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Abstract

Previous work on a certain class of non-terminating expansions
of the sine function leads directly to a new result for associated
infinite series by straightforward integration. A general identity
is established, particular cases verified and two proofs of its
hypergeometric form given.

Introduction

Consider, for m (even) > 2, the expansion of sin(ma) (in odd powers of
sin(a))
o0
sin(ma) = ) _ S{™sin®™+ (a), (1)
n=0
which is valid for |a| < . In [1] a closed form for the general coefficient

of the r.h.s. of (1) was derived, having been developed analytically from a
result associated with Euler. Let ¢, denote the (n + 1)th term

a=mr1(w) ®

of the Catalan sequence {co,c1,¢2,¢3,¢1,...} = {1,1,2,5,14,...}. Then,
defining

1 m=2
n,m) = - 3
Qlmm) { Qg pata ) o468, O
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and introducing the additional Catalan number ¢_; = —3, the following
result was established [1, Theorem 2, p.11}.

Theorem 1 For integer m (even) > 2, n > 0,
S = (-1)#2'"2"mQ(n; m)cn—1.
Remark 1 The function Q(n;m) can be expressed in factorial form

(n — )n!2n — (m + 1)])'(2n + m)!
[n - (Gm+ 1)]i(n + 3m)!2(n - 1)]!(2n + 1)!
[2n — (m + 1)]}(2n + m)! 1
n—(Gm+1D)(n+im)(@n+ 1) car’

Q(n;m)

4)

which holds for m = 2,4, 6, etc., and gives a modified version of S&™ (with
Catalan element absent); we, however, work with (3) for convenience.

New Series Results

Formulation

Noting that S{™ = m, then re-arranging (1) as

sin(ma) — msin(a) = i S{™gin?"+! (a) (5)
n=1

and integrating both sides w.r.t. a from 0 to 3= (or — 47 to 0) we have!

1
m

N-(-)F)-m= i S(m) /o ' sin?**(a) da. (6)

n=1

It is straightforward to show that for n > 1,

»

/isinz"“(a)da 2:4:6- --- -(2n)
0

1-3-5. ... .(2n+]_)
4" 2
(2n +1) (2n)!
4n
= G+DEn+ Do’ @

1Either range of integration is admissible because the convergence criteria of the series
in (1) can be extended to |a| < § (including both the interval endpoints §= and —=);
as a point of completeness, the reader is referred to Appendix A for a formal argument.
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so that, from the well known relation

_ (n+1)
1= en—1)™

between adjacent Catalan numbers (valid for nn > 1, given ¢ = 1), (6) gives
rise to an interesting result using Theorem 1; it is duly found that

Zl (2n ? (11)?;'::)+ D - ?,;1—2 (D% -1] - (-1%. (9)

(®)

Clearly the r.h.s. simplifies, according to the precise value of m, and we
have a final form of the result thus.

Theorem 2 For integer m (even) > 2,

i Q(n;m) _ { 1-2 m=2,6,10,14,...
2 @n—-1)2n +1) -1 =4,8,12,16,...
Verification

We now verify (informally) a few cases. Consider first m = 2. Writing
Y, /@ +1) =Y 1/(2n+1)—1=Y 1/(2n—1) - 1, the Lh.s.
of Theorem 2 becomes

— 1 1 1 - 1
ngl(zn-l)(znﬂ) = §{uz=:1(2n—l)-§(2n+l)}

VS SN S S
T 2 & (@n-1) ~ (2n - 1)
n=1
- 1
T2
2
= 1- EE, (10)
concurring with the r.h.s. For m = 4, the partial fraction decomposition
(2n + 3) A B C

+

@n-DEn-3)@n+D) @-D) T @n-3 T @m+y

has solution constants A = —1, B = §, C = 1, whereupon, again in
agreement with Theorem 2, we see by a similar procedure that

— (2n+3)
nz___; (2rn-1)(2n-3)(2n+1)
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1

Z{Z(2n+1)+ 2(2 z:(2n 1)}

1 1
Z{z(zn p~1+3 [Z(z 1]"4§(2n-1)}

-1. (12)

Finally, m = 6 leads to

(2n + 3)(2n + 5)

n=1

Z (2n - 1)(2n -3)(2n-5)(2n +1)

o0

'.2_:1(21; ) Z(2n 3)*2(21; 5) z(2n+1)

e ey
[Z(Zn 1)_5]“[2(21; 1) 1]

=

1- = (13)

being once more the anticipated value. Other examples can be dealt with
in the same manner, however see the below caveat.

Remark 2 The above illustrations, whilst useful checks, are non-rigorous
in the sense that for correctness a limiting argument is required on each
occasion. When m = 2, for instance, we should strictly write (because both
Yome11/(2n —1) and 352, 1/(2n + 1) are unbounded, see Appendix B)

1 . 1
2_: (2n-1)(2n+1) = Nh-inoo Z: (2n-1)(2n+1)
n=1 n=1

{1 v )

) (14)

N = N ]

and likewise in treating other cases.
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Hypergeometric Form

Since, at n = 0, (7) holds and (8) is consistent with the definition of c_,,
then if (1) (rather than (5) as before) is integrated directly it is found that

= Q(n;m) 1
Z‘;(?n-l)(2n+1) = —[(-D%F-1]

—-2 -
{ 2 m=26,10,14,... 1s)

0 m=4,8,1216,...,

which is equally available by a trivial modification of (9) noting that from
(3) Q(0;m) = (—1)2-1 ¥m > 2. Equation (15) can, of course, be validated
independently by means of a computer-based hypergeometric approach, for
writing @, = a(n;m) = Q(n;m)/(2n — 1)(2n + 1), with ratio

ani1 _ (@n—1)Q(n+1;m)
an  (2n+3) Qn;m)
_ In+ L1-m)n+ i1 +m)
= T (16)

by (3), and first term ap = —Q(0;m) = (—1)%, then hypergeometric theory
(see any of several textbooks on the subject) gives, in standard notation,

= Q(n;m) _ 31-m), i1 +m),1
nz__:o e nEn sy — VP (2 %23_ l l) , (a7

whose r.h.s. evaluation to the correct closed form may, as a check, be accom-
plished easily through the application of Gosper’s algorithm by symbolic
computation (see [2], the author of which has executed appropriate code
to do precisely this and to whom we are grateful). We can do better still,
however, and to finish we detail two different hypergeometric proofs of this
identity:

Theorem 3
l1-m),1(1+m),1 1
3 (2( )ézé ) |1 =W[l_(_1)¥]'

Proof I Consider the equation (3, (3.8.2), p.21)

oF, (a.,b,e+f—a—b—1 Il)
e f
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D(e)L(f)I(e —a - BI'(f —a —b)
I'(e —a)l'(e - H)I(f —a)I(f - b)
1 T(e)r'(f)
(a +b-e)(a)(®)T(e+f—a— b)

e—a,e—b1
sF2 (e-—a—b+1,e+f—a—-b|l)’ 1)

which according to Bailey dates from a paper of 1891 by Saalschiitz. If
either @ or b is a negative integer, it reduces to the well known Pfaff-
Saalschiitz identity giving the sum of a terminating 3F3 hypergeometnc
series with unity argument. Setting a = (1 — m), b=lande=f= 2,
and cancelling a (non-negative integer) term 1 + }m that appears as both
an upper and lower parameter of the r.h.s. hypergeometnc function, the
above yields

Fs (%(l-m)é-;-§1+m),l Il)
22
r(3) T(3m)

()1 + 3m)

2 r2(2) N |
- — 3 z 1). 12
mI(G = 3mG+3m)" " \§+jm o

Gauss’ Theorem states that

2

a1,a; _P(®)l(by —ay —ap)
A (%57 1) = T = et o) )
iff Re{b, —(a1+az)} > 0, whence (since Re{2+im-(3+1)} =im > 1> 0)
31 ['(3 + 3m)T(3m)
2h (%i-m | ) 1"(1+-nf)r(2 + im) 1)
and the transformation (I2) becomes the evaluation
z(1- m), (1+m),
o (M)
[£®)_Tgm ]2
L(3) T+ 3m)
2 ) rdm g

" mT(E - Im)TG +im) T+ im)’
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Now, the property (for s #0,-1,-2,~3,...)

sI'(s) =T(s+1) (16)
of the Gamma function gives, noting that I'(3) = /7, ratios
r@ _ 1
rz — 2
r'(3m) 2
—2 = I 17
TA+lm) ~ m {7)
in addition to which
1 m 1 m
-_= —-t — | =(-D%
I‘(2 2)F(2+2) (-)%rx (I18)
is a special case of the general result
I‘(%—s)r‘(;—+s) = (-1,  s=0,1,2,... (19)
All of this reduces (I5) to read simply
11— 1 2 1
oF, z(1 m):,i2§1+m),1I1 _ [_1_3] _2 41; 2
53 2m m(-1)%rm
= 1 __ 1
T m?Z (-1)%m?
1
= —[1-(-D%], (110)

as required.0

Proof IT Consider [4, Theorem 3.5.5(ii), p.149] (derived from a combina-
tion of Theorem 3.5.5(i) therein, and a result attributed to Thomae), which
states that fora+b=1,e+ f=2¢c+1,

oF) (a,b,c 1)

e,f
_ (L) an)
22-1T'[L(a + e)|T[3(a + AITE (b + )T + £)]

Choosinga = §(1-m), b=3(1+m),c=1and e= f = § we have

11-m), (1 +m),1
3F2(2( »3(1+m)

33
222

[ 1) = f(m), (r2)
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say, where the r.h.s of (II1) contracts, using (I6), to

n* 1
8 I2(1 — im)[2(1+ im)

f(m) = (113)

We evidently have two cases to consider.

Case (a) In the first instance we see that for those values of m = 4, 8,12, 16,
..., then (1 + im) = I(2) = 1, I(3) = 2!, ['(4) = 3,,['(5) = 4!,....., whilst
I'(1 - 4m) =T(0),I'(-1),I'(-2),I'(-3),..., which are each unbounded so
that f(m)=0.0

Case (b) Set p = 0,1,2,3,..., and m = 4p+2 = 2,6,10,14,... Then,
noting that I'(1 — 4m)I'(1 + }m) = T'(} — p)T'(2 + p), which by (I6) and in
turn (19) = (3 + p)T'(3 — P)T'(3 + p) = n(-1)?(3 + p), (1I3) simplifies to

f(m(p)) = 5('5111-!-_1)“" (114)

whence f(m) = 2 follows trivially upon writing p = p(m).0

Summary

A previous presentation concerning a class of expansions of the sine function
allows, via integration, a general closed form to be found for sums of a
new group of associated infinite series; the corresponding hypergeometric
identity has been proven in two different ways.2
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Appendix A

As is seen in [5], the convergence condition for the r.h.s. series of (1) fol-
lows from consideration of particular cases of m beginning with m = 2.
Accordingly, it is but required to show that the expansion of sin(2a) holds

2Note that, using the same approach as here, Q.Q. Liu and M.R. Xinrong have
produced two slight generalisations of Theorem 3 (“T'wo New 3 F2 Summation Formulas”,
J. Comb. Math. Comb. Comp., to appear).
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for |a| < § in order that (1) does also.

To do so, we refer in the first instance to an earlier paper by Larcombe
and Fennessey [6] in which it was proven (in four different ways) that the
series form of the function /1 — 4z converges (to zero) at z = 1 (in addi-
tion to the known points on the open interval (—;‘-, 7). We now establish
the following result.

Lemma The infinite series expansion of /1 — 4z is a convergent one at
z = —1, and converges to V2.

Proof Consider the expansion

V1—4z=1-[22+222 + 42 +102* +282° +--.).

At z = % the series, as stated above, is known to converge to zero, and we

have (where § = })
28+28% +48° +108* + 2885 +.-- = 1.
At z = -1, the expansion of /1 — 4z is
1+28 —26% +46° — 108* + 284° —
which converges absolutely since the series of absolute values is
1+28+28%24+483 +108° +2885+...=1+1=2.

The result is proven by virtue of the fact that (i) absolute convergence is suf-
ficient for convergence of a series, and (ii) the convergent value is, employing
Abel’s Theorem (see, for example, [7, Chapter 3, p.149]), /1 — 4(-1/4) =
V2.0

We now finish the argument. The sen& form of the function /1 — 4z has
been shown to be convergent for |z| < ;. Hence, so is that of /T + 4z, and
thus /1 + z converges for |z| < 1. Slnce convergence of the series represen-
tation of sin(2a) is based on the convergence of /1 % z with z = Fsin’(a)
(see the proof of Result I in [5, p.41]), it follows that the associated condi-
tion is |a| < % as required.

Appendix B

With reference to Remark 2, we show here that the series Y., 1/(2n — 1)
and Y2, 1/(2n + 1) are unbounded.
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Consider, first,

d 1
2(211—1)

1+1 1+ o — 1 1
3 5 2—3 2 —1
QTIL P S SR S
2 3 4 5 6
+ 1 + 1 + 1 +l
2r—3 21'—2 2r—-1 2r
1+ + + o — 1 +1
16 2r—2  2r
yi_ 1yl
an 2n=n
2r1 1
Z——ln(2r)-—[2——-ln(r)] +In(2v7). (B1)
n
n=1 n=1

The r.h.s. is written in this way for it is known that }°4_,  —In(u) = Co
(i.e., the Euler-Mascheroni constant Cp = 0.5772...) as u — 00, giving

00 1 ) r 1
ng(zn-n = r%{g(zn—l)}

1 .
= Co— ECO + ,lggo{l‘l@\/;)}

= %00 + lim {in(2v7)}, (B2)

which is unbounded; it follows similarly that

1
:4:'1 2n+1)

is also unbounded.

Z 1
= lim —_—
. L 1 1
= rll»’?o{ng(zn—l)"(zrﬂ)‘l}

= %co -1+ lim {In(2v7)} (B3)
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