On Potentially $_kC_l$ -graphic Sequences *

Jian-Hua Yin[†]

Department of Computer Science, Hainan Normal University, Haikou 571158, China College of Information Science and Technology, Hainan University, Haikou 570228, China

Gang Chen

Department of Mathematics, Ningxia University, Yinchuan 750021, China

Guo-Liang Chen

Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China

Abstract: For given integers k and ℓ , $3 \le k \le \ell$, a graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ is said to be potentially ${}_kC_\ell$ -graphic if there exists a realization of π containing C_r for each r, where $k \le r \le \ell$ and C_r is the cycle of length r. Luo (Ars Combinatoria 64(2002)301-318) characterized the potentially C_ℓ -graphic sequences without zero terms for $\ell = 3, 4, 5$. In this paper, we characterize the potentially ${}_kC_\ell$ -graphic sequences without zero terms for $k = 3, 4 \le \ell \le 5$ and $k = 4, \ell = 5$.

Keywords: graph, degree sequence, potentially graphic sequence. MR subject classification(2000): 05C07, 05C38.

1. Introduction

A *n*-term non-negative integer sequence, $\pi = (d_1, d_2, \ldots, d_n)$, is said to be *graphic* if it is the degree sequence of a simple graph G on n vertices and such a graph G is referred to as a *realization* of π . For a given non-negative integer sequence $\pi = (d_1, d_2, \ldots, d_n)$, define $\sigma(\pi) = d_1 + d_2 + \cdots + d_n$. The set of all *n*-term non-increasing graphic sequences without zero terms is denoted by GS_n . For a given graph H, a sequence $\pi \in GS_n$ is said to

^{*}Supported by National Natural Science Foundation of China (Grant No. 10401010) and China Scholarship Council.

[†]Email: yinjh@ustc.edu

be potentially H-graphic if there exists a realization of π containing H as a subgraph. Moreover, for given integers k and ℓ , $3 \le k \le \ell$, a sequence $\pi \in GS_n$ is said to be potentially ${}_kC_{\ell}$ -graphic if there exists a realization of π containing C_r as a subgraph for each r, $k \le r \le \ell$.

In [2], Gould, Jacobson and Lehel considered the potentially H-graphic sequences. They considered the following problem: determine the smallest even integer $\sigma(H, n)$ such that every n-term graphic sequence π with $\sigma(\pi) \geq$ $\sigma(H,n)$ is potentially H-graphic. If $H=K_r$, the complete graph on r vertices, this problem was considered by Erdős, Jacobson and Lehel [1] where they showed that $\sigma(K_3, n) = 2n$ for $n \geq 6$ and conjectured that $\sigma(K_r, n) = (r-2)(2n-r+1)+2$ for sufficiently large n. [2,6,7,8] confirmed the conjecture for $r \geq 4$ and n sufficiently large. In [11], Rao also considered the problem of characterizing the degree sequences of graphs containing a clique of prescribed size and gave a characterization for a sequence π to be potentially K_r -graphic. Although the proof by Rao [11] remains unpublished, Kézdy and Lehel [3] have given a different proof using network flows. Li et al. [7] also obtained a sufficient condition for a graphic sequence π to be potentially K_r -graphic. For $H=K_{r,s}$, the $r\times s$ complete bipartite graph, Gould et al. [2] determined $\sigma(K_{2,2},n)$. Yin and Li [12,13] obtained some sufficient conditions for a graphic sequence π to be potentially $K_{r,s}$ graphic and determined $\sigma(K_{r,r}, n)$ for $r \geq 3$ and n sufficiently large.

Recently, Yin, Li and Chen [14] further considered the following problem: for given integers k and ℓ , $3 \le k \le \ell$, determine the smallest even integer $\sigma(_kC_\ell,n)$ such that each n-term graphic sequence π with $\sigma(\pi) \ge \sigma(_kC_\ell,n)$ is potentially $_kC_\ell$ -graphic. [2] determined $\sigma(C_4,n)$. [4,5,9] determined $\sigma(_3C_\ell,n)$ for $\ell \ge 4$ and n sufficiently large. [14] completely determined $\sigma(_kC_\ell,n)$ for $\ell \ge 7$ and $3 \le k \le \ell$. Motivated by the above problem, Luo [10] considered the problem: characterize $\pi \in GS_n$ such that π is potentially C_k -graphic, and obtained the following results.

Theorem 1.1. [10] Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ with $n \geq 3$. Then π is potentially C_3 -graphic if and only if $d_3 \geq 2$ except for two cases: $\pi = (2^4)$ and $\pi = (2^5)$, where the symbol x^y in a sequence stands for y consecutive terms, each equal to x.

Theorem 1.2. [10] Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$. Then π is potentially C_4 -graphic if and only if all the following conditions must be satisfied:

- (1) $d_4 \geq 2$;
- (2) $d_1 = n 1$ implies $d_2 \ge 3$;
- (3) If n = 5, 6, then $\pi \neq (2^n)$.

Theorem 1.3. [10] Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$. Then π is potentially C_5 -graphic if and only if π satisfies all the following conditions:

- (1) $d_5 \ge 2$ and $\pi \ne (2^n)$ for n=6,7;
- (2) For $i = 1, 2, d_1 = n i$ implies $d_{4-i} \ge 3$;
- (3) If $\pi = (d_1, d_2, 2^k, 1^{n-k-2})$, then $d_1 + d_2 \le n + k 2$.

Motivated by the above theorems, we consider the problem: for given integers k and ℓ , $3 \le k \le \ell$, characterize $\pi \in GS_n$ such that π is potentially ${}_kC_\ell$ -graphic. In this paper, we give the characterizations for a sequence $\pi \in GS_n$ to be potentially ${}_kC_\ell$ -graphic for k=3 and $\ell=4$, k=3 and $\ell=5$, and k=4 and $\ell=5$.

2. Preliminaries

In order to prove our main results, we need the following results.

Theorem 2.1. [2] If $\pi = (d_1, d_2, \ldots, d_n)$ is a graphic sequence with a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

For a non-negative integer sequence $\pi=(d_1,d_2,\ldots,d_n)$, let $d_1'\geq d_2'\geq \cdots \geq d_{n-1}'$ be the rearrangement of $d_2-1,d_3-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n$ in non-increasing order. Then $\pi'=(d_1',d_2',\ldots,d_{n-1}')$ is called the *residual sequence* obtained by laying off d_1 from π . It is easy to see that if π' is graphic then so is π , since a realization G of π can be obtained from a realization G' of π' by adding a new vertex v_1 of degree d_1 to G' and joining it to the vertices whose degrees are reduced by one in going from π to π' .

Theorem 2.2. [9] If $\pi = (d_1, d_2, \ldots, d_n)$ is a non-increasing non-negative integer sequence with $d_1 \leq n-1$, $d_1-d_n \leq 1$ and $\sigma(\pi)$ is even, then π is graphic.

Lemma 2.1. Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a potentially C_4 -graphic sequence. If $d_3 \geq 3$, or $d_1 \geq 4$ and $d_2 \geq 3$, then π is potentially ${}_3C_4$ -graphic.

Proof. By Theorem 2.1, we may let G be a realization of π with $C_4 = x_1x_2x_3x_4x_1 \subseteq G$ and $\{d_G(x_1), d_G(x_2), d_G(x_3), d_G(x_4)\} = \{d_1, d_2, d_3, d_4\}$, where $d_G(x)$ denotes the degree of the vertex x in G. Since x_1x_3 or $x_2x_4 \in E(G)$ implies that π is potentially ${}_3C_4$ -graphic, we assume that x_1x_3 and $x_2x_4 \notin E(G)$, and first prove the following two claims:

Claim 1. If there exist $x, y \in V(C_4)$, $x \neq y$ and $z \in V(G) \setminus V(C_4)$ such that $xz, yz \in E(G)$, then π is potentially ${}_3C_4$ -graphic.

If $xy \in E(C_4)$, then G clearly contains C_3 as a subgraph. If $xy \notin (C_4)$, without loss of generality, we may assume that $x = x_1$ and $y = x_3$, then $G' = G - \{x_1x_2, x_3x_4\} + \{x_1x_3, x_2x_4\}$ is a realization of π and contains C_3 and C_4 as subgraphs.

Claim 2. If there exist $x, y \in V(C_4)$, $x \neq y$ and $x', y' \in V(G) \setminus V(C_4)$, $x' \neq y'$ such that $xx', yy' \in E(G)$ and $x'y' \notin E(G)$, then π is potentially ${}_{3}C_{4}$ -graphic.

If $xy \notin E(G)$, without loss of generality, we may assume that $x = x_1$

and $y=x_3$, then $G'=G-\{xx',yy'\}+\{x_1x_3,x'y'\}$ is a realization of π and contains C_3 and C_4 as subgraphs. If $xy \in E(G)$, without loss of generality, we may assume that $x=x_1$ and $y=x_2$, then $G'=G-\{xx',yy',x_3x_4\}+\{x'y',x_1x_3,x_2x_4\}$ is a realization of π and contains C_3 and C_4 as subgraphs.

Let $A_i = N(x_i) \setminus \{x_{i-1}, x_{i+1}\}$ for $1 \leq i \leq 4$, where $x_0 = x_4$, $x_5 = x_1$ and N(x) denotes the neighbor set of the vertex x in G. Then $|A_i| = d_G(x_i) - 2$ for $1 \leq i \leq 4$, and by Claims 1 and 2, for any i and j, $1 \leq i < j \leq 4$, we may assume that $A_i \cap A_j = \emptyset$ and $xy \in E(G)$ for any $x \in A_i$ and $y \in A_j$. Hence it is enough to prove that $d_4 \geq 3$, since $d_4 \geq 3$ implies that $|A_i| \geq 1$ for $1 \leq i \leq 4$ and G clearly contains C_3 as a subgraph. Now it easily follows from $d_3 \geq 3$, or $d_1 \geq 4$ and $d_2 \geq 3$ that $\bigcup_{i=1}^4 |A_i| \geq 3$ and there exists a vertex $u \in \bigcup_{i=1}^4 A_i$ such that $d_G(u) \geq 3$. Thus, we have $d_4 \geq d_G(u) \geq 3$.

Lemma 2.2. Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a potentially C_5 -graphic sequence. If $d_3 \geq 3$, or $d_1 \geq 4$ and $d_2 \geq 3$, then π is potentially ${}_3C_5$ -graphic.

Proof. By Theorem 2.1, we may assume that π has a realization G with $C_5=x_1x_2x_3x_4x_5x_1\subseteq G$ and $\{d_G(x_1),d_G(x_2),d_G(x_3),d_G(x_4),d_G(x_5)\}=\{d_1,d_2,d_3,d_4,d_5\}$. If there exists an $i,1\leq i\leq 5$ such that $x_ix_{i+2}\in E(G)$, where $x_6=x_1$ and $x_7=x_2$, then π clearly is potentially ${}_3C_5$ -graphic. So we further assume that $x_ix_{i+2}\notin E(G)$ for $1\leq i\leq 5$. First we prove the following

Claim. If there exist $x, y \in V(C_5)$, $x \neq y$ and $x', y' \in V(G) \setminus V(C_5)$, $x' \neq y'$ such that $xx', yy' \in E(G)$ and $x'y' \notin E(G)$, then π is potentially ${}_3C_5$ -graphic.

If $xy \notin E(G)$, without loss of generality, we may assume that $x = x_1$ and $y = x_3$, then clearly $G' = G - \{xx', yy'\} + \{x_1x_3, x'y'\}$ is a realization of π and contains C_3 , C_4 and C_5 as subgraphs. If $xy \in E(G)$, without loss of generality, we may assume that $x = x_1$ and $y = x_2$, then $G' = G - \{x_3x_4, xx', yy'\} + \{x_1x_3, x_2x_4, x'y'\}$ is a realization of π and contains C_3 , C_4 and C_5 as subgraphs.

Let $A_i = N(x_i) \setminus \{x_{i-1}, x_{i+1}\}$ for $1 \le i \le 5$, where $x_0 = x_5$ and $x_6 = x_1$. Thus, by the Claim, we may assume that for any i and j, $1 \le i < j \le 5$, $xy \in E(G)$ for any $x \in A_i$, $y \in A_j$ and $x \ne y$. So it is easy to get from $d_3 \ge 3$, or $d_1 \ge 4$ and $d_2 \ge 3$ that there exists a vertex $u \in \bigcup_{i=1}^5 A_i$ such that $d_G(u) \ge 3$. Now by $d_5 \ge d_G(u) \ge 3$, i.e., $|A_i| \ge 1$ for $1 \le i \le 5$, it is clear that G contains C_3 and C_4 as subgraphs. \square

3. Main Results

Theorem 3.1. Let $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ be a potentially C_4 -graphic sequence. Then π is potentially ${}_3C_4$ -graphic if and only if π satisfies

one of the following conditions:

- (1) $d_2 \geq 3$ and $\pi \neq (3^2, 2^4)$;
- (2) $\pi = (d_1, 2^k, 1^{n-k-1})$ with $2 \le d_1 \le 3$ and $k \ge 6$, and $\pi \ne (2^8)$ and (2^9) ;
- (3) $\pi = (d_1, 2^k, 1^{n-k-1})$ with $4 \le d_1 \le n-2$ and $k \ge 5$, and $\pi \ne (4, 2^6)$ and $(4, 2^7)$.

Proof. First assume that π is potentially ${}_3C_4$ -graphic. If $d_2 \geq 3$, then $\pi \neq (3^2, 2^4)$, since it is easy to see that $(3^2, 2^4)$ is not potentially ${}_3C_4$ -graphic. Now assume that $d_2 = 2$. Then $\pi = (d_1, 2^k, 1^{n-k-1})$, where $k \geq 5$. If $2 \leq d_1 \leq 3$, then $k \geq 6$ and $\pi \neq (2^8)$ and (2^9) , since $k \leq 5$ implies that π is not potentially ${}_3C_4$ -graphic, and (2^8) and (2^9) are not potentially ${}_3C_4$ -graphic. If $d_1 \geq 4$, then by Theorem 1.2, $d_1 \leq n-2$, and it follows from π to be potentially ${}_3C_4$ -graphic that $k \geq 5$, and $\pi \neq (4, 2^6)$ and $(4, 2^7)$.

To prove the sufficiency, we first assume that π satisfies (1). By Lemma 2.1, we may assume that $\pi = (3^2, 2^k, 1^{n-k-2})$, where $k \geq 2$. If $4 \leq n \leq 6$, then π is one of the following sequences:

$$(3^2, 2^2), (3^2, 2^3), (3^2, 2^2, 1^2).$$

It is easy to see that all of them are potentially ${}_3C_4$ -graphic. If $n \geq 7$, let $\pi_* = (2^{k-2}, 1^{n-k-2})$, then by $\sigma(\pi_*) = \sigma(\pi) - 10$ is even and Theorem 2.2, π_* is graphic. Let G^* be a realization of π_* . Then $(K_4 - e) \cup G^*$ is a realization of π and contains C_3 and C_4 as subgraphs, where $K_4 - e$ is the graph obtained from K_4 by removing one edge.

Now we assume that π satisfies (2). If $7 \le n \le 9$, then π is one of the following:

$$(2^7)$$
, $(3, 2^6, 1)$, $(2^7, 1^2)$, $(3, 2^7, 1)$.

It is easy to see that the above four sequences are potentially ${}_3C_4$ -graphic. If $n \geq 10$, let $\pi_* = (d_1 - 2, 2^{k-6}, 1^{n-k-1})$, then the residual sequence π_* obtained by laying off $d_1 - 2$ from π_* clearly satisfies the hypotheses of Theorem 2.2, and so π_* is graphic and thus so is π_* . Let G^* be a realization of π_* , and $x \in V(G^*)$ with $d_{G^*}(x) = d_1 - 2$. Denote

$$G = (C_4 \cup G^*) \cup \{x_1, x_2\} \cup \{xx_1, x_1x_2, x_2x\},\$$

i.e., G is the graph obtained from $C_4 \cup G^*$ by adding new vertices x_1, x_2 and new edges xx_1, x_1x_2, x_2x to $C_4 \cup G^*$. Clearly, G is a realization of π and contains C_3 and C_4 as subgraphs.

Finally, we assume that π satisfies (3). If $6 \le n \le 8$, then π is one of the following:

$$(4,2^5)$$
, $(5,2^5,1)$, $(4,2^5,1^2)$, $(5,2^6,1)$, $(6,2^5,1^2)$, $(6,2^7)$.

It is easy to see that they are all potentially ${}_3C_4$ -graphic. If $n \geq 9$, let $\pi_* = (d_1 - 4, 2^{k-5}, 1^{n-k-1})$, then the residual sequence π_* obtained by laying off $d_1 - 4$ from π_* satisfies the hypotheses of Theorem 2.2, and so π_* is graphic and thus so is π_* . Assume that G^* is a realization of π_* , and $x \in V(G^*)$ with $d_{G^*}(x) = d_1 - 4$. Let

$$G = G^* \cup \{x_1, x_2, x_3, x_4, x_5\} \cup \{xx_1, x_1x_2, x_2x, xx_3, x_3x_4, x_4x_5, x_5x\}.$$

Then G is a realization of π and contains C_3 and C_4 as subgraphs. \square

Theorem 3.2. Let $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ be a potentially C_5 -graphic sequence. Then π is potentially ${}_3C_5$ -graphic if and only if π satisfies one of the following conditions:

- (1) $d_2 \ge 3$, and $\pi \ne (3^2, 2^4)$ and $(3^2, 2^5)$;
- (2) $\pi = (d_1, 2^k, 1^{n-k-1})$ with $2 \le d_1 \le 3$ and $k \ge 11$, and $\pi \ne (2^{13})$ and (2^{14}) ;
- (3) $\pi = (d_1, 2^k, 1^{n-k-1})$ with $4 \le d_1 \le 5$ and $k \ge 10$, and $\pi \ne (4, 2^{11})$ and $(4, 2^{12})$;
- (4) $\pi = (d_1, 2^k, 1^{n-k-1})$ with $6 \le d_1 \le n-4$ and $k \ge 9$, and $\pi \ne (6, 2^{10})$ and $(6, 2^{11})$.

Proof. The necessity is obvious. In order to prove the sufficiency, we consider the following four cases:

Case 1. π satisfies (1). By Lemma 2.2, we may assume that $\pi = (3^2, 2^k, 1^{n-k-2})$, where $k \geq 3$. If $5 \leq n \leq 7$, then $\pi = (3^2, 2^3)$ or $(3^2, 2^3, 1^2)$. It is easy to see that $(3^2, 2^3)$ and $(3^2, 2^3, 1^2)$ are potentially ${}_3C_5$ -graphic. If $n \geq 8$, let $\pi_* = (2^{k-3}, 1^{n-k-2})$, then by Theorem 2.2, π_* is graphic, and hence $\pi = (3^2, 2^3, 2^{k-3}, 1^{n-k-2})$ clearly is potentially ${}_3C_5$ -graphic.

Case 2. π satisfies (2). If $12 \le n \le 14$, then π is one of the following:

$$(2^{12}), (3, 2^{11}, 1), (3, 2^{12}, 1), (2^{12}, 1^2).$$

It is easy to see that the above four sequences are potentially ${}_3C_5$ -graphic. If $n \geq 15$, let $\pi_* = (d_1 - 2, 2^{k-11}, 1^{n-k-1})$, then the residual sequence π_* obtained by laying off $d_1 - 2$ from π_* satisfies the hypotheses of Theorem 2.2, and hence π_* and π_* are graphic. Let G^* be a realization of π_* , and $x \in V(G^*)$ with $d_{G^*}(x) = d_1 - 2$. Then $(C_5 \cup C_4 \cup G^*) \cup \{x_1, x_2\} \cup \{xx_1, x_1x_2, x_2x\}$ is a realization of π and contains C_3 , C_4 and C_5 as subgraphs.

Case 3. π satisfies (3). If $11 \le n \le 13$, then π is one of the following:

$$(4,2^{10}), (5,2^{10},1), (4,2^{10},1^2), (5,2^{11},1).$$

It is easy to see that all of them are potentially ${}_3C_5$ -graphic. If $n \ge 14$, let $\pi_* = (d_1 - 4, 2^{k-10}, 1^{n-k-1})$, then by Theorem 2.2, the residual sequence

 π_* obtained by laying off d_1-4 from π_* is graphic, and hence so is π_* . Denote

$$G = (C_5 \cup G^*) \cup \{x_1, x_2, x_3, x_4, x_5\} \cup \{xx_1, x_1x_2, x_2x, xx_3, x_3x_4, x_4x_5, x_5x\},\$$

where G^* is a realization of π_* and $x \in V(G^*)$ with $d_{G^*}(x) = d_1 - 4$. Clearly, G is a realization of π and contains C_3 , C_4 and C_5 as subgraphs.

Case 4. π satisfies (4). If $10 \le n \le 12$, then π is one of the following:

$$(6,2^9), (7,2^9,1), (6,2^9,1^2), (7,2^{10},1), (8,2^{11}), (8,2^9,1^2).$$

It is easy to see that the above six sequences are potentially ${}_3C_5$ -graphic. If $n \geq 13$, then the residual sequence π_* obtained by laying off $d_1 - 6$ from $\pi_* = (d_1 - 6, 2^{k-9}, 1^{n-k-1})$ satisfies the hypotheses of Theorem 2.2. Hence π_* is graphic. Let G^* be a realization of π_* and $x \in V(G^*)$ with $d_{G^*}(x) = d_1 - 6$, and denote

$$G = G^* \cup \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} \cup \{xx_1, x_1x_2, x_2x, xx_3, x_3x_4, x_4x_5, x_5x, xx_6, x_6x_7, x_7x_8, x_8x_9, x_9x\}.$$

Then G is a realization of π and contains C_3 , C_4 and C_5 as subgraphs. \Box The proof of the following Theorem 3.3 is very similar to that of Theorem 3.2, we omit it here.

Theorem 3.3. Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a potentially C_5 -graphic sequence. Then π is potentially ${}_4C_5$ -graphic if and only if π satisfies one of the following conditions:

- (1) $d_2 \geq 3$;
- (2) $\pi = (d_1, 2^k, 1^{n-k-1})$ with $2 \le d_1 \le 3$ and $k \ge 8$, and $\pi \ne (2^{10})$ and (2^{11}) ;
- (3) $\pi = (d_1, 2^k, 1^{n-k-1})$ with $4 \le d_1 \le n-4$ and $k \ge 7$, and $\pi \ne (4, 2^8)$ and $(4, 2^9)$.

References

- [1] P. Erdős, M.S. Jacobson and J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), *Graph Theory, Combinatorics and Applications*, John Wiley & Sons, New York, 1991, Vol.I: 439-449.
- [2] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi et al., (Eds.), Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo Michigan, 1999, Vol.I: 451–460.
- [3] A.E. Kézdy and J. Lehel, Degree sequences of graphs with prescribed clique size, in: Y. Alavi et al., (Eds.), Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo Michigan, 1999, Vol.II: 535-544.

- [4] J.S. Li and R. Luo, Potentially ₃C_ℓ-graphic sequences, J. Univ. Sci. Tech. China, 29(1999)1–8.
- [5] J.S. Li, R. Luo and Y.K. Liu, An extremal problem on potentially ${}_{3}C_{l}$ -graphic sequences, J. Math. Study, 31(1998)362-369.
- [6] J.S. Li and Z.X. Song, An extremal problem on the potentially P_k -graphic sequence, *Discrete Math.*, **212**(2000)223-231.
- [7] J.S. Li and Z.X. Song, The smallest degree sum that yields potentially P_k -graphic sequences, J. Graph Theory, 29(1998)63-72.
- [8] J.S. Li, Z.X. Song and R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, *Science in China*, *Ser.A*, 41(1998)510-520.
- [9] J.S. Li and J.H. Yin, A variation of an extremal theorem due to Woodall, Southeast Asian Bulletin of Math., 25(2001)427-434.
- [10] R. Luo, On potentially C_k -graphic sequences, Ars Combinatoria, **64**(2002)301-318.
- [11] A.R. Rao, An Erdős-Gallai type result on the clique number of a realization of a degree sequence, unpublished.
- [12] J.H. Yin and J.S. Li, An extremal problem on potentially $K_{r,s}$ -graphic sequences, *Discrete Math.*, **260**(2003)295–305.
- [13] J.H. Yin and J.S. Li, The smallest degree sum that yields potentially $K_{r,r}$ -graphic sequences, Science in China, Ser. A, 45(2002)694-705.
- [14] J.H. Yin, J.S. Li and G.L. Chen, The smallest degree sum that yields potentially ${}_kC_\ell$ -graphic sequences, *Discrete Math.*, **270**(2003)319–327.