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Abstract

We show that deciding if a set of vertices is an eternal 1-secure
set is complete for co—- NPV P, solving a problem stated by Goddard,
Hedetniemi, and Hedetniemi [JCMCC, vol. 52, pp. 160-180].

1 Introduction

Let G = (V, E) be a simple graph. Let N(v) denote the open neighbor-
hood of vertex v and N[v] = N(v) U {v} the closed neighborhood of v. A
dominating set of G is a set D C V such that, for all v, N[vJn D # .

Considerable recent interest has been given to problems concerned with
protecting the vertices in a graph from a series of one or more attacks,
see for example [1, 2, 5]. In this scenario, guards are located at vertices
and can protect the vertices at which they are located and can move to
a neighboring vertex to defend an attack there. Under this simple set of
rules, a dominating set suffices to defend a graph against a single attack.
Several variations of this problem have been proposed including Roman
Domination (3], Weak Roman Domination [4] and k-secure sets/eternal
secure sets [1, 2, 5).

Let R denote a sequence of vertices. If sequence R is of length k, we will
sometimes denote it as Ry. Let R(i) denote the i** vertex in R, with R(1)
being the first vertex in R. R is interpreted as the location of a sequence
of attacks at vertices, each of which must be defended by a guard. At most
one guard is allowed to move to defend each attack.

Let Dy be the initial location of the guards and D; the location of the
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guards after R(i) is defended. We allow at most one guard per vertex. It
must be that R(Z) € D;. Then if R(Z) ¢ D;_,, D; = D;_, \ {‘U} U R(i),
where v € D;_; and R(i) € N(v), and we say a guard moved to R(3).

Note that in order to defend any first attack, Dy must be a dominating
set. We are now ready to define two types of guard sets.

(1) D is a k-secure dominating set if, for all Ry, there exists a sequence
Dy, Dy, ..., Dy such that D; = D;_; \ {v} U R(i) (possibly v = R(3)),
R(i) € N[v], and each D; is a dominating set. The size of a smallest k-
secure set in G is denoted 4,(G) [1].

(2) D is an eternal secure set if, for all R, there exists a sequence Dy, Dy,...,
such that D; = D;_,; \ {v} U R(i) (possibly v = R(i)), R(i) € N[v], and
each D; is a dominating set. This is also called an eternal 1-secure set [5].
The size of a smallest eternal set in G is denoted 7,0 (G) [2).

Goddard et al. conjectured that deciding if a set of vertices if an eternal
secure set lies in the first few levels of the polynomial time hierarchy [5].
In this paper, we resolve the complexity of this problem and consider the
complexity of two related problems.

2 NP-completeness

The following result shows that the problem of deciding which guards to
move to defend a sequence of attacks is difficult, even if one knows the
sequence of attacks in advance.

Theorem 1 It is NP-complete to decide if, given a sequence Ry, as part
of the input, a set of vertices D is a k-secure set in graph G = (V, E).

Proof: The problem is obviously in NP, as one can guess a guard to move
to R(i) for each 7 and then verify whether or not each D; is a dominating
set.

We now show it is NP-hard via a reduction from 3-SAT. Let F be
an instance of 3-SAT with clause set C = ¢,¢3,...,¢ and variable set
U = u1,uz,...u44. Denote the three literals (i.e., variables or negations of
variables) in clause ¢; as u}, ub, u}. Assume without loss of generality that
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no clause contains both a variable and its negation. Variable u is said to
be the underling variable of literals u and —w.

Construct a graph as follows. For each clause ¢; create a clause verter
¢i. For each of the three literals in clause c;, create literal vertices ui,ub, uj
corresponding to the literals in clause ¢; and connect each to ¢;. Then for
each pair of literal vertices u},u such that u} corresponds to the negation

of uJ create a vertex w; ”’ (called a w-type vertex) and add edges ukwf o
u’ w; 'J" Note that we create exactly one w-type vertex for each pair of com-
plementary literals. The w-type vertices will serve to ensure a consistent

truth assignment.

Now consider the sequence of vertices R = ¢, c¢3,...,c and the set of
vertices D = {u]|1 < i < 3,1 < j < r}. We claim that D is an eternal
secure set for G and R if and only if F is satisfiable. Note that the graph,
D, and R can be constructed in polynomial time. We interpret the vertices
in D as guards stationed at those vertices.

First suppose that F is satisfiable. Then each clause ¢; has at least one
“witness,” which is a literal that evaluates to “true” (i.e., a non-negated
literal whose underlying variable is assigned the value “true” or vice versa).
Move a guard stationed at one such true literal vertex to the clause vertex
for that clause. Do this for all clauses in the order specified by R. Note that
the resulting configuration of guards is a dominating set, since the truth
assignment is consistent, and thus each w'c is dominated by the resulting
configuration of guards.

Next suppose that D is a k-secure set for G and R. We show F is
satisfiable. To satisfy a request ¢; in R, a guard at one literal vertex must
be moved to ¢;. This indicates which literal satisfies clause ¢;. To see
that this truth assignment is consistent, observe that if a variable and its
negation are witnesses for distinct clauses, then some wk"’ vertex will not
be dominated by the final configuration of guards. O

The graph constructed by this reduction can be seen to be bipartite.

3 Eternal Security

The clique cover number of G, 8(G), is the minimum number of cliques
required to cover the vertices of G (which is exactly the chromatic number
of the complement of G). It is easy to prove that v, (G) < 8(G) [2, 5].
Goddard et al. demonstrate some graphs for which v, (G) + ¢ < 8(G) for
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any constant ¢ [5]. Let 8(G) denote the independence number of G. It is
easy to see that 7,,(G) > B(G) for all G [5).

In [5] the complexity of deciding if a set is an eternal secure set was left
open. We now solve this problem.

Theorem 2 Deciding if a set D is an eternal set is in co-NPNP,

Proof: Consider the complementary problem of deciding if a set D is not an
eternal set for G. We show this problem is in NPN¥P. Assume without loss
of generality that G is connected, else consider each component separately.

Let Dy, D; be subsets of V' of equal cardinality. Define distance(D;, D;)
as the minimum number of moves required to change D, into D, where

a move replaces a vertex v in D; with a neighbor of v. Obviously, for all
Dy, D; in G, distance(Dy, Dp) < V2.

Observe that if D is not an eternal set for G, there exists a finite sequence
Ry such that Dy (recall that Dy is the configuration of guard after defending
the sequence of attacks in Rj) is not a dominating set. In fact, since
the distance between any two sets is less than |V|?, there exists such a
sequence having length less than |V'|2. So if such a sequence exists, a non-
deterministic polynomial time Turing machine can guess it.

Given such a sequence R, for each vertex R(i) in the sequence, there
may be more than one guard that is adjacent to that vertex (and thus there
can be more than one possible way to move a guard to R(:)). Hence for
the sequence Ry, there may be (exponentially) many ways of defending the
sequence of attacks. Using an oracle for NP, we can decide if none of those
ways is such that D; is a dominating set for all 7, 0 < i < k. Hence the
result. O

Note that the same complexity applies the problem of testing of a set
is a k-secure set, if k is sufficiently large.

Theorem 3 Deciding if a set D is an eternal set is hard for co-NPNP,

Proof: Let F* be a quantified 3-SAT instance of the form

Vuy, v, ..y UmIUmt1, Umg2, - - Ug F

where F is a 3-SAT instance with clause set C = c;, ¢p, ..., ¢, and variable
set U = u;,us,...u,;. Assume without loss of generality that no clause
contains both a variable and its negation.
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We will start with the same reduction used Theorem 1 and make the
following additions. First, connect any wf' 'j” vertices that correspond to the
same underlying variable together into a clique. For each universally quan-
tified variable u;, create two new literal vertices u;, ~u; and three other new
vertices b;,d;, e; and edges u;b;, b;—u;, ~u;d;, d;e;, use;, u;~u;. Call the sub-
graph induced by these five vertices a quantifier gadget. Create additional
w-type vertices for each pair of literal vertices u;(—u;), u{c that correspond
to negations of one another, as before (but no w-type vertex is created for
the specific pair u;, ~u;). Of course, these additional w-type vertices will
become part of the various cliques of w-type vertices.

One can observe that S(G) = 3r + 2m (take all the u,d;,e; vertices,
for example). Let D be the set of literal vertices, keeping in mind that D
contains the uf vertices and the subset {u;,—u; : 1 < i < m}. Therefore
|D| = 3r +2m. We claim D is an eternal set if and only if F* is satisfiable.
Suppose D is an eternal set. Then the following 2™ different sequences
of attacks can be defended with the final configuration of guards being a
dominating set:

dl(el)) d2(62)> “e adm(em)y C1,C2,...4Cp

By the notation d;(e;) in this sequence, we mean that you can choose either
of those two vertices to be attacked. In terms of F*, choosing e; to be
attacked means that we are forcing the variable u; to be true (since this
will force some literal vertex corresponding to the negation of u;, to defend
a w-type vertex that is a neighbor of —~u;, and this literal will not be able to
serve as a witness for any clause); choosing d; to be attacked means we are
forcing the variable u; to be false. If each such sequence can be defended
with the ending configuration of guards being a dominating set, then F* is
satisfiable, using the same logic as in Theorem 1.

Now suppose F* is satisfiable; we must show D is an eternal set. By
the same logic used before, we can defend any sequence of attacks of the
form

dl (61), d2(62), reey dm(em): C1,€2,...,Cr

But of course there are other sequences of attacks to consider. The subgraph
induced by a quantifier gadget has clique cover number equal to two and
each clique of w-type vertices has clique cover number equal to one. So if
F* is satisfiable, any sequence of attacks can be defended by the following
strategy: (1) each ¢; vertex is defended by a guard at the witness literal
vertex for the clause (as in Theorem 1 and as above), (2) any w-type vertex
is defended by a guard at a neighboring literal vertex that either “false”
(i.e., a non-negated literal whose underlying variable is assigned the value
“false” or vice versa) or is not the witness chosen to defend that particular
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clause vertex (note that at some point in time, it is possible that this
guard is residing at another w-type vertex within the same clique) (3) each
quantifier gadget is defended by the two guards that initially reside within
the gadget (4) any attack at an unoccupied literal vertex can be defended
by a guard at a neighboring w-type vertex. Hence the proof. O

Of course, the graphs constructed by this reduction are, in general, not
bipartite; thus the following partial result regarding bipartite graphs.

Fact 4 Deciding if a set D is an eternal secure set for a bipartite graph G
is in PNP,

Proof: We show that D is an eternal secure set if and only if [D| > 8(G)
and D is a dominating set. This implies the result, as one must be able
to compute the exact value of 8(G) (which is in PNP, is NP-hard, but
not necessarily in NP.) One direction is trivial. For the other, suppose
|D| > B(G) and D is a dominating set. Then D is a clique cover and thus
forms an eternal secure set. O

We leave open the question of determining the exact complexity of the
last problem.
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