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Abstract: For given integers k and ¢, 3 < k < ¢, a graphic sequence
7 = (d1,da,...,dn) is said to be potentially xCe-graphic if there exists a
realization of 7 containing C,. for each 7, where k£ < r < £ and C; is the
cycle of length . Luo (Ars Combinatoria 64(2002)301-318) characterized
the potentially Ce-graphic sequences without zero terms for £ = 3,4,5. In
this paper, we characterize the potentially . C,-graphic sequences without
zeroterms for k=3, 4 <f¢<5and k=4, £=5.
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1. Introduction

A n-term non-negative integer sequence, 7 = (dj,ds, .. .,dy), is said to
be graphic if it is the degree sequence of a simple graph G on n vertices and
such a graph G is referred to as a realization of w. For a given non-negative
integer sequence m = (di,ds,...,ds), define o(7) = dy +dz + -+ + dan.
The set of all n-term non-increasing graphic sequences without zero terms
is denoted by GS,,. For a given graph H, a sequence ® € GS, is said to
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be potentially H-graphic if there exists a realization of 7 containing H as
a subgraph. Moreover, for given integers k& and ¢, 3 < k < ¢, a sequence
T € GS, is said to be potentially . Cy-graphic if there exists a realization of
7 containing C, as a subgraph for each 7, k < r < .

In [2], Gould, Jacobson and Lehel considered the potentially H-graphic
sequences. They considered the following problem: determine the smallest
even integer o(H, n) such that every n-term graphic sequence 7 with o(7) >
o(H,n) is potentially H-graphic. If H = K,, the complete graph on r
vertices, this problem was considered by Erdés, Jacobson and Lehel (1]
where they showed that ¢(K3,n) = 2n for n > 6 and conjectured that
o(Kr,n) = (r—2)(2n—7r+1)+2 for sufficiently large n. [2,6,7,8] confirmed
the conjecture for r > 4 and n sufficiently large. In [11], Rao also considered
the problem of characterizing the degree sequences of graphs containing
a clique of prescribed size and gave a characterization for a sequence 7
to be potentially K,-graphic. Although the proof by Rao [11] remains
unpublished, Kézdy and Lehel [3] have given a different proof using network
flows. Li et al. (7] also obtained a sufficient condition for a graphic sequence
7 to be potentially K,-graphic. For H = K, ,, the r x s complete bipartite
graph, Gould et al. [2] determined o(K>2,n). Yin and Li [12,13] obtained
some sufficient conditions for a graphic sequence 7 to be potentially K, ,-
graphic and determined o(K;.,n) for r > 3 and n sufficiently large.

Recently, Yin, Li and Chen [14] further considered the following prob-
lem: for given integers k and ¢, 3 < k < ¢, determine the smallest
even integer o(;C¢,n) such that each n-term graphic sequence 7 with
o(r) > o(xCe,n) is potentially xCi-graphic. (2] determined o(Cj,n).
(4,5,9] determined o(3Ce,n) for £ > 4 and n sufficiently large. [14] com-
pletely determined o(xCe,n) for £ > 7 and 3 < k < £. Motivated by the
above problem, Luo [10] considered the problem: characterize 7 € GS,,
such that = is potentially C-graphic, and obtained the following results.

Theorem 1.1. [10] Let # = (dy,dy,...,d,) € GS, withn > 3. Then 7
is potentially Cy-graphic if and only if d3 > 2 except for two cases: = = (2¢)
and 7 = (2°), where the symbol z¥ in a sequence stands for y consecutive
terms, each equal to z.

Theorem 1.2. [10] Let 7 = (dy,dz,...,d,) € GS,. Then 7 is poten-
tially C4-graphic if and only if all the following conditions must be satisfied:

(1) ds>2;

(2) dy =n—1 implies dy > 3;

(3) If n=5,6, then m # (27).

Theorem 1.3. [10] Let 7w = (dy,da,...,d,) € GS,. Then 7 is poten-
tially Cs-graphic if and only if 7 satisfies all the following conditions:

(1) ds > 2 and 7 # (2") for n=6,7;

(2) Fori=1,2, dy =n—iimplies ds_; > 3;

(3) Ifr= (dl,d2,2k, ln—k—-Q), thend; +dy <n+k-2.
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Motivated by the above theorems, we consider the problem: for given
integers k and £, 3 < k < ¢, characterize 7 € GS,, such that = is potentially
xCe-graphic. In this paper, we give the characterizations for a sequence
m € GS, to be potentially ,Cy-graphic for k = 3 and £ = 4, k = 3 and
¢=5,andk=4and £=5.

2. Preliminaries

In order to prove our main results, we need the following results.

Theorem 2.1. 2] If 7 = (d;,ds,...,d,) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization G’
of 7 containing H as a subgraph so that the vertices of H have the largest
degrees of .

For a non-negative integer sequence m = (dy,dy,...,d,), let d} > dy >
-+« > dJ,_, be the rearrangement of do—1,ds—1,...,dg,+1—1,d4, +2,--.:dn
in non-increasing order. Then #’ = (d},d5,...,d,_,) is called the residual

sequence obtained by laying off d; from w. It is easy to see that if #’
is graphic then so is «, since a realization G of 7 can be obtained from
a realization G’ of #' by adding a new vertex v, of degree d; to G’ and
joining it to the vertices whose degrees are reduced by one in going from
to w'.

Theorem 2.2. [9] If 7 = (dy,da,...,d,) is a non-increasing non-
negative integer sequence with dy < n—1, di — d, < 1 and o(x) is even,
then = is graphic.

Lemma 2.1. Let 7 = (d;,ds,...,ds) € GS, be a potentially Cy-
graphic sequence. If d3 > 3, or d; > 4 and dy > 3, then 7 is potentially
3Cy-graphic.

Proof. By Theorem 2.1, we may let G be a realization of 7 with Cy =
1122232421 C G and {dg(z1),de(z2),dc(73),de(z4)} = {d1,d2,d3,da},
where dg(z) denotes the degree of the vertex z in G. Since z,x3 or z2z4 €
E(G) implies that  is potentially 3C4-graphic, we assume that z;z3 and
zoxz4 ¢ E(G), and first prove the following two claims:

Claim 1. If there exist 2,y € V(C4), z # y and z € V(G) \ V(Cy) such
that zz,yz € E(G), then 7 is potentially 3C4-graphic.

If zy € E(C}), then G clearly contains Cj as a subgraph. If zy ¢ (C4),
without loss of generality, we may assume that ¢ = z; and y = z3, then
G’ = G — {z122, T34} + {Z123, T2T4} is a realization of 7 and contains C3
and Cj as subgraphs.

Claim 2. If there exist z,y € V(Cy), ¢ # y and z',y' € V(G)\ V(Cy),
z' # y' such that zz’,yy € E(G) and z'y’ ¢ E(G), then 7 is potentially
3C4-graphic.

If zy ¢ E(G), without loss of generality, we may assume that z = z;
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and y = 3, then G’ = G~ {zz’,yy'} + {z123,2'y'} is a realization of 7 and
contains C3 and Cy as subgraphs. If zy € E(G), without loss of generality,
we may assume that £ = z; and y = 5, then G' = G — {zz’, yy/', zaz4} +
{z'y’, z123, 2274} is a realization of 7 and contains C3 and Cy as subgraphs.

Let A; = N(z;)\{zi-1,Zi+1} for 1 < i < 4, where 2 = x4, z5 = z; and
N(z) denotes the neighbor set of the vertex z in G. Then [4;] = dg(z;) -2
for 1 <i <4, and by Claims 1 and 2, for any i and j, 1 < i < j < 4, we
may assume that A; N 4; = 0 and zy € E(G) for any z € A; and y € A;.
Hence it is enough to prove that d4 > 3, since d4 > 3 implies that |A;] > 1
for 1 <i < 4 and G clearly contains Cs as a subgraph. Now it easily follows
from d3 > 3, or d; > 4 and d; > 3 that U}_,|4;| > 3 and there exists a
vertex u € Uj_; A; such that dg(u) > 3. Thus, we have dy > dg(u) > 3.
O

Lemma 2.2. Let 7 = (d1,da,...,dn) € GS, be a potentially Cs-
graphic sequence. If d3 > 3, or d; > 4 and dp > 3, then 7 is potentially
3Cs-graphic.

Proof. By Theorem 2.1, we may assume that 7 has a realization G with
Cs = 212273247571 € G and {dg(z1), de(z2), da(x3), de(z4), dg(zs)} =
{d1,d2,d3,ds,ds}. If there exists an %, 1 < 7 < 5 such that z;xiy2 € E(G),
where g = z; and x7 = 2, then = clearly is potentially 3Cs-graphic. So
we further assume that z;z;42 ¢ E(G) for 1 < i < 5. First we prove the
following

Claim. If there exist z,y € V(Cs), z # y and 2/, € V(G) \ V(Cs),
z' # y such that zz’,yy’ € E(G) and 'y’ ¢ E(G), then 7 is potentially
3C5s-graphic.

If zy ¢ E(G), without loss of generality, we may assume that z = z;
and y = z3, then clearly G’ = G — {zz’, yy'} + {z123,2'y'} is a realization
of m and contains C3, C; and Cs as subgraphs. If zy € E(G), without
loss of generality, we may assume that 2 = z; and y = z,, then G’ =
G — {z3z4, z2’, yy'} + {2123, 2224, 2'y'} is a realization of 7 and contains
C3, C4 and Cj as subgraphs.

Let A; = N(z;)\{zi~1,Tit1} for 1 < i < 5, where zo = x5 and z¢ = ;.
Thus, by the Claim, we may assume that for any i and §, 1 <i < j < 5,
zy € E(G) for any z € A;, y € Aj and = # y. So it is easy to get from
d3 > 3, or di > 4 and dz > 3 that there exists a vertex u € U_, A; such
that dg(u) > 3. Now by d5s > dg(u) > 3, ie, |A4;] > 1for 1 < <5, it is
clear that G contains C3 and Cj as subgraphs. O

3. Main Results

Theorem 3.1. Let m = (d,dy,...,d,) € GS, be a potentially Cy-
graphic sequence. Then 7 is potentially 3C;-graphic if and only if 7 satisfies
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one of the following conditions:

(1) d2 >3 and 7 # (3%,24);

. (2) 7= (d1,2%,1"*-1) with 2 < d; < 3 and k > 6, and 7 # (28) and
(2%);

(3) m=(d1,2%,1" %1y with4 < d; <n—-2and k > 5, and 7 # (4,2%)
and (4,27).

Proof. First assume that = is potentially 3C4-graphic. If dy > 3,
then 7 # (32,2%), since it is easy to see that (3%,2%) is not potentially
3Cq-graphic. Now assume that d; = 2. Then 7 = (d;,2*,1*~%~1), where
k>5 If2<d; <3, then k > 6 and 7 # (28)and (29), since k < 5
implies that 7 is not potentially 3Cs-graphic, and (2%) and (2%) are not
potentially 3C,-graphic. If d; > 4, then by Theorem 1.2, d; £ n — 2, and
it follows from 7 to be potentially 3C4-graphic that k > 5, and 7 # (4, 2)
and (4,27).

To prove the sufficiency, we first assume that 7 satisfies (1). By Lemma
2.1, we may assume that m = (32,2%,17"~%~2), where k > 2. If4 < n < 6,
then 7 is one of the following sequences:

(3%,2%), (3%,2%), (32,2%,1%).

It is easy to see that all of them are potentially 3Cs-graphic. If n > 7,
let m, = (2¥=2,1"%-2), then by o(m.) = o(w) — 10 is even and Theorem
2.2, w, is graphic. Let G* be a realization of m.. Then (K; —e)UG* is a
realization of 7 and contains C3 and Cj as subgraphs, where K, — e is the
graph obtained from K4 by removing one edge.

Now we assume that = satisfies (2). If 7 < n < 9, then 7 is one of the
following:

2", (3,2%,1), (27,1%), (3,27,1).

It is easy to see that the above four sequences are potentially 3C4-graphic.
If n > 10, let m, = (d; — 2,25°6,1"%~1), then the residual sequence
7.’ obtained by laying off d; — 2 from . clearly satisfies the hypotheses of
Theorem 2.2, and so =,/ is graphic and thus so is m,. Let G* be a realization
of 7., and = € V(G*) with dg-(z) = d1 — 2. Denote

G = (C4 UG*) U {z1,z2} U {zT1, T12Z2, T22},

i.e., G is the graph obtained from C4; U G* by adding new vertices z1,
and new edges 1T1,T1Z2,Z2T to C4 U G*. Clearly, G is a realization of w
and contains C3 and C; as subgraphs.

Finally, we assume that = satisfies (3). If 6 < n < 8, then = is one of
the following:

4,2%, (5,2%1), (4,2%,1%), (5,2%,1), (6,2%12%), (6,27).
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It is easy to see that they are all potentially 3C,-graphic. If n > 9, let
7w = (di — 4,2575,1"7%~1) then the residual sequence .’ obtained by
laying off d; — 4 from =, satisfies the hypotheses of Theorem 2.2, and so
m.' is graphic and thus so is .. Assume that G* is a realization of =, and
z € V(G*) with dg-(z) = d; — 4. Let

*
G = G" U {z1, 22,23, 24,25} U {221, 2173, 722, TT3, T3T4, TaTs, T5T}.

Then G is a realization of = and contains C3 and Cj as subgraphs. O

Theorem 3.2. Let 7 = (d),ds,...,d,) € GS, be a potentially Cs-
graphic sequence. Then  is potentially 3C;-graphic if and only if 7 satisfies
one of the following conditions:

(1) d2 >3, and 7 # (32,2%) and (32,25);

(2) m=(d1,2%1"7F"!) with 2 < d; < 3 and k > 11, and 7 # (2!9)
and (214);

(3) m=(d1,25,1""*~1) with 4 < d; < 5 and k > 10, and 7 # (4,2')
and (4,212);

(4) m=(d1,2%,1""*~1) with6 < d; <n—4and k > 9, and 7 # (6,21°)
and (6,2').

Proof. The necessity is obvious. In order to prove the sufficiency, we
consider the following four cases:

Case 1. 7 satisfies (1). By Lemma 2.2, we may assume that # =
(3%,2%,17%-2), where k > 3. If 5 < n < 7, then 7 = (32, 2%) or (32,23,12).
It is easy to see that (3%,2%) and (32,23,12) are potentially 3Cs-graphic. If
n > 8, let m, = (2573,1""%=2) then by Theorem 2.2, =, is graphic, and
hence 7 = (32,28,2%-3 17=k=2) clearly is potentially 3Cs-graphic.

Case 2. 7 satisfies (2). If 12 < n < 14, then 7 is one of the following:

(2'%), (3,2',1), (3,2'%,1), (2'3,1%).

It is easy to see that the above four sequences are potentially 3Cs-graphic.
Ifn > 15, let m, = (d; — 2,2¥~11 12~%=1) then the residual sequence 7.’
obtained by laying off d; — 2 from , satisfies the hypotheses of Theorem
2.2, and hence 7.’ and w. are graphic. Let G* be a realization of .,
and ¢ € V(G) with dg-(z) = d; — 2. Then (C5 UC,UG*) U {z1,22} U
{zz1,z122, 222} is a realization of 7 and contains C3, C; and Cs as sub-
graphs.

Case 3. 7 satisfies (3). If 11 < n < 13, then 7 is one of the following:

(4,2'9), (5,219,1), (4,29,1%), (5,2',1).

It is easy to see that all of them are potentially 3Cs-graphic. If n > 14, let
Tu = (dy — 4,2%719,1"=%-1)_ then by Theorem 2.2, the residual sequence
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m.' obtained by laying off d; — 4 from m, is graphic, and hence so is ..
Denote

G= (C5 UG*) U{xls T2,T3,T4, -’35} ) {QXE], T1%2, 2T, TT3, T3T4, $4$5,$5$},

where G* is a realization of 7, and z € V(G*) with dg-(z) = d; — 4.
Clearly, G is a realization of 7 and contains C3, C4 and Cs as subgraphs.
Case 4.  satisfies (4). If 10 < n £ 12, then 7 is one of the following:

6,2%), (7,2°,1), (6,2°1%), (7,219,1), (8,2!), (8,2%1%).

It is easy to see that the above six sequences are potentially 3Cs-graphic.
If n > 13, then the residual sequence 7.’ obtained by laying off d; — 6
from , = (d; — 6,2%79,17~%~1) satisfies the hypotheses of Theorem 2.2.
Hence 7. is graphic. Let G* be a realization of 7, and z € V(G*) with
dg-(z) = d; — 6, and denote

G = G*U{z1,z2,23,24,T5,T6, T7, T8, T9}
U{l‘xl »L1T2,T2T, LT3, T3L4, T4T5, T5Z, TT6, T6T7, T7L8, T8T9, -"3933}~

Then G is a realization of 7 and contains C3, C4 and Cj as subgraphs. 0O

The proof of the following Theorem 3.3 is very similar to that of Theo-
rem 3.2, we omit it here.

Theorem 3.3. Let m = (d,dz,...,dn) € GS, be a potentially Cs-
graphic sequence. Then 7 is potentially 4Cs-graphic if and only if 7 satisfies
one of the following conditions:

(1) d223;

(2) 7= (d1,2%,1""%!) with 2 < d; <3 and k > 8, and 7 # (2!°) and
@M

(3) m=(dy,2%,1" %) with4 < d; <n—4and k > 7, and 7 # (4,28)
and (4, 2%).
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