
of C,, for every integer n > 3.
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Theorem 4.1  For each integer n > 3,

vu(Cn) = [2?1;] :

Proof. We first show that v4(Cr) < [2n/3]. Let Cn : v1,v2,...,Un,v1.

Then n = 3k +¢t, where k > 1 and 0 < ¢t < 2. Define a red-blue coloring
¢ of G, by assigning blue to each vertex in the set {vs; : 1 < i < k} and
red to the remaining vertices of Ch. Since each blue vertex vs; belongs to a
copy of H rooted at vy; in Cp, namely the directed path: vz;_2,v3i—1,vs;,
it follows that ¢’ is an H-coloring of C, with exactly 2k + ¢ red vertices.

Hence 75 (C,) < 2k + t. Observe that

2k ift=0
2n 6k + 2t 2t .
2] - [22] s [3]_{%1 ot

2k+2 ift=2
and so [2n/3] = 2k +¢. Therefore, vu(Cp) < [2n/3].

Next, we show that v5(C,) > [2n/3]. Certamly, at least one vertex of
Ch, is colored blue in a minimum H -coloring of C,,. Assume, without loss of
generality, that vg; is colored blue. By Observation 2.5, at least two vertices
in each set {vs;_2,v3i-1,v3i}, 1 < i < k, are colored red. Furthermore,
since vy is blue, it follows by Observation 2.5 that vgx+; and vak2 are red
(where the addition in 3k + 1 and 3k + 2 is done modulo n). Hence at least
2k + t vertices of C, are colored red. Thus ya(Cr) > 2k +t = [2n/3].
Therefore, v4(C,) = [2n/3]. ]

We now turn to r-regular connected oriented graphs for r > 2. First, we
present a lower bound for H-domination number of a connected r-regular
oriented graph of order n in terms of r and n.

Theorem 4.2 Let v > 2 be an integer. If D is a connected r-regular
oriented graph of order n > 2r + 1, then

. n+r n
7H(D)Zmln{l+rs;}°

Proof. Let D be a connected r-regular oriented graph of order n > 2r+1
with v (D) = k. By Observation 2.6 , we know that vg(D) < n —r and
so we may assume that k¥ < n. Let ¢ be a minimum H-coloring of D and
let R, be the set of the red vertices of ¢ in D. Furthermore, let R; be the
subset of R, consisting of all vertices that H-dominate at least one blue
vertex in D and let R; = R, — R;. Thus k = |R,| = |Ry| + |Rz|. Let

B=V(D) -
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be the set of the blue vertices of ¢ in D. We consider two cases.

Case 1. Ry = (. Since D is r-regular, each vertex in R; can H-
dominate at most r blue vertices. Furthermore, since each vertex v in R,
H-dominates at least one blue vertex and R; = 9, it follows that v must
also be adjacent from some red vertex u in R;. Hence there are at least k
arcs in D, both of whose incident vertices are red. This implies that R; can
H-dominate at most kr — k blue vertices and so |B| < kr — k. Therefore,

n=|B|+|R]| < (kr—k)+k=kr
and so k > n/r.

Case 2. R # 0. Since each blue vertex can only be H-dominated by
some red vertex in R; and each vertex in R; can H-dominate at most r
blue vertices,

|B| < |Ralr = (|Re| — | R2|)r-

Since |R;| > 1, it follows that

n = |B|+|Re| < (IRc| - |Ra|)r + |Re]
< (Rel=1)r+|Re| = (k= 1)r +
= k(r+1)-r
Hence k > (n +1)/(r +1). (]

Since (n +7)/(1 +7) < n/rif n > r?, the following is a consequence of
Theorem 4.2.

Corollary 4.3 Let r > 2 be an integer. If D is a connected r- regular
oriented graph of order n > r2, then

n+r
147’

The lower bound in Theorem 4.2 (or in Corollary 4.3) is sharp. In fact,
more can be said.

vu(D) >

Proposition 4.4 For each integer r > 2, there ezist an integer n > r?
and a connected r-regular oriented graph D of order n such that

7H<D)-—ﬁ=min{"+',ﬁ}.

1+ 1+r'r

Proof. Let K, : u,v1,v9,..., Mr be the star of order r + 1 centered at
u, that is, degu = r. Recall that )¢ 1,r is the orientation of K , such that
(u,v;) lsa.narc1nK1,for1<z<r For each j with 1 < j <r, let D; be
a copy of Kl,,., where
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V(DJ) = {vj,w,-,l'wj_g ‘ee ,wj‘,.} and od vj=TrT.
Then the digraph D is obtained from the digraphs D; (1 < j < r) by adding
(1) the arcs (wj,1,u) for 1 < j < r, (2) the arcs (wj1,v;) for 1 < 4,5 <r
and i # j, (3) the arcs (wj¢, w;1) for 1< j<rand2 <t <r, and (4)
the arcs (wps, w1,t) and (wjs, Wi41,¢) for 1 <j<r—1,2<38,t < 7. (See
Figure 5.)

Figure 5: The r-regular oriented graph D for r =3

Observe that D is a connected r-regular oriented graph of order n =
r2 +r + 1. Since

2
ntr _ (r +‘r+1)+r=r+1
r+1 r+1

and n > r?, it follows by Corollary 4.3 that yg(D) > r + 1. On the other
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hand, let ¢ be the red-blue coloring of D with
R.={u}u{v;:1<j<r}
Since each blue vertex wj; (1 < j,¢ < ) belongs to the red-red-blue path

u, v, Wj, it follows that ¢ is an H-coloring of D and so yy(D) < |R.| =

r + 1. Therefore, +
n+r

147’
as desired. ) L]

Ya(D)=r+1=

Proposition 4.5 For each integer v > 2, there exist an integer n with
2r +1 < n <7? and a connected r-regular oriented graph D of order n for
which

7H(D)=g=min{n+r ﬁ}

1+r’r

Proof. Let k be an integer with 3 < 5 <7 and let C: U1,02,...,Vk, V1 be
a directed k-cycle. For each ¢ with 1 <i < k, let D; = K,_; be the empty
digraph of order r — 1 with

V(D;)=Wi={w;j: 1<j<r-1}.

Then the oriented graph D is constructed from € and D; (1 < i < k) by
adding (1) the arcs (wy,qs, k) for 1 < 8,¢ < 7 —1 and (w;, wi1,) for
2<i<kandl <5t <r—1,(2) the arcs (v1,w; ;) and (w,j,v) for
1<j<r-1and (v;,w;;) and (w;j,vi—1) for2<i<kand1<j<r-1.
(See Figure 6.)

Then D is a connected r-regular oriented graph of order n = kr. Thus
k =n/r. Since n = kr < r2, it follows by Theorem 4.2 that

n
1u(D) 2~ =k

Therefore, it suffices to show that H (D) < k. Let c be the red-blue coloring
that assigns red to the vertices of C and blue to the remaining vertices of
D. For eachiand j (1 < ¢ < k,1 < j <r—1), where i is expressed
as an integer modulo k, since each blue vertex w; ; € W; belongs to the
red-red-blue path v;-1,v;,w; ;, it follows that ¢ is an H-coloring of D with
exactly k red vertices. Thus yg(D) < k and so y4(D) = k. n

As a final note, we mention that when k = r in the proof of Proposi-
tion 4.5, the digraph D constructed has order n = r? and therefore,

n n+r
’YH(D)—T-—;— s
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Figure 6: The r-regular oriented graph D for k = 4

By Observation 2.6 , if D is a connected r-regular oriented graph of
order n, then vy (D) is bounded above by n — r. This upper bound can be
improved, as we show next. We first establish some definitions. For a vertex
u of an oriented graph D, the out-neighborhood N+ (u) and in-neighborhood
N~ (u) of u are defined by

N*(u)={z: (u,z) € E(D)} and N~ (u) = {z: (z,u) € E(D)}.

Proposition 4.6  Let r > 2 be an integer. If D is a connected r-reqular
oriented graph of order n, then

(D) sn- [F]+1 @)
Proof. Let D be a connected r-regular oriented graph and z,y € V(D)

such that (z,y) € E(D). Let

N*(y) = {y1,y2,-..,9-} and N¥[y] = N*(y) U {y}.
Furthermore, let
Dgy = (N*(y) U {z})
be the subdigraph induced by N*(y)u{z}. Since the order of D, , is r+1,
the size of D,y is at most ("}') = 2t and so

Y odp,v< HHL, 5)
v€V(Do,y)
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where odp, v is the outdegree of v in D ;. Let
k =min{odp, ,v: v € V(D ,)}.
By (5), ¥ < r/2 and so k < |r/2] . We consider two cases.

Case 1. k = odp, ,y; for some i with 1 < i <r, say k = odp, ,¥1.
Since odpy1 = r, it follows that y; is adjacent to at least [r/2] vertices
that are not in D, ,. Let Z be the set of vertices of maximum cardinality
such that

Z C N*(y) and ZNV(D,,) = 0.

Then |Z| > [r/2]. Define the red-blue coloring ¢ of D that assigns blue to
each vertex in

(N*() - {11}) U Z = {y2,93,- ", 9r} U Z

and red to the remaining vertices of D. Since (i) each blue vertex y; (2 <
i < r) is H-dominated by y, and (ii) each blue vertex in Z is H-dominated
by 1, it follows that c is an H-coloring of D with

Rc = V(D) - ({3/2,313,"',%} UZ) .

Therefore,
(D) < |Re|=n-[(r—1)+|2]|
==t 5 == [5]

Case2. k=odp, ,zand odp, ,y; > kforall i with 1 <i < r. Thus z is
adjacent to at least [r/2] vertices that are not in D, ,. Since (z,y) € E(D),
it follows that z is adjacent to at least [r/2] — 1 vertices that are not in
V(Dz,y) U {y}. Let X be the set of vertices of maximum cardinality such
that :

IA

X C N*(z) and X N(V(D,,) U {y}) = 0.
Then |X| > [r/2] — 1. We consider two subcases.

Subcase 2.1. There ezists z ¢ N*(y) such that (z,z) € E(D). Define a
red-blue coloring ¢ by assigning blue to each vertex in

N+(y)Ux= {ylryza""yr}ux

and red to the remaining vertices of D. Since (i) each blue vertex in N+ (y)
is H-dominated by y, and (ii) each blue vertex in X is H-dominated by z,
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it follows that c is an H-coloring of D with R, = V(D) — (N*(y) U X).
Therefore,

(D) £ |Re|=n-(r+|X])
n—(r+[%.| -1)=n— [-3'21]+1.

Subcase 2.2. Subcase 2.1 does not occur. This implies that N~ (z) C
N*(y). Since idz = r and |[N*(y)| = r, it follows that N~(z) = N*(y)
and so |X| = r — 1. Define the red-blue coloring ¢ of D that assigns blue
to each vertex in

(N*@) = {m}) VX ={y2,93,- 9} UX

and red to the remaining vertices of D. Since (i) each blue vertex y; (2 <
i < r) is H-dominated by y, and (ii) each blue vertex in X is H-dominated
by z, it follows that ¢ is an H-coloring of D with

R, = V(D) - ({y2:y3""1yr}ux)-
Since r > 2, it follows that

(D) £ |Re|=n-[(r-1)+|X]]
= n—2(r—1)§n—|-3?r-|+l,

IA

as desired. =

Both equality and strict inequality in (4) are possible. For example,
let Kop4+1 be the complete graph of order 2r + 1 > 5 with V(Kzpy1) =
{vo, v1, ..., v2r}. Define the orientation I'{'g,..,.l of Kopy1 by E'(I?z,_H) =
{(vi,vi45) : 0 < i < 2r,1 £ j < r}, where the subscripts are expressed as
the integers 0,1,2,...,2r modulo 2r + 1. Observe that I-{'g,.u is r-regular.
Then it can be shown that yg(Kazr41) = 3 for each r > 2. Observe that the
2-regular tournament )¢ 5 has order n = 5 and the 3-regula.r tournament )¢ 7
has order n = 7. In each case, n—[3r/2]+1 = 3 and vy (K5) = vu(K7) = 3.
Therefore, the equality in (4) holds for K5 and ;. On the other hand, the
4-regular tournament Ky has order n = 9. In this case, n— [3r/2] +1=4; .
while vy (I?g) = 3. Hence the strict inequality in (4) holds for K.
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