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Abstract

GWhD(v)s, or Generalized Whist Tournament Designs on v play-
ers, are a relatively new type of design. GWhD(v)s are (near) resolv-
able (v,k,k — 1) BIBDs. For k& = et each block of the design is
considered to be a game involving e teams of ¢t players each. The
design is subject to the requirements that every pair of players ap-
pears together in the same game exactly ¢ — 1 times as teammates
and exactly k — t times as opponents. These conditions are referred
to as the Generalized Whist Conditions, and when met, we refer
to the (N)RBIBD as a (t,k) GWhD(v). When k = 10, necessary
conditions on v are that v = 0,1 (mod 10). In this study we focus
on the existence of (2,10) GWhD(v), v =1 (mod 10). It is known
that a (21, 10,9)-NRBIBD does not exist. Therefore it is impossi-
ble to have a (2,10) GWhD(21). It is established here that (2, 10)
GWhD(10n + 1) exist for all other v with at most 42 additional pos-
sible exceptions.
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1 Introduction

Generalized Whist Tournament Designs were first introduced in [5). Gen-
eralized Whist Tournament Designs are defined as follows.

Definition 1.1 Let e, k,t,v be positive integers such that k = et and v =
0,1 (mod k). Let a be a positive rational number. A (t,k) General-
ized Whist Tournament Design on v players, having parameter a, is a
(v, k,a(k—1))-(N)RBIBD that satisfies the conditions indicated below. Each
block of the BIBD is considered to be a game in which e teams of t players
each compete simultaneously. Players on the same team are called partners
and players in the same game but not on the same team are called oppo-
nents. For each pair of players, say {z,y}, = is to be a partner of y ezactly
a(t — 1) times and z is to be an opponent of y ezactly a(k —t) times. Such
a design is denoted by (t,k) GWhDg(v). When v=1 (mod k) consistency
with the definition of a NRBIBD requires that a be an integer. When v =10
(mod k), practical reasons require that each of a(v — 1), a(k — 1), a(t — 1)
and a(k — t) be an integer. When a =1, all reference to the parameter a is
suppressed. The teammate and opponent balance requirements are referred
to as the Generalized Whist Conditions, so that if an (N)RBIBD sat-
isfies the additional requirements of the Generalized Whist Conditions, then
we will have a GWhD.

In this paper we consider ¢ = 1 and, in this case, it is customary to
eliminate a from the symbolism. The rounds of a (t, k) GWhD(v) are given
by the (near) resolution classes of the design. The games are displayed in the
form (a11,a12,...,811; ..} Gel,@e2, . - . , @et) Where the semicolons separate
the teams.

Definition 1.2 Let v = 0,1 (mod k). A Z-cyclic (t,k) GWhD(v) is a
generalized whist tournament design wherein players are taken as elements
inZy_1U{} ifv=knorinZ, ifv=kn+1l. Ifv=kn+1, the Z-cyclic
generalized whist tournament has the property that round i + 1 is obtained
from round ¢ by adding 1 (mod v) to every element in round i. If v=kn
then addition is modulo v — 1 and co + 1 = oco.

For Z-cyclic designs, the entire (¢, k) GWhD(v) can be constructed from
any one of its rounds. This one round is called the designs’s initial round.
If v = kn, the initial round is conventionally chosen as any round in which
oo and 0 are team-mates. When v = kn + 1, the conventional initial round
is that which omits 0.

Example 1.3 The initial round of a Z-cyclic (2,10) GWhD(10):
(00,0;5,4;2,7;1,8;6,3).



Example 1.4 The initial round of a Z-cyclic (2,10) GWhD(11):
(1,10;2,9; 3,8;4,7;5,86).

Example 1.5 The initial round of a Z-cyclic (2,10) GWhD(20):
(00,0;14,17;10,1;3,11;5,18), (13,15;16,4;2,6;8,9;7,12).

Example 1.6 The initial round of a Z-cyclic (2,10) GWhD(91) is obtained
by multiplying each of the following blocks by 1,16 and 74:

(53,3;47,7; 89, 27; 80, 66; 49, 25), (39, 26;81,45; 44, 42; 43, 33; 75, 74),
(60,37; 70, 12; 57, 11; 82, 19; 64, 58).

The designs in the next two examples were obtained by whistifying
BIBDs found by Morales [20, 21].

Exé.mple 1.7 The initial round of a Z-cyclic (2,10) GWhD(40):
(00,0;9,1;10, 38;12,30; 16,4), (7,27;11,13;14, 23,18, 33; 25, 35),
(8,5;19,26; 22, 28;29,34;2,3), (6,31;15,32;17, 21;20, 36; 24, 37).

Our last direct construction in this section is 1-rotational, over Zsq U
{oo}. The first base block is short and generates a partial parallel class
missing oo; the other base blocks form a partial parallel class missing 0.

Example 1.8 A (2,10) GWhD(51) over Zsg U {c0}:

(0,25;5,30; 10, 35; 15, 40; 20,45), (oo, 15;5, 38; 7, 27; 9, 24; 26, 48),
(1,3;21,25;30,37; 33,45;40,46), (10, 13;14,35; 17, 36; 20,47; 41, 49),
(2,11;6,42;12,28;19,43;39,44),  (4,22;8,18;16,29; 23, 34; 31, 32).

In Examples 1.3-1.8 one can utilize symmetric differences to verify that
the generalized whist conditions are satisfied [6].

Existence results have been established for a few specific cases of Gen-
eralized Whist Tournament Designs. In particular, the cases (t, k) = (2, 6),
(3,6) and (4,8), for both v = kn and v = kn + 1, have been stud-
ied [1, 2, 4, 3, 12, 13]. Existence of (¢,12) GWhD(12n + 1), t = 2, 3,4, was
investigated in [11]. In this paper we investigate the existence of (2,10)
GWhD(10n + 1).

2 Preliminaries

In this section we provide some theorems that are of fundamental impor-
tance for our existence arguments.

Theorem 2.1 [1] If v =kn + 1 is an odd prime power then there ezists a
cyclic (directed) (t,k) GWhD(v) for every t such that t|k.

The following theorem is a generalization of a theorem due to Baker [9]:



Theorem 2.2 Lets,u =1 (mod k) be such that (t,k) GWhD(s) and (t, k)
GWhD(u) both exist. If there exist k—1 MOLS of order s then there ezists
a (t,k) GWhD(su).

Theorem 2.3 [5, 15] Suppose there exists an RTD(km+1,kn+1) that is
given by a km+1 by kn + 1 difference matriz over an Abelian group, G, of
order kn+1 and a (kn+1,k,k—1) NRBIBD that is generated by a difference
family over G. Suppose also, 0 < w < n, and a (km,k,k ~ 1) RBIBD, a
(km + 1,k,k — 1) NRBIBD plus a (kw + 1,k,k — 1) NRBIBD all ezist.
Then o (km(kn+1)+kw+1,k,k—1) NRBIBD ezists. Furthermore, if the
RBIBD and all the input NRBIBDs are (t,k) GWhDs, then the resulting
NRBIBD is a (t,k) GWhD.

An application of Theorem 2.1 combined with results of Furino et al.
(see Corollary 2.5.4 in [15]) indicate that if kn + 1 is a prime power for
which kn 4+ 1 > km + 1 then the requirements on kn + 1 in Theorem 2.3
will be satisfied if we take G = GF(kn + 1).

Materials related to frames, for the most part, appear in the research
literature. An excellent text resource is the book by Furino, Miao and
Yin (15]. We provide the following material on frames which is sufficient
for our present purposes.

Definition 2.4 A frame is a group divisible design GDD\(X,G,B), such
that

1. the size of each block is the same, say k,

2. the block set can be partitioned into a family R of partial parallel
classes, and

3. each R; € R can be associated with a group G; € G so that R; contains
every point of X \ G; exactly once.

We use the notation (k,A) Frame of type g1,92,93,... to describe a
frame with groups of size g1, g2, .., (gi = |Gi|), blocks of size k and index
A. To say that the frame has index A means that any two elements from
different groups occur together in A blocks. If m of the groups of the frame
are of the same size, say g1 = g2 = : -+ = g, then we say we have a (k, )
Frame of type ¢7*,gm+1,.... A frame is said to be a (¢,k) GWhFrame
of type g1,92,... if the blocks of the frame satisfy the generalized whist
conditions.

Example 2.5 The blocks of a (2,10) GWhFrame of type 10'3 are obtained
by multiplying the following blocks by 81* for 0 < i < 2: (11, 45; 82, 10;
112, 80; 122, 55; 64, 126), (87, 51; 63, 47; 68, 14; 59, 96; 119, 97), (20, 61;
75, 40; 18, 38; 128, 125; 69, 54), (127, 46; 92, 41; 123, 3; 24, 43; 9, 116).
The groups are {13n:0<n <9} +0,1,...,12.



Example 2.6 The blocks of a (2,10) GWhFrame of type 10%° are obtained
by multiplying the following blocks by 81* for 0 < i < 6: (141, 155; 132,
20; 182, 200; 202, 175; 224, 56), (67, 251; 163, 17; 124, 198; 189, 206; 209,
197), (150, 221; 75, 280; 178, 148; 288, 115; 159, 204), (47, 146; 222, 231;
183, 53; 64, 133; 49, 216). The groups are {29n:0<n <9} +0,1,...,28.

Example 2.7 The blocks of a (2,10) GWhFrame of type 1037 are obtained
by multiplying the following blocks by 81%, for 0 < i < 8: (21, 75; 92, 10;
152, 210; 182, 85; 254, 36), (17, 231; 183, 7;84, 198; 209, 216; 359, 217),
(180, 311; 205, 60; 308, 298; 358, 315; 289, 184), (287, 116; 282, 331; 293,
233; 124, 283; 239, 306). The groups are {3Tn: 0<n <9} +0,1,...,36.

Example 2.8 The blocks of a (2,10) GWhFrame of type 105 are obtained
by multiplying the following blocks by 81°, for 0 < i < 12: (321, 355; 112,
20; 142, 420; 182, 445; 414, 246), (57, 311; 233, 47; 154, 218; 219, 386; 319,
497), (340, 351; 295, 520; 438, 328; 508, 415; 339, 334), (167, 276; 522, 441;
433, 213; 34, 243; 509, 496). The groups are {53n: 0 < n < 9}+0,1,...,52.

Theorems 2.9-2.18 are special cases of “abstract” theorems found in [15].
Proofs are provided here because our applications require that the blocks
of the frames satisfy the generalized whist conditions. Thus we need to
demonstrate that this is indeed the case.

Theorem 2.9 A (t,k) GWhD(kn+ 1) is equivalent to a (¢, k) GWhFrame
of type (1¥7+1).

Proof: Let = be any element in the design and let {z} to be the correspond-
ing group of the target frame. The partial parallel class that misses {z} is
the round of the (¢,k) GWhD(kn + 1) that omits z.

Theorem 2.10 Suppose we have a “master” K-GDD with g groups and
a group type vector of (|G;|:j =1,...,9), and a weighting that assigns a
positive weight of w(x) to each point z. Let W(B;) be the weight vector of
the i-th block. If, for every block B;, we have an ingredient (t,k) GWhFrame
with a group type vector of W(B;), then there exists a (t, k) GWhFrame with
a group size vector of (Ezecj w(z):j=1,...,9).

Proof: Considering the ingredient and resultant designs merely as frames,
the result is a variant of Wilson’s fundamental construction, known as the
GDD construction for frames [15, Corollary 2.4.3]. In that construction,
every block, B, of the master GDD, say (z1,%2,...,%|5), is replaced by
an ingredient GDD, formed on the point set {z x w(z) : z € B}, having a
group vector (w(zy), w(z2),...,w(z|s|)), where points with the same first
element are in the same group of the ingredient design. Clearly, any pair



of points in different master groups, z, y say, occur together in exactly one
block of the master design, and then our construction produces k — 1 blocks
containing the pair (z, 1), (y, 7) in the ingredient design on this master block,
and of these k£ — 1 blocks, the pair will be teammates in t — 1 of these blocks.

Corollary 2.11 Ifk+1 is a prime power, then there ezists a (t,k) GWh-
Frame of type k*+2.

Proof: Take AG(2,k + 1), and remove a point and its blocks. The deleted
blocks define the groups of a {k + 1}-GDD of type k**2. Since k+ 1 is a
prime power, a (t,k) GWh(k + 1) (i.e., a (¢,k) GWhFrame of type 1¥+1)
exists, and we can apply Theorem 2.10, giving all points a weight of 1. [

Theorem 2.12 Suppose we have a (t,k) GWhFrame with a group size vec-
tor of (|G1],1Gal,...,|Gql), and an RTD(k,n). Then there ezists a (t,k)
GWhFrame with a group size vector of (n|G1|,n|Ga2),...,n|G,]).

Proof: Considering both the (¢, k) GWhFrame designs merely as frames, the
result is a variant of Wilson’s fundamental construction, known as inflation
by an RTD (15, Corollary 2.4.6]. In that construction, every block, B, of
the input frame, say (z1,z,...,Zp)), is replaced by n? blocks of an RTD
formed on the point set {zx I, : z € B}. The team (alt. opponent) property
is inherited from the input frame, so if any pair of points in different input
groups, x, y say, occur together as teammates (alt. opponents) in some block
of the input design, and then our construction produces one block in the
output frame containing the pair (z, %), (y, j) as teammates (alt. opponents).
Since the input frame has the pair z,y in ¢ — 1 blocks as teammates, and
k—t blocks as opponents, that property is inherited by the pair (z, 2), (v, 5)-

Theorem 2.13 Suppose we have a (t,k) GWhFrame with a group size vec-
tor of (h|Gi|,h|G2l,...,R|Gy4|), and we have a (t,k) GWhFrame with a
group type of hlCilw! with w > 0 for 2 < i < g. Then there erists a (t, k)
GWhFrame with group types of hT~1C1(h|Gy|+w)}, where T = Y19 |Gyl
If a (t,k) GWhFrame with a group type of hIClw! also exists, then there
ezists a (t,k) GWhFrame with group type of hTw!.

Proof: Considering both the (¢,k) GWhFrame designs merely as frames,
the result is a standard one, sometimes known as breaking up groups [15,
Corollary 2.4.7], or else is known as filling the groups. Clearly, no two points
in different groups of the frame to be filled occur in any block of the filling
designs, so their generalized whist properties stay intact. Points within the



same group of the frame to be filled will either be in identical groups of the
filling design, or will get their generalized whist properties from the filling
design. A new point in the group of size w will get its generalized whist
properties (with respect to some other point of the frame to be filled) from
the unique filling design that contains that other point (unless that point
lies in the first group of size h|G,| and the group of size k|G| + w does not
need to be filled). Pairs of new points are in the same group of size w or
hiG1| + w. l

Corollary 2.14 Suppose there ezists a (t,k) GWhFrame of type vP where
v =0 (mod k). If there ezists a (t,k) GWhD(v + 1), then there exists a
(t,k) GWhD(pv + 1).

Theorem 2.2 can now be interpreted as starting with a (¢, k) GWhFrame
with a group type of 1* (noting Theorem 2.9), inflating by an RTD(k, s)
(using Theorem 2.12) to get a (t,k) GWhFrame with a group type of s,
then filling the groups with (¢, k) GWhFrames with a group type of 1° to
get a (t,k) GWhFrame with a group type of 1°* by Theorem 2.13, then
using Theorem 2.9 again to treat this design as a (¢, k) GWhD(su).

Lemma 2.15 Let p = 1 (mod k) be a prime power. If there exists ¢ Z-
cyclic (t,k) GWhD(v) defined on Z,—1 U {oo} then there ezists a (t,k)
GWhPFrame of type vP.

Proof: Take X = {Z,-1 U {o0}}xGF(p). Let = denote a primitive element
for GF(p). Set a = (p — 1)/k, k = et and let

(ag ,agé),...,ag);...;aﬁ),...,a,(-:')), i=1,...,v/k
denote the games in the initial round of the Z-cyclic (¢, k) GWhD(v) defined

on Z,_1 U {oo}. Without loss of generality we assume that agll) = oo and

(1)
(112 = 0.
In [1], the initial round tables of a (t,k) GWhD(p) defined on GF(p)
are given by (team$;team$;...;team?), b=0,1,...,a— 1, where

team? = zb, geotb geatb  g(t-l)eatb

teamg = z.a+b’ z(e+l)a+b, 1.(2e+1)a+b’ . ,x((t-—l)e+l)a+b’
teamg = x(e—l)a+b’x(2e—l)a+b’ . ’l.(te—l)a-i-b_

Take as groups (for our target frame) the sets G; = {Z,-, U {o0}} x {i},
i €GF(p). Let

S0 = {(ah,2%), (0}, 2°*2), .., (ak, 2"+~ 02); (@3, 2o¥02), .,
(%, 2"+ C=D9); . (afy,a*HE D), (af, 2D,

i=1,2,...,v/k; s=0,1,...,a— 1.



Note that Sp consists of av/k blocks (games) and hence av elements. Set
Sy = So-(1,z%), y = 0,1,...,k — 1. If S denotes the collection of all
blocks contained in S, then it is easy to see from the description that S is
a partial parallel class that misses Go. Furthermore S + (g,0), g € Z,_,
is also a partial parallel class that misses Go. Thus we have v — 1 partial
parallel classes that miss Go.

Let 0<m<a-1andzé€ Z,_;U{oo}. Consider the collection, T, of
all blocks T3, . with

T,z = {(2,2™%), (2, z™Fee+Y), | (2, g™ H(E-Deatdy,

m+(e—1)a+b m+(2e~1)a+b m+(te—1)a+b
(zix )’(Z’z ),"‘7(z’x )}1
b=0,1,...,a—-1.

Then T is a v-th partial parallel class that misses Gy. Now, if C is
any partial paralle] class that misses Go then C + (0,zY) for a fixed y €
{0,1,...,p — 2} is a partial parallel class that misses G». Applying this
latter operation to each of the v partial parallel classes that miss Gy and for
each y € {0,1,...,p — 2} produces the desired frame. That the blocks sat-
isfy the generalized whist conditions is discerned from the (¢,k) GWhD(v)
structure in the S sets, the (¢,k) GWhD(p) structure in the T sets, the
utilization of the rounds of the (t,k) GWhD(v) in the operation S + (g,0)
and the utilization of the rounds of the (¢,k) GWhD(p) in the operation
C +(0,zY).

In Lemma 2.15 it is clear that we could relax the Z-cyclicity assumption
on the GWhD(v), noting the first members in the ordered pairs in Sy follow
the structure of the first round of the (¢, k) GWhD(v), and in place of the
operation S+ (g, 0) one could use each of the rounds of the (¢, k) GWhD(v).
However, we can also dispense with the primality assumption and the Z-
cyclicity assumption on the GWhD(p) (which will be satisfied if p is a
prime anyway). The key observation is that, in the proof of Lemma 2.15,
we inflated the GWhD(v) with a partial difference matrix that had no zeros
init. If p=1 (mod k) is a prime power, then we have a (k + 1) by p DM,
and we could assume that the first row and column were all 0, and delete
these.

Theorem 2.16 Let p = 1 (mod k). Suppose a TD with a parallel class,
i.e.,, a TD*(k + 1,p), and a (t,k) GWhD(v) ezist. If there ezists a (¢, k)
GWhD(v), v =0 (mod k), then there ezists a (t,k) GWhFrame of type vP.

Proof: We contruct the frame on I, x I, and, without loss of generality, we
can assume the parallel class of our TD*(k + 1, p) is the block set I41 x {i}
for i =0,1,...,p — 1. We delete these blocks, and one group of the TD.
Note that each deleted point defines a holey parallel class that includes one
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deleted block as the hole. This modified TD is an example of a double
GDD, which has two sets of groups, one (the original) of type p*, and
one (introduced by the deletion of the parallel class) of type k. A group
from the first system has one point in common with every group of the
second system. DGDDs with this property are often called modified GDDs
(MGDDs) and were introduced by Assaf [8]. We will follow the construction
we used in Theorem 2.12 and, for each block, B of the (¢, k) GWhD(v), form
a design on B x I, using this modified RTD to form the new blocks, with the
team assignments inherited from B. Since we are inflating the GWhD with
a deficient RTD, it’s clear we will get some sort of deficient GDD of type
p¥. We fill these groups of this design with v copies of a (t, k) GWhD(p).
Now let’s examine the deficiency. If B = (by,ba,...,bk) is a block of the
GWhD(v), then we never form the blocks {(b;,7) : ¢ = 1,2,...,k} for any
J (and if we did, they would be the deficit in the GDD of type p¥). With
the new groups of the target GDD as G; = I,, x {j}, we see that we never
produce blocks with groupmates in the new system, and counting pairs,
. these are the only missing pairs in the design we produce, so we actually
have (after the filling (¢,k) GWhD(p)s are adjoined) a GDD of type v?. It
is easy to see that the (¢, k) generalized whist conditions hold, so we now
look at the resolvability.

Take the v/k blocks of a parallel class of the GWhD(v), and inflate
them using the holey parallel class of the MGDD that misses I x {5}, to
produce a holey parallel class missing G; having v(p — 1)/k blocks. Repeat
for the other parallel classes of the GWhD(v), and we have (v — 1) parallel
classes missing G;. The last parallel class missing G; is formed from the
holey parallel classes of the filling designs on {i} x I,. Take the parallel
class that misses (7, j) from the i-th filler, and collect the v sets of (p—1)/k
blocks to give the final class missing G;.

Corollary 2.17 Let k+1 be a prime power. If there is a (t,k) GWhD(k),
then a (t,k) GWhFrame of type k**! erists.

Theorem 2.18 [5] Let 0 < w; S u for 1 <i < n and let W = Y w;, and
suppose that:

1. a TD(k + 1+ n,u) exists;

2. a (t,k) GWhFrame of type k™ ezists fork+1<m < k+1+mn;

3. a(t,k) GWhD(kv + 1) exists for v=u and v = w; for 0 < w; < u;
Then a (t,k) GWhD((k + 1)ku + kW + 1) ezists.

Proof: Truncate the i-th group of the TD to size w;. This gives a {k +
L,k+2,...,k+14n} GDD of type u*+'w}ws - .. wl. Now give all points

11



a weight of k in Theorem 2.10, using the hypothesized frames as ingredients.
Finally, use Theorem 2.13, and fill the groups with the GWhDs, using an
extra point. [ |

3 Golay type frames

We do give some examples of (2,10) GWhFrames, and also give (2,10)
GWhD(v)s for v = 481, 551 here, as well as examples of frames with other
block sizes. We have expanded the section beyond the (2,10) GWhFrames
as we think further results might be available in this area, even if we cannot
yet provide them.

Example 3.1 The blocks of a (2,10) GWhFrame of type 2!! are given by
developing the following blocks over Zjy:

(4,6;3,16;13,18;12,8;20,21) (12,6;4,7;3,10;5,13;9,19)

Each base block, B, generates 11 holey parallel classes of the form {B +
i, B + (11 + i)} missing the group {i,11+1i} for 0 < ¢ < 10.

Example 3.2 The blocks of a (2,10) GWhFrame of type 3!! are given by
developing the following blocks over Zss:

(23,13;3,28; 26, 30, 27,32;20,18)  (1,18;14,32;4,17;5,2;9, 30)
(1,28;14,7;4,13;5,19; 20, 21)

Each base block, B, generates 11 holey parallel classes of the form {B +
i, B+(11+t), B+(2241)} missing the group {i,11+i,22+:} for0 < i < 10.

Example 3.3 The blocks of a (2,10) GWhFrame of type 4!! are given by
developing the following blocks over Zy4:

(23,24;3,28;4,30;27,32;20,18) (1,29;3,32;15,6;38,2;31,19)
(1,28;14,18;37,13;38,8;20,10) (1,8;3,24;4,10; 16,29; 42, 39)

FEach base block, B, generates 11 holey parallel classes of the form { B+i, B+
(11+1), B+(22+1), B+ (33 +1)} missing the group {i,11+1,22+14,33+1}
for0<i<10.

Lemma 3.4 A (2,10) GWhD(v) ezists for v = 481, 551,

Proof: For 481, take an AG(2,11) and delete a point and its blocks to get
a 11-GDD of type 10!2. Give all points of this design a weight of 4 in
Theorem 2.10, and use the (2,10) GWhFrame of type 4!! of Example 3.3
as the ingredient design to get a (2,10) GWhFrame of type 40!2. Similarly
for 551, take a TD(11,25), and give all its points a weight of 2 using the
(2,10) GWhFrame of type 2!! from Example 3.1 to get a (2, 10) GWhFrame
of type 50!, Applying Corollary 2.14 to these frames of types 40! and
501! now gives the required designs.
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Although Lemma 3.4 gives the only needed designs that we can use the
frames of Examples 3.1-3.3 to construct, we could inflate the (2,10) GWh-
Frame of type 2! with an an RTD(10, 80) and, if we had a (2, 10) GWhD(v)
for v = 161, we could then fill the groups for a (2,10) GWhD(10n + 1) for
n = 176.

Example 3.1 was first constructed as a frame, and then team assign-
ments were made in our frame. We think the construction of the frames
merits further comment, so let us ignore the team assignments in Exam-
ples 3.1-3.3 and rewrite the base blocks over G x Z; where G is some group
(here G = Z5 or Z3 or Z,), and since each base block has no elements that
are congruent to 0 (mod 11), we can omit column 0.

|1 2 3 4 5 6 7 8 9 10

Zy x Z11

B,|lo 11 0 0 0 O0 OO0 1
B,|]o 11 0 1 01 1 1 O
Z3 X Zu

B;|l]2 10 2 01 0 0 2 2
B;l1 2 2 1 2 2 0 0 0 2
B;i1 1 2 1 2 1 11 2 O
Z4 X Zu

B3 0 3 03 0 2 2 0 O
Bj1 2 3 3 2 2 1 3 3 O
Byjf1 1 2 1 2 0 2 0 0 2
Bsf1 0 3 00 3 10 2 2

Now let us define the aperiodic autocorrelations at lag t for the |G| by

k array A.
i=|G| j=k—t

L -1
sr=U U aij e aijn
i=1 j=1

i=|G| j=k—t
R -1
¢ = U U @i jye ® Qg

i=1 j=1
where a o b is the group operation, and U represents the multiset union
operator, so frequencies are preserved. We also denote the multiset where
each element of G occurs exactly m times as m - G.

In order for the array to form a set of base blocks, we need

¢zLU¢f+1—t =(k-1)-G

for 1 <t <k, and we have the convention that ¢,’; = ¢f =0.
When G is Z5, (or Z3 X Z» or any number of direct products of Z;) every

element z of G satisfies ! = , so in this case we always have qu‘ = ¢k.
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For the above design over Z;, the pair of base blocks B;, By satisfy
not just the required condition for the above designs, (i.e., ¢F UR,,_, =
(k—1)-G) but also ¢* = (k- t)- G (for 1 < t < k. This extra condition
means the given pair of base blocks is a Golay complementary pair [17],
and for such a pair (B;, By) we can double the length of the blocks B;,
B> to obtain another Golay complementary pair, and hence also a (20, 19)
frame of type 22!. (If || is the concatenation operator, the doubled pair is
(B1]|Bz2, Bil|(B2 +1)).).

We note that this doubling process makes use of the fact that the ar-
ray D, below is a (2,2,1) difference matrix. If the above design over Z3
also satisfied ¢f = (k —t)- G (for 1 < t < k then by similarly noting
that the array D; below is a (3, 3, 1) difference matrix, we could triple the
block sizes to obtain a (30,29) frame of type 33!. The tripled base blocks
would be (Bi||Bz,|Bs), (B1l|(Bz +1)||(Bs +2) and (B1||(B2 +2)||(Bs +1).
Unfortunately, there is no set of 3 base blocks for a 3! frame satisfying
¢ = (k—1t)-G for 1 <t < 10; (for the 3!! design above, this condition
fails for ¢ = 4 and 7).

000
Dl(g(l)) DQ: 01 2
0 21

More generally if G is the addive component of GF(g), then there exists
a (G,g,1) difference matrix D, so if By, Bs....,B, are our base blocks
(for a (k,k — 1) frame of type g¥*! over G satisfying the extra condition
#F = (k—1t)-G for 1 < t < k, then the base blocks for a (gk, gk — 1) frame
of type g9%~! can be taken as

By + D;y, Ba+ D2, Bs+ D;3,...,Bg+D;gfor1<i<g.

For our other two cyclic groups, ¢f can be computed from ¢ by re-
placing a by —a for every element in the multiset. It would be interesting
to know what Golay type |G|-complementary sequences there were over
groups other than Z;, and if there were any analogue for them of the Golay
doubling construction. There are some other known sequences that yield
(k,k — 1) Frames of type |G|*+1.

In the following examples, the first two are Golay pairs; the last is
taken from Lu and Zhu [22, Lemma 2.1]; some are taken from Geramita
and Seberry [16, Lemma 4.144]. The GF(4) x Z5 has the property that
¢F = ¢ = (k—t)-Gfor1 <t <k, and the Z3 x Z5 and Z3 x Zy7
arrays have the property that ¢f = ¢ plus the property that the arrays
are cyclically developed over Z3 (i.e., B; = B;_y + 1 for ¢ = 2,3). This
means that the index can be reduced by deleting the last two base blocks.
We highlight this in Theorem 3.5.
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Zo X Z3 Zy X Za7

B (11 B; | 11100111010000010110010000
B; | 10 B, | 11100111010010101001101111
Zg X Zs Zg X Z14

B, | 11101 B; | 1111001110101

B, | 10011 B, | 0111101100100

Z3 X Z5 Z3 X Z17

B, | 2112 B, | 0010122002210100

B, | 0220 B, | 1121200110021211

Bs | 1001 B3 | 2202011221102022

GF(4) % Zs

B, | 10,00,01,00

B, | 01,11,00,01

B3 | 00,11,01,01

B, | 11,00,00,00

Theorem 3.5 A (16,5) frame of type 3'7 ezists.

There is another consequence illustrated by the Lu and Zhu example.
This is not a new result, and amounts to taking the trivial (p,p — 1) frame
of type 177! given by the base block Zp41 \ {0}, and inflating with an
RTD(p, p), but perhaps viewing this construction in our array sequence
setting might be suggestive.

Theorem 3.6 If p is a prime power, then a (p,p — 1) Prame of type pP*!
exists.

Proof: For our GF(p) by Z,41 array, place the transpose of a difference
matrix over GF(p) in columns 1-p of the array. [ |

4 Existence results

Our objective here is to establish that Table 1 contains all our possible
exceptions.

There is one known non-existence result. Greig et al. [18, 19] showed
that no (21, 10,9) NRBIBD exists, so certainly no (2,10) GWhD(21) exists.

Lemma 4.1 (2,10) GWhD(10n + 1) ezist for each n < 142 that does not
appear in Table 1.

Proof: There are 142 — 31 — 1 = 110 cases to verify. Verification for these
cases is provided as follows:

Solutions for n = 5 and 9 can be found in Examples 1.8 and 1.6, while
n =11 is given by Lemma 2.15.
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Table 1: Table of n for which no (2,10) GWhD(10n + 1) is known

(2)
38
80
116
205

14
39
83
119
207

16
47
90
170
268

17
50
92
171

20
51
93
173

22
58
95
175

23 26
59 68
98 112
176 177

30
73
113
178

35
79
114
179

There are 61 values of n < 143 for which 10n + 1 is a prime or prime

power.
1 3 4 6 7 8 10 12 13 15
18 19 21 24 25 27 28 31 33 36
40 42 43 46 49 52 54 57 60 63
64 66 69 70 75 76 81 82 8 88
91 94 96 97 99 102 103 105 106 109
116 117 118 120 123 129 130 132 133 136
138

The following 39 values of n are covered by Theorem 2.3 with km = 10
and kn 4 1 € {31,41,61,71,81,101,121,131}:

32 34 41 44 45 61 62 65 67 71

72 74 77 T8 8 8 87 89 101 104
107 108 110 111 121 122 124 125 126 127
128 131 134 135 137 139 140 141 142

An application of Corollary 2.14 with the (2,10) GWhFrames of types
1029, 10%7 and 1053 given in Examples 2.6-2.8 provides (2, 10) GWhD(10n+
1) for n = 29, 37 and 53.

The remaining cases are for n = 48, 55, 56 and 100. n = 48 and 55 are
given by Lemma 3.4, while n = 56 and 100 can be obtained by applying
Theorem 2.2 with s = 11 and u = 51 or 91.

Theorem 4.2 Let 0 < w; < u for i = 1,2, and suppose that a TD(13,u)
exists, and that a (2,10) GWhD(kv + 1) exists for v = u,w,w2. Then a
(2,10) GWhD(110u + 10wy + 10wy + 1) exists.

Proof: This is an application of Theorem 2.18 with n = 2. The ingredient

designs we need are (2, 10) GWhFrame of type 10™ for m = 11, 12 and 13.
These are given by Corollary 2.17, Corollary 2.11 and Example 2.5. B
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Lemma 4.3 (2,10) GWhD(10n + 1) exist for 143 < n < 274, ezcept pos-
sibly for the following 11 values of n.

170 171 173 175 176 177 178 179 205 207 268

Proof: There are 132 values to be considered; 65 of them (143 < n < 169
and 209 < n < 247, n # 244) can be handled by Theorem 4.2 with w = 13
or w = 19. 22 more cases (n = 172, 174, 180, 181, 183, 186, 187, 190,
193, 195, 201, 208, 244, 252, 253, 255, 259, 262, 267, 271, 273, 274) can be
handled by Theorem 2.1 since 10n + 1 is a prime power. The remaining
132 — 65 — 22 — 11 = 34 cases, specifically when n € {182, 184, 185, 188,
189, 191, 192, 194, 196, 197, 198, 199, 200, 202, 203, 204, 206, 248, 249,
250, 251, 254, 256, 257, 258, 260, 261, 263, 264, 265, 266, 269, 270, 272}
are obtained by Theorem 2.3 with km = 10 and kn + 1 € {181, 191, 241,
251}.

Lemma 4.4 There ezists a (2,10) GWhD(v) for v = 10n + 1 and 275 <
n < 2001.

Proof: These designs can all be obtained by Theorem 4.2 with w € {25,
27, 29, 32, 37, 43, 49, 53, 61, 67, 71, 81, 89, 97, 109, 121, 131, 139, 151,
163, 169}. More specifically, the following ranges for v are covered: [110w+
1,110w+401] for w = 25,27, 29; (110w + 1, 110w + 641] for w = 32; [110w +
1,110w + 741) for w = 37, 43, 49; [110w + 1, 110w + 991] for w = 53, 61,
67, and [110w + 1, 110w + 1421] for w = 71, 81, 89, 97, 109, 121, 131, 139,
151, 163, 169.

It is now straighforward to show that a (2,10) GWhD(v) exists for all
v =1 (mod 10), v > 19911. It is not hard to check that any number in the
range 0 < W < 197 can be written as W = w; + ws with 0 € w; < wp £
181 such that neither w; or ws is 2, nor appears in Table 1. If a (2,10)
GWhD(10u+1) and a TD(13, u) exist and » > 181, then Theorem 4.2 gives
a (2,10) GWhD(v) for all v = 1 (mod 10), 110u + 1 < v < 110u + 1971.
Further, in any set of 9 consecutive odd integers, at most three values are
divisible by 3, two by 5, two by 7 and one by 11, so there is always at least
one value, u, in this range such that a TD(13,u) exists. Hence any v =1
(mod 10), v > 19911 = 110 - 181 + 1 can be written as 110u 4+ = where
z=1 (mod 10), 0 <z = 10W +1 < 110- 18 = 1980, u > 181, a TD(13, u)
exists, and a (2,10) GWhD(10u + 1) exists also. (Since 205, 207, 268 are
divisible by 5, 3 or 2, they would not be a value of u picked by the above
process.) Thus Theorem 4.2 gives a (2,10) GWhD(v) for all v = 1 (mod
10), v > 19911.

Combining all the results of this section we have:

Theorem 4.5 A (2,10) GWhD(10n + 1) ezists for all n, ezcept forn =2,
and possibly for the following 42 values of n:
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14 16 17 20 22 23 26 30 35 38

39 47 50 51 58 59 68 73 79 80

83 90 92 93 95 98 112 113 114 116
119 170 171 173 175 176 177 178 179 205
207 268
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